Experimental Studies of Effect of Land Width in PEM Fuel Cells with Serpentine Flow Field and Carbon Cloth
<p>Schematic diagram of Hydrogenics<sup>®</sup> test system G60.</p> "> Figure 2
<p>Single serpentine flow fields with four different land widths (0.5 mm, 1 mm, 1.5 mm, 2 mm).</p> "> Figure 3
<p>Comparison of polarization curves at different inlet flow rates: (<b>a</b>) Land width = 0.5 mm; (<b>b</b>) land width = 1 mm; (<b>c</b>) land width = 1.5 mm; (<b>d</b>) land width = 2 mm.</p> "> Figure 4
<p>Comparison of net power densities that include the pumping power at different inlet flow rates and different land widths: (<b>a</b>) Land width = 0.5 mm; (<b>b</b>) land width = 1 mm; (<b>c</b>) land width = 1.5 mm; (<b>d</b>) land width = 2 mm.</p> "> Figure 5
<p>Comparison of polarization curves at different land widths: (<b>a</b>) Inlet flow rate = 0.5 L/min; (<b>b</b>) inlet flow rate = 1 L/min; (<b>c</b>) inlet flow rate = 2 L/min.</p> "> Figure 6
<p>Comparison of net power densities that include the pumping power at different land widths: (<b>a</b>) Inlet flow rate = 0.5 L/min; (<b>b</b>) inlet flow rate = 1 L/min; (<b>c</b>) inlet flow rate = 2 L/min.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Fuel Cell Test System
2.2. Fixture and Operation Conditions
3. Results and Discussions
3.1. Influence of Inlet Flow Rates
3.2. Influence of Land Width
4. Conclusions
- (1)
- For all the cases with different land width, high inlet flow rate (i.e., 2 L/min) always resulted in high fuel cell performance when the pumping power was not considered, whereas the medium inlet flow rate (i.e., 1 L/min) generally provided the highest fuel cell performance when the pumping power was included.
- (2)
- As the land width decreases, the fuel cell performance without considering the pumping power at 0.6 V cell potential or lower always increases, due to the increase of the under-land cross-flow rate and decrease of the mass transfer loss.
- (3)
- When the pumping power was included, the improvement of fuel cell performance caused by the decrease of the land width only occurred at a lower cell potential at a higher inlet flow rate.
- (4)
- The effects of the land width and inlet flow rate on fuel cell performance when considering the pumping power are very different from that without considering the pumping power.
- (5)
- Without considering the pumping power, the improvement of performance caused by optimizing the land width can be over-estimated, and the inlet flow rate cannot be optimized properly.
Author Contributions
Funding
Conflicts of Interest
References
- O’hayre, R.; Cha, S.-W.; Prinz, F.B.; Colella, W. Fuel Cell Fundamentals; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Laramie, J.; Dicks, A. Fuel Cell Systems Explained; John Wiley and Sons: New York, NY, USA, 2003. [Google Scholar]
- Wilberforce, T.; El-Hassan, Z.; Khatib, F.N.; Al Makky, A.; Baroutaji, A.; Carton, J.G.; Olabi, A.G. Developments of electric cars and fuel cell hydrogen electric cars. Int. J. Hydrog. Energy 2017, 42, 25695–25734. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, X.-Z.; Hin, J.N.C.; Wang, H.; Friedrich, K.A.; Schulze, M. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sources 2009, 194, 588–600. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, X.; Wang, H.; Merida, W.; Zhu, H.; Shen, J.; Wu, S.; Zhang, J. A review of accelerated stress tests of MEA durability in PEM fuel cells. Int. J. Hydrog. Energy 2009, 34, 388–404. [Google Scholar] [CrossRef]
- Li, X.; Sabir, I. Review of bipolar plates in PEM fuel cells: Flow-field designs. Int. J. Hydrog. Energy 2005, 30, 359–371. [Google Scholar] [CrossRef]
- Tawfik, H.; Hung, Y.; Mahajan, D. Metal bipolar plates for PEM fuel cell—A review. J. Power Sources 2007, 163, 755–767. [Google Scholar] [CrossRef]
- Jung, A.; Kong, I.M.; Baik, K.D.; Kim, M.S. Crossover effects of the land/channel width ratio of bipolar plates in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 2014, 39, 21588–21594. [Google Scholar] [CrossRef]
- Ijaodola, O.; Ogungbemi, E.; Khatib, F.N.; Wilberforce, T.; Ramadan, M.; Hassan, Z.E.; Thompson, J.; Olabi, A.G. Evaluating the Effect of Metal Bipolar Plate Coating on the Performance of Proton Exchange Membrane Fuel Cells. Energies 2018, 11, 3203. [Google Scholar] [CrossRef]
- Kahraman, H.; Orhan, M.F. Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling. Energy Convers. Manag. 2017, 133, 363–384. [Google Scholar]
- Vinh, N.; Kim, H.-M. Comparison of Numerical and Experimental Studies for Flow-Field Optimization Based on Under-Rib Convection in Polymer Electrolyte Membrane Fuel Cells. Energies 2016, 9, 844. [Google Scholar] [CrossRef]
- Owejan, J.; Trabold, T.; Jacobson, D.; Arif, M.; Kandlikar, S. Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell. Int. J. Hydrog. Energy 2007, 32, 4489–4502. [Google Scholar] [CrossRef]
- Wang, X.-D.; Duan, Y.-Y.; Yan, W.-M.; Lee, D.-J.; Su, A.; Chi, P.-H. Channel aspect ratio effect for serpentine proton exchange membrane fuel cell: Role of sub-rib convection. J. Power Sources 2009, 193, 684–690. [Google Scholar] [CrossRef]
- Nam, J.H.; Lee, K.-J.; Sohn, S.; Kim, C.-J. Multi-pass serpentine flow-fields to enhance under-rib convection in polymer electrolyte membrane fuel cells: Design and geometrical characterization. J. Power Sources 2009, 188, 14–23. [Google Scholar] [CrossRef]
- Shimpalee, S.; Greenway, S.; Van Zee, J.W. The impact of channel path length on PEMFC flow-field design. J. Power Sources 2006, 160, 398–406. [Google Scholar] [CrossRef]
- Suresh, P.V.; Jayanti, S.; Deshpande, A.P.; Haridoss, P. An improved serpentine flow field with enhanced cross-flow for fuel cell applications. Int. J. Hydrog. Energy 2011, 36, 6067–6072. [Google Scholar] [CrossRef]
- Zhang, G.; Fan, L.; Sun, J.; Jiao, K. A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties. Int. J. Heat Mass Transf. 2017, 115, 714–724. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Chen, J.; Yang, Q.; Jin, D.; Qiu, X. Numerical Investigations of the Combined Effects of Flow Rate and Methanol Concentration on DMFC Performance. Energies 2017, 10, 1094. [Google Scholar] [CrossRef]
- Wilberforce, T.; El-Hassan, Z.; Khatib, F.N.; Al Makky, A.; Baroutaji, A.; Carton, J.G.; Thompson, J.; Olabi, A.G. Modelling and simulation of Proton Exchange Membrane fuel cell with serpentine bipolar plate using MATLAB. Int. J. Hydrog. Energy 2017, 42, 25639–25662. [Google Scholar] [CrossRef]
- Higier, A.; Liu, H. Direct measurement of current density under the land and channel in a PEM fuel cell with serpentine flow fields. J. Power Sources 2009, 193, 639–648. [Google Scholar] [CrossRef]
- Wilberforce, T.; El-Hassan, Z.; Khatib, F.N.; Al Makky, A.; Mooney, J.; Barouaji, A.; Carton, J.G.; Olabi, A.-G. Development of Bi-polar plate design of PEM fuel cell using CFD techniques. Int. J. Hydrog. Energy 2017, 42, 25663–25685. [Google Scholar] [CrossRef]
- Manso, A.P.; Marzo, F.F.; Barranco, J.; Garikano, X.; Garmendia Mujika, M. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review. Int. J. Hydrog. Energy 2012, 37, 15256–15287. [Google Scholar] [CrossRef]
- Yoon, Y.-G.; Lee, W.-Y.; Park, G.-G.; Yang, T.-H.; Kim, C.-S. Effects of channel configurations of flow field plates on the performance of a PEMFC. Electrochim. Acta 2004, 50, 709–712. [Google Scholar] [CrossRef]
- Akhtar, N.; Kerkhof, P.J.A.M. Effect of channel and rib width on transport phenomena within the cathode of a proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2011, 36, 5536–5549. [Google Scholar] [CrossRef]
- Cooper, N.J.; Smith, T.; Santamaria, A.D.; Park, J.W. Experimental optimization of parallel and interdigitated PEMFC flow-field channel geometry. Int. J. Hydrog. Energy 2016, 41, 1213–1223. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.; Wang, K. Optimization of PEM fuel cell flow channel dimensions—Mathematic modeling analysis and experimental verification. Int. J. Hydrog. Energy 2013, 38, 9835–9846. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.-Y.; Chen, K.S. Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochim. Acta 2007, 52, 3965–3975. [Google Scholar] [CrossRef]
- Jiao, K.; Park, J.; Li, X. Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell. Appl. Energy 2010, 87, 2770–2777. [Google Scholar] [CrossRef]
Pressure drop (kPa) | 0.5 L/min | 1 L/min | 2 L/min |
---|---|---|---|
0.5 mm Land | 66.35 | 132.30 | 259.28 |
1 mm Land | 42.21 | 85.43 | 186.72 |
1.5 mm Land | 40.58 | 83.57 | 176.98 |
2mm Land | 41.57 | 83.69 | 176.98 |
Optimized Inlet Flow Rate (L/min) | 0.5 mm | 1 mm | 1.5 mm | 2 mm |
---|---|---|---|---|
0.7 V cell potential | 0.5 or 1 | 0.5 or 1 | 0.5 or 1 | 0.5 or 1 |
0.6 V cell potential | 0.5 or 1 | 1 | 1 | 1 |
0.5 V cell potential | 1 | 1 | 1 | 1 |
0.4 V cell potential | 1 | 1 or 2 | 1 or 2 | 1 or 2 |
Optimized Land Width (mm) | 0.5 L/min | 1 L/min | 2 L/min |
---|---|---|---|
0.7 V cell potential | 1.5 | 1 | 1 |
0.6 V cell potential | 0.5 | 1 | 1 |
0.5 V cell potential | 0.5 | 0.5 | 0.5 or 1 |
0.4 V cell potential | 0.5 | 0.5 | 0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Higier, A.; Zhang, X.; Liu, H. Experimental Studies of Effect of Land Width in PEM Fuel Cells with Serpentine Flow Field and Carbon Cloth. Energies 2019, 12, 471. https://doi.org/10.3390/en12030471
Zhang X, Higier A, Zhang X, Liu H. Experimental Studies of Effect of Land Width in PEM Fuel Cells with Serpentine Flow Field and Carbon Cloth. Energies. 2019; 12(3):471. https://doi.org/10.3390/en12030471
Chicago/Turabian StyleZhang, Xuyang, Andrew Higier, Xu Zhang, and Hongtan Liu. 2019. "Experimental Studies of Effect of Land Width in PEM Fuel Cells with Serpentine Flow Field and Carbon Cloth" Energies 12, no. 3: 471. https://doi.org/10.3390/en12030471
APA StyleZhang, X., Higier, A., Zhang, X., & Liu, H. (2019). Experimental Studies of Effect of Land Width in PEM Fuel Cells with Serpentine Flow Field and Carbon Cloth. Energies, 12(3), 471. https://doi.org/10.3390/en12030471