An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions
"> Figure 1
<p>A power curve derived for the 2.5 MW study turbine, using ten-minute data during the period of study, spanning from 20 February to 18 June 2018 and bins of 1 m s<sup>−1</sup>. Cut-in region (I), operational region (II) and rated region (III) are also shown.</p> "> Figure 2
<p>(<b>a</b>) Two-dimensional binning of wind power in terms of rotor equivalent wind speed and density and (<b>b</b>) the resulting power surface.</p> "> Figure 3
<p>A schematic of the wind turbine, the associated control volume within the ABL, and the variables required in Equation (<a href="#FD7-energies-13-00891" class="html-disp-formula">7</a>). The dashed rectangle depicts the control volume containing the wind turbine rotor.</p> "> Figure 4
<p>The stream-tube containing the wind turbine expands in the axial direction due to the fact that wind speed decreases gradually from the inflow towards the far wake.</p> "> Figure 5
<p>An example induction curve for the 2.5 MW turbine in this study, derived using bins of 0.5 m s<sup>−1</sup>. The boxes show the interquartile range for each bin, the lower and upper quartiles are shown with dashed lines, and values outside the lower and upper qartiles are shown with red plus marks.</p> "> Figure 6
<p>Satellite image of the location of the 106 m tall met tower and the stand-alone wind turbine in relation to each other and the City of Cedar Rapids. Image: Google.</p> "> Figure 7
<p>A schematic of the sensors installed on the 106 m tall met tower at the site. The instruments are installed on seven booms, at six different heights. Six booms are extended towards the west while Boom 7 extends easterly.</p> "> Figure 8
<p>Distribution of wind and generated energy during the four-month period of study: (<b>a</b>) wind rose from SCADA data and (<b>b</b>) energy rose from SCADA data in MWh, only for periods when the turbine was operating. The energy rose is generated by considering bins of 10°, and integrating the total amount of energy generated for each bin in MWh.</p> "> Figure 9
<p>Comparison of ten-minute averaged hub-height wind speed measurements at the met tower and at the nacelle. The diagonal represents a 1:1 relationship.</p> "> Figure 10
<p>Observed distribution of ten-minute averaged atmospheric variables, including: (<b>a</b>) hub-height wind speed (m s<sup>−1</sup>), (<b>b</b>) hub-height turbulence intensity (<math display="inline"><semantics> <mrow> <mi>T</mi> <mi>I</mi> </mrow> </semantics></math>), (<b>c</b>) shear exponent, (<b>d</b>) hub-height air density (kg m<sup>−3</sup>).</p> "> Figure 11
<p>Variation of induction factor with wind speed and density, as derived from Equation (<a href="#FD23-energies-13-00891" class="html-disp-formula">23</a>), based on 10 min mean wind speed and turbulent flux data. An Induction curve is obtained using bins of 0.5 m s<sup>−1</sup> for <math display="inline"><semantics> <msub> <mi>U</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 12
<p>Classification of stability regimes based on distribution of <math display="inline"><semantics> <msub> <mi>R</mi> <mi>B</mi> </msub> </semantics></math>.</p> "> Figure 13
<p>The effect of <math display="inline"><semantics> <msub> <mi>C</mi> <mi>z</mi> </msub> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> </mrow> </semantics></math> of power prediction showing optimum values for: (<b>a</b>) stable regime, (<b>b</b>) neutral regime, (<b>c</b>) unstable regime, normalized by <math display="inline"><semantics> <msup> <mi>D</mi> <mn>2</mn> </msup> </semantics></math>, where <span class="html-italic">D</span> is the diameter of the wind turbine.</p> "> Figure 14
<p>(<b>a</b>) Induction curve resulting from values of <math display="inline"><semantics> <msub> <mi>C</mi> <mi>z</mi> </msub> </semantics></math> found for different stability regimes and then dividing axial flow induction factor values into bins of 0.5 m s<sup>−1</sup> for <math display="inline"><semantics> <msub> <mi>U</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> </semantics></math> and (<b>b</b>) two induction curves resulting from division of data into two smaller sets based on air density.</p> "> Figure 15
<p>Performance of: (<b>a</b>) standard power curve, (<b>b</b>) power surface, (<b>c</b>) induction curve, and (<b>d</b>) double induction curve, for predicting power generation of the wind turbine.</p> "> Figure 16
<p>Time series of error reduction in power prediction during a sample twelve-hour period on 16 February 2018 from 3:00 a.m. to 3:00 p.m., resulting from (<b>a</b>) double induction curve, and (<b>b</b>) power surface, compared to the standard power curve.</p> "> Figure 17
<p>The linear relation between <math display="inline"><semantics> <msubsup> <mi>σ</mi> <mi>u</mi> <mn>2</mn> </msubsup> </semantics></math> and <math display="inline"><semantics> <msup> <mrow> <msub> <mi>u</mi> <mo>*</mo> </msub> </mrow> <mn>2</mn> </msup> </semantics></math> while setting the intercept to the origin, and for the sonic anemometers on (<b>a</b>) boom 4 (32 m), (<b>b</b>) boom 5 (80 m), and (<b>c</b>) boom 6 (106 m).</p> "> Figure 18
<p>Performance of: (<b>a</b>) induction curve using approximated values of turbulent fluxes, and (<b>b</b>) double induction curve using approximated values of turbulent fluxes, for predicting power generation of the wind turbine.</p> ">
Abstract
:1. Introduction
- Wind resource assessment: at the initial stages of building a wind farm, the feasibility of the project is determined through estimating the amount of energy that can potentially be generated at the site.
- Wind farm control: power forecasting models can help wind farm operators optimize the power output of the plant.
- Managing supply and demand: ensuring grid stability is critical when integrating wind energy into the power grid, and accurate models for forecasting energy generation can help balancing authorities achieve this goal.
- Forecast of energy markets: renewable energy has made energy markets more dynamic, resulting in intra-day or rolling power markets which require accurate forecasts of energy production from wind farms in their transactions.
2. Model Development
2.1. Standard Power Curve
2.2. Power Surface
2.3. Axial Flow Induction Factor Curve
- Mean flow only in the axial direction ()
- Homogeneity in the lateral direction ()
- Coriolis and gravitational forces are negligible
3. Data Sources
3.1. Wind Turbine SCADA System
3.2. Meteorological Tower Data
3.3. Data Quality Control
3.3.1. Quality Checks for Meteorological Tower Data
3.3.2. Quality Checks for SCADA Data
4. Discussion of the Results
Approximation of Turbulent Momentum Fluxes
5. Concluding Remarks and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; von Stechow, C.; et al. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Vahidzadeh, M.; Markfort, C.D. Modified Power Curves for Prediction of Power Output of Wind Farms. Energies 2019, 12, 1805. [Google Scholar] [CrossRef] [Green Version]
- Würth, I.; Valldecabres, L.; Simon, E.; Möhrlen, C.; Uzunoğlu, B.; Gilbert, C.; Giebel, G.; Schlipf, D.; Kaifel, A. Minute-scale forecasting of wind power—Results from the collaborative workshop of IEA Wind task 32 and 36. Energies 2019, 12, 712. [Google Scholar] [CrossRef] [Green Version]
- Clifton, A.; Kilcher, L.; Lundquist, J.; Fleming, P. Using machine learning to predict wind turbine power output. Environ. Res. Lett. 2013, 8, 024009. [Google Scholar] [CrossRef]
- Wagner, R.; Courtney, M.; Gottschall, J.; Lindeløw-Marsden, P. Accounting for the speed shear in wind turbine power performance measurement. Wind Energy 2011, 14, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Choukulkar, A.; Pichugina, Y.; Clack, C.T.; Calhoun, R.; Banta, R.; Brewer, A.; Hardesty, M. A new formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting. Wind Energy 2016, 19, 1439–1452. [Google Scholar] [CrossRef]
- Kaiser, K.; Langreder, W.; Hohlen, H.; Højstrup, J. Turbulence correction for power curves. In Wind Energy; Springer: Berlin/Heidelberg, Germany, 2007; pp. 159–162. [Google Scholar]
- Wagner, R.; Antoniou, I.; Pedersen, S.M.; Courtney, M.S.; Jørgensen, H.E. The influence of the wind speed profile on wind turbine performance measurements. Wind Energy 2009, 12, 348–362. [Google Scholar] [CrossRef]
- Langreder, W.; Kaiser, K.; Hohlen, H.; Hojstrup, J. Turbulence Correction for Power Curves; EWEC: London, UK, 2004. [Google Scholar]
- Tindal, A.; Johnson, C.; LeBlanc, M.; Harman, K.; Rareshide, E.; Graves, A. Site-specific adjustments to wind turbine power curves. In Proceedings of the AWEA Wind Power Conference, Houston, TX, USA, 1–4 June 2008. [Google Scholar]
- Albers, A.; Jakobi, T.; Rohden, R.; Stoltenjohannes, J. Influence of meteorological variables on measured wind turbine power curves. In Proceedings of the European Wind Energy Conf. & Exhibition, Berlin, Germany, 4–6 December 2007; pp. 525–546. [Google Scholar]
- St Martin, C.M.; Lundquist, J.K.; Clifton, A.; Poulos, G.S.; Schreck, S.J. Wind turbine power production and annual energy production depend on atmospheric stability and turbulence. Wind Energy Sci. (Online) 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Wharton, S.; Lundquist, J.K. Atmospheric stability affects wind turbine power collection. Environ. Res. Lett. 2012, 7, 014005. [Google Scholar] [CrossRef]
- Redfern, S.; Olson, J.B.; Lundquist, J.K.; Clack, C.T. Incorporation of the Rotor-Equivalent Wind Speed into the Weather Research and Forecasting Model’s Wind Farm Parameterization. Mon. Weather Rev. 2019, 147, 1029–1046. [Google Scholar] [CrossRef]
- Lebron, J.; Castillo, L.; Meneveau, C. Experimental study of the kinetic energy budget in a wind turbine streamtube. J. Turbul. 2012, 13, N43. [Google Scholar] [CrossRef]
- Cortina, G.; Calaf, M.; Cal, R.B. Distribution of mean kinetic energy around an isolated wind turbine and a characteristic wind turbine of a very large wind farm. Phys. Rev. Fluids 2016, 1, 074402. [Google Scholar] [CrossRef]
- Cortina, G.; Sharma, V.; Calaf, M. Wind farm density and harvested power in very large wind farms: A low-order model. Phys. Rev. Fluids 2017, 2, 074601. [Google Scholar] [CrossRef]
- Markfort, C.D.; Zhang, W.; Porté-Agel, F. Turbulent flow and scalar transport through and over aligned and staggered wind farms. J. Turbul. 2012, 13, N33. [Google Scholar] [CrossRef]
- IEC. International Standard, Wind Turbines-Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines; IEC 61400-12-1; International Electrotechnical Commission: Geneva, Switzerland, 2005. [Google Scholar]
- Betz, A. Schraubenpropeller mit geringstem Energieverlust. Gottinger Nachrichten 1919, 1919, 193–213. [Google Scholar]
- Commission, I.E. Power Performance of Electricity Producing Wind Turbines Based on Nacelle Anemometry; Technical Report, IEC 61400-12-2 CD Part 12-2; International Electrotechnical Commission: Geneva, Switzerland, 2008. [Google Scholar]
- Simley, E.; Angelou, N.; Mikkelsen, T.; Sjöholm, M.; Mann, J.; Pao, L.Y. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars. J. Renew. Sustain. Energy 2016, 8, 013301. [Google Scholar] [CrossRef] [Green Version]
- Bulaevskaya, V.; Wharton, S.; Clifton, A.; Qualley, G.; Miller, W. Wind power curve modeling in complex terrain using statistical models. J. Renew. Sustain. Energy 2015, 7, 013103. [Google Scholar] [CrossRef]
- Iungo, G.V. Experimental characterization of wind turbine wakes: Wind tunnel tests and wind lidar measurements. J. Wind Eng. Ind. Aerodyn. 2016, 149, 35–39. [Google Scholar] [CrossRef]
- Shin, D.; Ko, K. Application of the Nacelle Transfer Function by a Nacelle-Mounted Light Detection and Ranging System to Wind Turbine Power Performance Measurement. Energies 2019, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Carbajo Fuertes, F.; Markfort, C.D.; Porté-Agel, F. Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model Validation. Remote Sens. 2018, 10, 668. [Google Scholar] [CrossRef] [Green Version]
- Brugger, P.; Fuertes, F.C.; Vahidzadeh, M.; Markfort, C.D.; Porté-Agel, F. Characterization of Wind Turbine Wakes with Nacelle-Mounted Doppler LiDARs and Model Validation in the Presence of Wind Veer. Remote Sens. 2019, 11, 2247. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Abraham, A.; Li, B.; Hong, J. Investigation on the Atmospheric Incoming Flow of a Utility-Scale Wind Turbine using Super-large-scale Particle Image Velocimetry. arXiv 2019, arXiv:1907.11386. [Google Scholar]
- Dasari, T.; Wu, Y.; Liu, Y.; Hong, J. Near-wake behaviour of a utility-scale wind turbine. J. Fluid Mech. 2019, 859, 204–246. [Google Scholar] [CrossRef]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Markfort, C.D.; Zhang, W.; Porté-Agel, F. Analytical model for mean flow and fluxes of momentum and energy in very large wind farms. Bound.-Layer Meteorol. 2018, 166, 31–49. [Google Scholar] [CrossRef]
- Tennekes, H.; Lumley, J.L.; Lumley, J. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Lee, X.; Massman, W.; Law, B. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Springer: Berlin/Heidelberg, Germany, 2004; Volume 29. [Google Scholar]
- Mauder, M.; Foken, T. Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (Update); University of Bayreuth: Bayreuth, Germany, 2015. [Google Scholar]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Smith, B.; Link, H.; Randall, G.; McCoy, T. Applicability of Nacelle Anemometer Measurements for Use in Turbine Power Performance Tests; Technical Report; National Renewable Energy Lab.: Golden, CO, USA, 2002. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 13. [Google Scholar]
- Aitken, M.L.; Banta, R.M.; Pichugina, Y.L.; Lundquist, J.K. Quantifying wind turbine wake characteristics from scanning remote sensor data. J. Atmos. Ocean. Technol. 2014, 31, 765–787. [Google Scholar] [CrossRef]
- Banta, R.M.; Pichugina, Y.L.; Brewer, W.A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci. 2006, 63, 2700–2719. [Google Scholar] [CrossRef] [Green Version]
- Nieuwstadt, F.T. The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 1984, 41, 2202–2216. [Google Scholar] [CrossRef]
- Lenschow, D.H.; Li, X.S.; Zhu, C.J.; Stankov, B.B. The stably stratified boundary layer over the Great Plains. In Topics in Micrometeorology. A Festschrift for Arch Dyer; Springer: Berlin/Heidelberg, Germany, 1988; pp. 95–121. [Google Scholar]
- Smedman, A.S. Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer. Bound.-Layer Meteorol. 1988, 44, 231–253. [Google Scholar] [CrossRef]
- Berström, H.; Smedman, A.S. Stably stratified flow in a marine atmospheric surface layer. Bound.-Layer Meteorol. 1995, 72, 239–265. [Google Scholar] [CrossRef]
- Smedman, A.S.; Bergström, H.; Högström, U. Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet. Bound.-Layer Meteorol. 1995, 76, 211–232. [Google Scholar] [CrossRef]
Sensor | Make/Model | Quantity | Heights | Resolution |
---|---|---|---|---|
Barometric Pressure | Setra 278 | 2 | 6, 106 m | 1 Hz |
Temperature Sensor | NRG 110S | 2 | 6, 20 m | 1 Hz |
Wind Vane | NRG 200P | 7 | 6, 10, 20, 32, 80, 106 m | 1 Hz |
Cup Anemometer | A100LK | 7 | 6, 10, 20, 32, 80, 106 m | 1 Hz |
T/RH Sensor | Vaisala-HMP 155 | 4 | 10, 32, 80, 106 m | 1 Hz |
Sonic Anemometer | Campbell Scientific-CSAT3B | 4 | 10, 32, 80, 106 m | 20 Hz |
Gas Analyzer | LICOR-LI 7500-RS | 1 | 106 m | 20 Hz |
Gas Analyzer | Campbell Scientific-Irgason | 1 | 106 m | 20 Hz |
Radiometer | Kipp&Zonen-CNR4 | 1 | 106 m | 1 Hz |
Source | ||||||
---|---|---|---|---|---|---|
Nieuwstadt [40] | 4.2 | 2.9 | 2.0 | 0.69 | 0.48 | 1.08 |
Smedman [42] | 5.29 | 2.89 | 1.64 | 0.54 | 0.31 | 0.93 |
Bergstrom et al. [43] | 5.95 | 3.69 | 1.77 | 0.62 | 0.30 | 0.96 |
Smedman et al. [44] | 3.6 | 2.56 | 1.0 | 0.71 | 0.28 | 0.99 |
Lenschow et al. [41] | 4.5 | 4.5 | 3.1 | 1.0 | 0.69 | 1.34 |
This study | 3.9 | 4.7 | 3.5 | 1.1 | 0.84 | 1.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahidzadeh, M.; Markfort, C.D. An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions. Energies 2020, 13, 891. https://doi.org/10.3390/en13040891
Vahidzadeh M, Markfort CD. An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions. Energies. 2020; 13(4):891. https://doi.org/10.3390/en13040891
Chicago/Turabian StyleVahidzadeh, Mohsen, and Corey D. Markfort. 2020. "An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions" Energies 13, no. 4: 891. https://doi.org/10.3390/en13040891
APA StyleVahidzadeh, M., & Markfort, C. D. (2020). An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions. Energies, 13(4), 891. https://doi.org/10.3390/en13040891