Representative Sampling Implementation in Online VFA/TIC Monitoring for Anaerobic Digestion
<p>Process diagram sampling device.</p> "> Figure 2
<p>Subsample dosing. <b>1:</b> Valves position before taking subsample. <b>2:</b> Valves position after taking the sample. (red = digestate, blue = air).</p> "> Figure 3
<p>Physical construction of the three valves <span class="html-italic">Vent_PE1</span>, <span class="html-italic">Vent_PE3</span> and <span class="html-italic">Vent_PE3</span> to define subsample volume according to the enclosed air volume, <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>e</mi> <mi>n</mi> <mi>c</mi> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 4
<p>Above left: Sampling system installed at the research plant. Marked sample collection. Above right: Dosing unit and titrator. Below: Visualization for the operator (key: a. Connection pump manifold; b. Collecting Tank; c. Pressure air; d. Drain; e. Watter; f. Venting; g. Peristaltic dosing pump; h. Titration cell; i. Peristaltic pump; j. Distilled water; k. KCL-solution).</p> "> Figure 5
<p>Sampling parameters.</p> "> Figure 6
<p>Configurations comparison. Lowest graphic presents corresponding feeding and agitation schedule.</p> "> Figure 7
<p>Three months online monitoring. On the abscissa time is given in days and on the ordinate the following aspects are given. Left: presents the digester feeding. Two feeding transition of maize silage can be identified from 1300 kg almost every 2 h to 6500 kg every 12 h and later 13,000 kg once a day. Middle: presents gas storage volume and CHP electrical generation. Generated power was reduced due to the low gas storage levels. Right: presents results of online monitoring and methane content. Process disturbance can be identified by the increase of the VFA/TIC. Calibration of the gas analyzer is marked showing a difference in the methane content from 53% to 45%.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parameter and Measurement Principle for the Sample Analysis
2.2. Theory of Sampling Guidelines (TOS)
- Operation 1 Transformation of lot dimensionality. This step is necessary to transform a digester, a 3 dimensional object, which is difficult to sample, into a 1 dimensional object. This is done by pumping the material through a pipe of which the length of one dimension is much larger than the other two. If the pipe is connected back to the digester a re-circulation loop is generated. In principle all the contents of the digester will pass through the pipe if the substrate is pumped often enough.Taking a sample from a digester is equivalent to taking a cross section of the flow through the pipe. The main problem here is taking an exact cross section. In [35] it is proposed to take a sample with a side valve in a vertical up flow in which the substrate is flowing at high speed, generating a turbulent flow implying a high degree of mixing, resulting in a homogeneous cross section. The sample taken with this procedure does not fully comply with the TOS because the cross section of the pipe is not completely extracted (delimitation error) and the homogenization assumption cannot be verified. In [15] it is proposed to install a dedicated re-circulation loop with a small pipe diameter and a low capacity pump. The sample is taken when a three way valve located at the vertical pipe is turned towards a side connection, and the volume is determined by the flow rate and time that the valve remains in the side position. In case there is more than one digester, each of them will require a separate re-circulation loop.
- Operation 2 Characterization of 0-Dimenstional (0-D) sampling variation. This should be used when there is no space correlation between the samples or when the correlation is not known. For this analysis it is not relevant whether the samples are taken continuously or discontinuously. The characterization is done by repetition of the sampling procedure and the calculation of the variance .
- Operation 3 Characterization of 1-D (process) variation by variography. In this case, there is a space correlation of the samples taken at consecutive intervals. A characterization is done with a variogram to detect the process variation frequency and is then used to modify the sampling frequency in order to avoid the risk of underestimating the process variation [33].
- Operation 4 Homogenization by mixing or blending. In order to reduce the heterogeneity it is important to agitate the digester before sampling. In every step of the sampling procedure each composite sample (defined as the addition of different subsamples or increments) should be well-mixed before being sent to the next step.
- Operation 5 Composite sampling. Due to the heterogeneous characteristics of the substrates it is necessary to generate a sample with as many increments (subsamples) as possible.
- Operation 6 Particle size reduction. The constitution heterogeneity of the substrate can only be achieved with a particle reduction or with comminution or filtration.
- Operation 7 Representative mass-reduction. A digester has a typical volume of m and the sample required for the analytical measurement has a volume of m. For that reason it is important that every mass reduction procedure done follows TOS guidelines in order to be representative.
2.3. Design of Experimental Setup
2.4. Sampling Conditions
2.5. Determination of Sampling Parameters
- 5 subsamples of 120 mL. Total volume 600 mL
- 4 subsamples of 120 mL.Total volume 480 mL
- 5 subsamples of 96 mL.Total volume 480 mL
2.6. Feeding on Demand
3. Results
3.1. Sampling Parameters
3.2. Measurements in the Commercial Plant
4. Discussion
4.1. Sampling Parameters
4.2. Measurements in the Commercial Plant
5. Conclusions
6. Patents
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CSTR | Continuous Stirring Tank Reactors |
VFA | Volatile Fatty Acids |
TIC | Total Inorganic Carbon |
TOS | Theory of Sampling |
NIRS | Near Infrared Spectroscopy |
CHP | Combined Heat and Power |
References
- Gy, P. Sampling for Analytical Purposes; Wiley: Chichester, UK, 1999; p. 153. [Google Scholar]
- Holm-Nielsen, J.B.; Dahl, C.K.; Esbensen, K.H. Representative sampling for process analytical characterization of heterogeneous bioslurry systems—A reference study of sampling issues in PAT. Chemom. Intell. Lab. Syst. 2006, 83, 114–126. [Google Scholar] [CrossRef]
- Madsen, M.; Holm-Nielsen, J.B.; Esbensen, K.H. Monitoring of anaerobic digestion processes: A review perspective. Renew. Sustain. Energy Rev. 2011, 15, 3141–3155. [Google Scholar] [CrossRef]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [Google Scholar] [CrossRef] [PubMed]
- Hennig, T.; Dudlik, A.; Deerberg, G. Simulation der Strömung in Fermentern von Biogasanlagen1. Chem. Ing. Tech. 2011, 83, 331–339. [Google Scholar] [CrossRef]
- Stocker, G. Biobeta Sediment Check: Eine Praxisgeprobte Innovation zur Ermittlung von Ablagerungen in Gasdichte Behältern (Europäische Patentanfrage); Biogas 2018; ProFair Consult + Project GmbH: Hildesheim, Germany, 2018; pp. 125–131. [Google Scholar]
- Lemmer, A.; Naegele, H.J.; Sondermann, J. How Efficient are Agitators in Biogas Digesters? Determination of the Efficiency of Submersible Motor Mixers and Incline Agitators by Measuring Nutrient Distribution in Full-Scale Agricultural Biogas Digesters. Energies 2013, 6, 6255–6273. [Google Scholar] [CrossRef]
- Naegele, H.J.; Monch-Tegeder, M.; Haag, N.L.; Oechsner, H. Effect of substrate pretreatment on particle size distribution in a full-scale research biogas plant. Bioresour. Technol. 2014, 172, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Boe, K.; Batstone, D.J.; Steyer, J.P.; Angelidaki, I. State indicators for monitoring the anaerobic digestion process. Water Res. 2010, 44, 5973–5980. [Google Scholar] [CrossRef] [PubMed]
- Drosg, B. Process Monitoring in Biogas Plants; IEA Bioenergy: Paris, France, 2013; p. 40. [Google Scholar]
- Ahring, B.K.; Sandberg, M.; Angelidaki, I. Volatile Fatty Acids as indicators of Process Inbalance in anaerobic digesters. Appl. Microbiol. Biotechnol. 1995, 43, 559–565. [Google Scholar] [CrossRef]
- Méndez-Acosta, H.O.; Palacios-Ruiz, B.; Alcaraz-González, V.; González-Álvarez, V.; García-Sandoval, J.P. A robust control scheme to improve the stability of anaerobic digestion processes. J. Process Control. 2010, 20, 375–383. [Google Scholar] [CrossRef]
- Sun, H.; Wu, S.; Dong, R. Monitoring Volatile Fatty Acids and Carbonate Alkalinity in Anaerobic Digestion: Titration Methodologies. Chem. Eng. Technol. 2016, 39, 599–610. [Google Scholar] [CrossRef]
- Jimenez, J.; Latrille, E.; Harmand, J.; Robles, A.; Ferrer, J.; Gaida, D.; Wolf, C.; Mairet, F.; Bernard, O.; Alcaraz-Gonzalez, V.; et al. Instrumentation and control of anaerobic digestion processes: A review and some research challenges. Rev. Environ. Sci. Bio/Technol. 2015, 14, 615–648. [Google Scholar] [CrossRef]
- Bakeev, K.A. Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, 2nd ed.; Wiley: Chichester, UK, 2010; p. 576. [Google Scholar]
- Petry, R.; Schmitt, M.; Popp, J. Raman Spectroscopy-A Prospective Tool in the Life Sciences. ChemPhysChem 2003, 4, 14–30. [Google Scholar] [CrossRef]
- Holm-Nielsen, J.B. Process Analytical Technologies for Anaerobic Digestion Systems: Robust Biomass Characterisation, Process Analytical Chemometrics, and Process Optimisation. Ph.D. Thesis, Aalborg University, Esbjerg, Denmark, 2008. [Google Scholar]
- Krapf, L.C.; Heuwinkel, H.; Schmidhalter, U.; Gronauer, A. The potential for online monitoring of short-term process dynamics in anaerobic digestion using near-infrared spectroscopy. Biomass Bioenergy 2013, 48, 224–230. [Google Scholar] [CrossRef]
- Falk, H.M.; Reichling, P.; Andersen, C.; Benz, R. Online monitoring of concentration and dynamics of volatile fatty acids in anaerobic digestion processes with mid-infrared spectroscopy. Bioprocess Biosyst. Eng. 2015, 38, 237–249. [Google Scholar] [CrossRef]
- Schelter, M.; Zosel, J.; Berthold, W. Measurement of Dissolved Gases in Anaerobic Biogenic Media. In Proceedings of the Sensor Test Conferences, Nuremberg, Germany, 7–9 June 2011. [Google Scholar]
- DBFZ. Collection of Methods for Biogas: Methods to Determine Parameters for Analysis Purposes and Parameters that Describe Processes in the Biogas Sector. Available online: https://www.energetische-biomassenutzung.de/fileadmin/media/6_Publikationen/07_MMS_Biogas_en_web.pdf (accessed on 26 March 2019).
- Feitkenhauer, H.; Sachs, J.; Meyer, U. On-line titration of volatile fatty acids for the process control of anaerobic digestion plants. Water Res. 2002, 36, 212–218. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Molina, F.; Ruiz-Filippi, G.; Garcia, C.; Lema, J.M.; Roca, E. Pilot-Scale Validation of a New Sensor for On-Line Analysis of Volatile Fatty Acids and Alkalinity in Anaerobic Wastewater Treatment Plants. Environ. Eng. Sci. 2009, 26, 641–649. [Google Scholar] [CrossRef]
- Palacio-Barco, E.; Robert-Peillard, F.; Boudenne, J.L.; Coulomb, B. On-line analysis of volatile fatty acids in anaerobic treatment processes. Anal. Chim. Acta 2010, 668, 74–79. [Google Scholar] [CrossRef]
- Pind, P.F.; Angelidaki, I.; Ahring, B.K. A new VFA sensor technique for anaerobic reactor systems. Biotechnol. Bioeng. 2003, 82, 54–61. [Google Scholar] [CrossRef]
- Lomborg, C.J.; Holm-Nielsen, J.B.; Oleskowicz-Popiel, P.; Esbensen, K.H. Near infrared and acoustic chemometrics monitoring of volatile fatty acids and dry matter during co-digestion of manure and maize silage. Bioresour. Technol. 2009, 100, 1711–1719. [Google Scholar] [CrossRef]
- Ihunegbo, F.N.; Madsen, M.; Esbensen, K.H.; Holm-Nielsen, J.B.; Halstensen, M. Acoustic chemometric prediction of total solids in bioslurry: A full-scale feasibility study for on-line biogas process monitoring. Chemom. Intell. Lab. Syst. 2012, 110, 135–143. [Google Scholar] [CrossRef]
- Weiland, P.; Rieger, C. Prozessstörungen frühzeitig erkennen. Biogas J. 2006, 4, 18–20. [Google Scholar]
- Wang, L.H.; Wang, Q.; Cai, W.; Sun, X. Influence of mixing proportion on the solid-state anaerobic co-digestion of distiller’s grains and food waste. Biosyst. Eng. 2012, 112, 130–137. [Google Scholar] [CrossRef]
- Sun, H.; Guo, J.; Wu, S.; Liu, F.; Dong, R. Development and validation of a simplified titration method for monitoring volatile fatty acids in anaerobic digestion. Waste Manag. 2017, 67, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Lützhøft, H.C.H.; Boe, K.; Fang, C.; Angelidaki, I. Comparison of VFA titration procedures used for monitoring the biogas process. Water Res. 2014, 54, 262–272. [Google Scholar] [CrossRef]
- Petersen, L.; Minkkinen, P.; Esbensen, K.H. Representative sampling for reliable data analysis: Theory of Sampling. Chemom. Intell. Lab. Syst. 2005, 77, 261–277. [Google Scholar] [CrossRef]
- Petersen, L.; Esbensen, K.H. Representative process sampling for reliable data analysis—A tutorial. J. Chemom. 2005, 19, 625–647. [Google Scholar] [CrossRef]
- Smith, P.L. A Primer for Sampling Solids, Liquids, and Gases: Based on the Seven Sampling Errors of Pierre Gy; ASA-SIAM Series on Statistics and Applied Probability; Society for Industrial and Applied Mathematics and American Statistical Association: Philadelphia, PA, USA; Alexandria, VA, USA, 2001; Volume 8, p. 98. [Google Scholar]
- Wilches, C. Vorrichtung zum Entnehmen Zumindest Einer Biomase-Probe aus Wenigstens Einem Fermenter Insbesondere Einer Biogasanlage. German Patent DE 10 2016 110 482, 7 June 2016. [Google Scholar]
- Schneider, N. Density and Viscosity of Biomass from Agricultural Biogas Plants. Ph.D. Thesis, Ruhr Universität Bochum, Bochum, Germany, 2018. [Google Scholar]
- Nacke, T.; Göller, A. Schlussbericht zum Vorhaben. Verbundvorhaben: Automatisierte Prozessführung von Biogasanlagen auf Basis der Online-Massebilanzierung der Prozessubstrate und Gaserträge; IBA: Leipzig, Germany, 2012. [Google Scholar]
- García-Gen, S.; Rodríguez, J.; Lema, J.M. Optimisation of substrate blends in anaerobic co-digestion using adaptive linear programming. Bioresour. Technol. 2014, 173, 159–167. [Google Scholar] [CrossRef]
- Mauky, E.; Jacobi, H.F.; Liebetrau, J.; Nelles, M. Flexible biogas production for demand-driven energy supply–feeding strategies and types of substrates. Bioresour. Technol. 2015, 178, 262–269. [Google Scholar] [CrossRef]
- Mauky, E.; Weinrich, S.; Nägele, H.J.; Jacobi, H.F.; Liebetrau, J.; Nelles, M. Model Predictive Control for Demand-Driven Biogas Production in Full Scale. Chem. Eng. Technol. 2016, 39, 652–664. [Google Scholar] [CrossRef]
- Mauky, E.; Weinrich, S.; Jacobi, H.F.; Nägele, H.J.; Liebetrau, J.; Nelles, M. Demand-driven biogas production by flexible feeding in full-scale - Process stability and flexibility potentials. Anaerobe 2017, 46, 86–95. [Google Scholar] [CrossRef] [PubMed]
Configuration | Max x | Min x | |||
---|---|---|---|---|---|
5 subsamples of 120 mL | 0.004 | 0.167 | 2.4% | 0.173 | 0.162 |
4 subsamples of 120 mL | 0.009 | 0.167 | 5.5% | 0.183 | 0.148 |
5 subsamples of 96 mL | 0.008 | 0.170 | 4.7% | 0.183 | 0.160 |
Date | 16 August 2016 | 7 June 2017 | 12 March 2018 | 26 March 2018 | 25 April 2018 |
---|---|---|---|---|---|
Dry Matter/[%] | 6.6 | 8.7 | 7.4 | 7 | |
Acetic acid equivalent/[g/kg] | |||||
Ni/[mg/kg] | |||||
Co/[mg/kg] | |||||
Mo/[mg/kg] | |||||
Se/[mg/kg] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilches, C.; Vaske, M.; Hartmann, K.; Nelles, M. Representative Sampling Implementation in Online VFA/TIC Monitoring for Anaerobic Digestion. Energies 2019, 12, 1179. https://doi.org/10.3390/en12061179
Wilches C, Vaske M, Hartmann K, Nelles M. Representative Sampling Implementation in Online VFA/TIC Monitoring for Anaerobic Digestion. Energies. 2019; 12(6):1179. https://doi.org/10.3390/en12061179
Chicago/Turabian StyleWilches, Camilo, Maik Vaske, Kilian Hartmann, and Michael Nelles. 2019. "Representative Sampling Implementation in Online VFA/TIC Monitoring for Anaerobic Digestion" Energies 12, no. 6: 1179. https://doi.org/10.3390/en12061179
APA StyleWilches, C., Vaske, M., Hartmann, K., & Nelles, M. (2019). Representative Sampling Implementation in Online VFA/TIC Monitoring for Anaerobic Digestion. Energies, 12(6), 1179. https://doi.org/10.3390/en12061179