Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System
"> Figure 1
<p>Average daily power consumption of each dataset.</p> "> Figure 2
<p>Example of one-day load demand of each dataset (<b>a</b>) ISO-NE dataset; (<b>b</b>) ENTSO-E dataset.</p> "> Figure 3
<p>Load demand trend over a year.</p> "> Figure 4
<p>Dilated causal convolutional neural network with filter size 2.</p> "> Figure 5
<p>Residual learning process.</p> "> Figure 6
<p>Overview of residual dilated convolutional block and gated activation function.</p> "> Figure 7
<p>Comparison between simple recurrent neural network (RNN) and long short-term memory (LSTM) layer: (<b>a</b>) simple RNN layer, (<b>b</b>) LSTM layer.</p> "> Figure 8
<p>Proposed model architecture.</p> "> Figure 9
<p>Forecasting result using ENTSO-E dataset 1.</p> "> Figure 10
<p>Forecasting result using ENTSO-E dataset 2.</p> "> Figure 11
<p>Forecasting result using ISO-NE dataset 1.</p> "> Figure 12
<p>Forecasting result using ISO-NE dataset 2.</p> ">
Abstract
:1. Introduction
2. Dataset
3. Model Design
3.1. Wavenet
3.2. LSTM
Brief Explanation of LSTM
3.3. Detailed Model Setup
4. Result and Discussion
4.1. Model Performance Evaluation
4.2. ENTSO-E Load Prediction
4.3. ISO-NE Load Prediction
4.4. Discussion
5. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Krishna, K.S.; Kumar, K.S. A review on hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2015, 52, 907–916. [Google Scholar] [CrossRef]
- Olson, C.; Lenzmann, F. The social and economic consequences of the fossil fuel supply chain. MRS Energy Sustain. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Nguyen, D. Demand Response for Domestic and Small Business Consumers: A New Challenge. In Proceedings of the IEEE PES T&D 2010, New Orleans, LA, USA, 19–22 April 2010; pp. 1–7. [Google Scholar]
- Marwan, M.; Kamel, F.; Xiang, W. Mitigation of electricity price/demand using demand side response smart grid model. In Proceedings of the 1st International Postgraduate Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing (eddBE 2011), Brisbane, Australia, 27–29 April 2011; Queensland University of Technology: Brisbane, Australia, 2011; pp. 128–132. [Google Scholar]
- Vu, D.H.; Muttaqi, K.M.; Agalgaonkar, A. A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Appl. Energy 2015, 140, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Al-Hamadi, H.; Soliman, S. Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electr. Power Syst. Res. 2004, 68, 47–59. [Google Scholar] [CrossRef]
- Cho, M.; Hwang, J.; Chen, C. Customer Short Term Load Forecasting by Using ARIMA Transfer Function Model. In Proceedings of the 1995 International Conference on Energy Management and Power Delivery EMPD’95, Singapore, 21–23 November 1995; pp. 317–322. [Google Scholar]
- Hao, C. A new method of load forecasting based on generalized autoregressive conditional heteroscedasticity model. Autom. Electr. Power Syst. 2007, 15, 12–13. [Google Scholar]
- Niu, D.; Wang, Y.; Wu, D.D. Power load forecasting using support vector machine and ant colony optimization. Expert Syst. Appl. 2010, 37, 2531–2539. [Google Scholar] [CrossRef]
- Fan, G.-F.; Guo, Y.-H.; Zheng, J.-M.; Hong, W.-C. Application of the Weighted K-Nearest Neighbor Algorithm for Short-Term Load Forecasting. Energies 2019, 12, 916. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, Z.; Hong, W.-C. A hybrid seasonal mechanism with a chaotic cuckoo search algorithm with a support vector regression model for electric load forecasting. Energies 2018, 11, 1009. [Google Scholar] [CrossRef]
- Zhang, R.; Dong, Z.Y.; Xu, Y.; Meng, K.; Wong, K.P. Short-term load forecasting of Australian National Electricity Market by an ensemble model of extreme learning machine. IET Gener. Transm. Distrib. 2013, 7, 391–397. [Google Scholar] [CrossRef]
- Ghofrani, M.; Ghayekhloo, M.; Arabali, A.; Ghayekhloo, A. A hybrid short-term load forecasting with a new input selection framework. Energy 2015, 81, 777–786. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2017, 10, 841–851. [Google Scholar] [CrossRef]
- Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network. Energies 2018, 11, 3493. [Google Scholar] [CrossRef]
- Han, L.; Peng, Y.; Li, Y.; Yong, B.; Zhou, Q.; Shu, L. Enhanced deep networks for short-term and medium-term load forecasting. IEEE Access 2018, 7, 4045–4055. [Google Scholar] [CrossRef]
- Park, K.; Yoon, S.; Hwang, E. Hybrid load forecasting for mixed-use complex based on the characteristic load decomposition by pilot signals. IEEE Access 2019, 7, 12297–12306. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 1995. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Oord, A.V.D.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Handbook-Glossary, U.O. European network of transmission system operators for electricity. Available online: https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show (accessed on 30 April 2019).
- Shamsollahi, P.; Cheung, K.; Chen, Q.; Germain, E.H. A neural network based very short term load forecaster for the interim ISO New England electricity market system. In Proceedings of the PICA 2001. Innovative Computing for Power-Electric Energy Meets the Market. 22nd IEEE Power Engineering Society. International Conference on Power Industry Computer Applications (Cat. No. 01CH37195), Sydney, Australia, 20–24 May 2001; pp. 217–222. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992; pp. 196–202. [Google Scholar]
- Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 11, 86–92. [Google Scholar] [CrossRef]
Layer | Parameters |
---|---|
Input Layer (1) | 32, 44 |
Conv1D (1) | [f, ks, s] = [16, 1, 1] |
Dilated Causal Conv1D | [f, ks, s, dr] = [32, 2, 1, dr] |
Conv1D (2) | [f, ks, s] = [16, 1, 1] |
Conv1D (3) | [f, ks, s] = [128, 1, 1] |
Conv1D (4) | [f, ks, s] = [1, 1, 1] |
Input Layer (2) | 5, 1 |
LSTM | 1 output node |
Model | RMSE | MAE | MAPE (%) |
---|---|---|---|
Tian et al. | 240.57 | 171.71 | 2.45 |
Kong et al. | 222.44 | 155.83 | 2.22 |
Wavenet | 217.98 | 157.28 | 2.24 |
Our Model | 203.23 | 142.23 | 2.02 |
Model | RMSE | MAE | MAPE (%) |
---|---|---|---|
Tian et al. | 306.77 | 216.19 | 3.42 |
Kong et al. | 304.07 | 209.22 | 3.29 |
Wavenet | 305.04 | 212.99 | 3.36 |
Our Model | 292.07 | 196.95 | 3.1 |
Model | RMSE | MAE | MAPE (%) |
---|---|---|---|
Tian et al. | 114.33 | 82.18 | 0.56 |
Kong et al. | 92.7 | 62.55 | 0.42 |
Wavenet | 109.76 | 77.69 | 0.52 |
Our Model | 85.12 | 58.96 | 0.4 |
Model | RMSE | MAE | MAPE (%) |
---|---|---|---|
Tian et al. | 141.97 | 89.07 | 0.66 |
Kong et al. | 100.5 | 65.12 | 0.48 |
Wavenet | 125.11 | 78.02 | 0.57 |
Our Model | 88.31 | 62.23 | 0.46 |
Compared Models | Wilcoxson Signed-Rank Test | Friedman Test | |||
---|---|---|---|---|---|
α = 0.025 W = 285,423 | p-value | α = 0.05 W = 285,423 | p-value | α = 0.05 | |
Our Model vs Kong et al. | 243,792 | 3.64 × 10−5 | 243,792 | 3.64 × 10−5 | F = 47.4618 p = 2.77 × 10−10 (Reject ) |
Our Model vs Tian et al. | 211,190.5 | 1.81 × 10−13 | 211,190.5 | 1.81 × 10−13 | |
Our Model vs Wavenet | 246,095 | 9.60 × 10−5 | 246,095 | 9.60 × 10−5 |
Compared Models | Wilcoxson Signed-Rank Test | Friedman Test | |||
---|---|---|---|---|---|
α = 0.025 W = 80,792 | p-value | α = 0.05 W = 80,792 | p-value | α = 0.05 | |
Our Model vs Kong et al. | 68,149.5 | 0.001227 | 68,149.5 | 0.001227 | F = 17.59 p = 0.00053 (Reject ) |
Our Model vs Tian et al. | 66,885 | 3.77 × 10−4 | 66,885 | 3.77 × 10−4 | |
Our Model vs Wavenet | 69,587 | 0.004169 | 69,587 | 0.004169 |
Compared Models | Wilcoxson Signed-Rank Test | Friedman Test | |||
---|---|---|---|---|---|
α = 0.025 W = 285,423 | p-value | α = 0.05 W = 285,423 | p-value | α = 0.05 | |
Our Model vs Kong et al. | 274,482 | 2.78 × 10−1 | 274,482 | 2.78 × 10−1 | F = 140.032 p = 3.72 × 10−30(Reject ) |
Our Model vs Tian et al. | 179,311 | 6.68 × 10−26 | 179,311 | 6.68 × 10−26 | |
Our Model vs Wavenet | 206,826.5 | 6.43 × 10−15 | 206,826.5 | 6.43 × 10−15 |
Compared Models | Wilcoxson Signed-Rank Test | Friedman Test | |||
---|---|---|---|---|---|
α = 0.025 W = 80,792 | p-value | α = 0.05 W = 80,792 | p-value | α = 0.05 | |
Our Model vs Kong et al. | 80,556 | 0.950686 | 80,556 | 0.950686 | F = 40.198 p = 9.67 × 10−9 (Reject ) |
Our Model vs Tian et al. | 57,955 | 5.29 × 10−9 | 57,955 | 5.29 × 10−9 | |
Our Model vs Wavenet | 66,618.5 | 0.00029 | 66,618.5 | 0.00029 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramono, S.H.; Rohmatillah, M.; Maulana, E.; Hasanah, R.N.; Hario, F. Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System. Energies 2019, 12, 3359. https://doi.org/10.3390/en12173359
Pramono SH, Rohmatillah M, Maulana E, Hasanah RN, Hario F. Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System. Energies. 2019; 12(17):3359. https://doi.org/10.3390/en12173359
Chicago/Turabian StylePramono, Sholeh Hadi, Mahdin Rohmatillah, Eka Maulana, Rini Nur Hasanah, and Fakhriy Hario. 2019. "Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System" Energies 12, no. 17: 3359. https://doi.org/10.3390/en12173359
APA StylePramono, S. H., Rohmatillah, M., Maulana, E., Hasanah, R. N., & Hario, F. (2019). Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System. Energies, 12(17), 3359. https://doi.org/10.3390/en12173359