Clock-Frequency Switching Technique for Energy Saving of Microcontroller Unit (MCU)-Based Sensor Node
<p>Difference between (<b>a</b>) fixed frequency and (<b>b</b>) frequency-switching technique.</p> "> Figure 2
<p>Experimental setup (<b>a</b>) hardware diagram (<b>b</b>) photograph of operating hardware.</p> "> Figure 3
<p>Current consumption of cyclic redundancy check (CRC-8) generator code with fixed frequency (black) and switched frequency (blue) for data size 500 bytes.</p> "> Figure 4
<p>Total energy consumption of CRC-8 versus data sizes.</p> "> Figure 5
<p>Current consumption of CRC-32 generator of fixed frequency (black) and switched frequency (blue) for data size 500.</p> "> Figure 6
<p>Energy consumption of CRC-32 versus data sizes.</p> "> Figure 7
<p>Current consumption of joint photographic experts group (JPEG) compression at fixed frequency (black) and switched frequency (blue) with a quality value of 50.</p> "> Figure 8
<p>Energy consumption of JPEG compression versus quality.</p> "> Figure 9
<p>500 samples of temperature data.</p> "> Figure 10
<p>Current consumption of Lempel–Ziv–Oberhumer (LZO) compression of 500 temperature samples with a fixed frequency (black) and switched frequency (blue).</p> ">
Abstract
:1. Introduction
2. Clock-Frequency Switching Technique
3. Experimental Details
3.1. Hardware
3.2. Software
- Exp: experimental applications: CRC-8, CRC-32, JPEG, and LZO.
- FsEn: operating modes: either the frequency-switching technique or a fixed frequency.
- Len: data length for CRC-8 and CRC-32.
- Qual: quality of compression for JPEG.
- TxEn: choice of only data processing or including data transmission.
4. Results
4.1. Cyclic Redundancy Check (CRC-8)
- Data size: 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000.
- With and without transmission.
- With and without frequency-switching technique.
4.2. CRC-32
4.3. Joint Photographic Experts Group (JPEG) Compression
4.4. Lempel–Ziv–Oberhumer (LZO) Compression
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kaur, J.; Reddy, S.R.N. Operating systems for low-end smart devices: A survey and a proposed solution framework. Int. J. Inf. Technol. 2018, 10, 49–58. [Google Scholar] [CrossRef]
- Jain, N.; Madan, S.; Malik, S.K. Review of Multiparameter Techniques for Precision Agriculture Using Wireless Sensor Network. J. Netw. Commun. Emerg. Technol. 2018, 8, 1–17. [Google Scholar]
- Mubashir, F.A.; Rehmani, H. Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renew. Sustain. Energy Rev. 2015, 45, 769–784. [Google Scholar]
- Karray, F.; Jmal, W.M.; Houssaini, M.A.D.; Obeid, A.M.; Qasim, S.M.; BenSaleh, M.S. Architecture of wireless sensor nodes for water monitoring applications: From microcontroller-based system to soc solutions. In Proceedings of the 2014 5th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements (IMEKO), Chemnitz, Germany, 23–24 September 2014. [Google Scholar]
- Bao, S.; Yan, H.; Chi, Q.; Pang, Z.; Sun, Y. FPGA-Based Reconfigurable Data Acquisition System for Industrial Sensors. IEEE Trans. Ind. Inf. 2017, 13, 1503–1512. [Google Scholar] [CrossRef]
- Suresh, G. Effective Replacement of FPGA for Microcontrollers in Home Automation. Int. J. Appl. Eng. Res. 2018, 13, 2710–2713. [Google Scholar]
- Wunderlich, R.; Adil, F.; Hasler, P. Floating gate-based field programmable mixed-signal array. IEEE Trans. VLSI Syst. 2013, 21, 1496–1505. [Google Scholar] [CrossRef]
- Schlottmann, C.; Shapero, S.; Nease, S.; Hasler, P. A digitally enhanced dynamically reconfigurable analog platform for low-power signal processing. IEEE J. Solid-State Circuits 2012, 47, 2174–2184. [Google Scholar] [CrossRef]
- Chien, T.K.; Chiou, L.Y.; Sheu, S.S.; Lin, J.C.; Lee, C.C.; Ku, T.K.; Tsai, M.J.; Wu, C.I. Low-Power MCU With Embedded ReRAM Buffers as Sensor Hub for IoT Applications. IEEE J. Emerg. Sel. Circuits Syst. 2016, 6, 247–257. [Google Scholar] [CrossRef]
- Kee, M.; Seon, H.S.; Kwon, S.; Lee, J.; Park, G.H. Hardware accelerator for low-power sensor hub MCU to process sensor fusion algorithm. In Proceedings of the 2015 International SoC Design Conference (ISOCC), Gyungju, Korea, 2–5 November 2015. [Google Scholar]
- Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K. Analysis of signal-dependent sensor noise on JPEG 2000-compressed Sentinel-2 multi-spectral images. In Proceedings of the Image and Signal Processing for Remote Sensing, Warsaw, Poland, 11–14 September 2017. [Google Scholar]
- Lee, C.; Kim, B.S.; Jeon, B.K. Improvement of Image Sensor Performance through Implementation of JPEG2000 H/W for Optimal DWT Decomposition Level. Int. J. Adv. Smart Convers. 2017, 6, 68–75. [Google Scholar] [CrossRef]
- Balsamo, D.; Elboreini, A.; Al-Hashimi, B.M.; Merrett, G.V. Exploring ARM mbed support for transient computing in energy harvesting IoT systems. In Proceedings of the 7th IEEE International Workshop on Advances in Sensors and Interfaces, Vieste, Italy, 15–16 June 2017. [Google Scholar]
- Poncelina, G.; Poolammal, M.; Priyanka, S.; Rakshana, M.; Praghash, K.; Ananth, C. GSM Based AMR. Int. J. Adv. Res. Biol. Ecol. Sci. Technol. 2015, 1, 26–28. [Google Scholar] [CrossRef]
- Sakamoto, T.; Hase, T. JPEG software solution for a 32-bit MCU. IEEE Trans. Convers. Electron. 1997, 43, 410–417. [Google Scholar] [CrossRef]
- Sakamoto, T.; Hase, T. Software JPEG for a 32-bit MCU with dual issue. IEEE Trans. Convers. Electron. 1998, 44, 1334–1341. [Google Scholar] [CrossRef]
- Lee, D.-U.; Hyungjin, K.; Rahimi, M.; Estrin, D. Energy-efficient image compression for resource-constrained platforms. IEEE Trans. Image Proc. 2009, 18, 2100–2113. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ahmad, N.; Khursheed, K.; Waheed, M.A.; Lawal, N.; O’Nils, M. Implementation of wireless vision sensor node with a lightweight bi-level video coding. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 198–209. [Google Scholar] [CrossRef]
- Chao, H.Z.; Liu, Y.P.; Zhenxing, Z. A novel FPGA-based wireless vision sensor node. In Proceedings of the IEEE International Conference on Automation and Logistics, Shenyang, China, 5–7 August 2009. [Google Scholar]
- Kaddachi, M.L.; Makkaoui, L.; Soudani, A.; Lecuire, V. FPGA-based image compression for low-power wireless camera sensor networks. In Proceedings of the 3rd International Conference on Next Generation Networks and Services, Hammamet, Tunisia, 18–20 December 2011. [Google Scholar]
- Renyan, Z.; Leibo, L.; Shouyi, Y.; Ao, L.; Zinkai, C.; Shaojun, W. A VLSI design of sensor node for wireless image sensor network. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS), Paris, France, 30 May–2 June 2010. [Google Scholar]
- Chang, C.; Zhiyong, L.; Chao, H. A novel wireless capsule endoscope with JPEG compression engine. In Proceedings of the 2010 IEEE International Conference on Automation and Logistics, Hong Kong/Macau, China, 16–20 August 2010. [Google Scholar]
- Aziz, S.M.; Duc, M.P. Energy efficient image transmission in wireless multimedia sensor networks. IEEE Commun. Lett. 2013, 6, 1084–1087. [Google Scholar] [CrossRef]
- Capo-Chichi, M.E.P.; Friedt, J.-M.; Guyennet, H. Using data compression for delay constrained applications in wireless sensor networks. In Proceedings of the 2010 Fourth International Conference on Sensor Technologies and Application, Venice/Mestre, Italy, 18–25 July 2010. [Google Scholar]
- Merenda, M.; Felini, C.; Della Corte, F.G. An autonomous and energy efficient smart sensor platform. In Proceedings of the 2014 IEEE Sensors, Valencia, Spain, 2–5 November 2014. [Google Scholar]
- Data PC2364/66/68. Available online: http://www.keil.com/dd/docs/datashts/philips/lpc236x_ds.pdf (accessed on 1 May 2018).
- Koopman, P.; Chakravarty, T. Cyclic redundancy check (CRC) polynomial selection for embedded networks. In Proceedings of the 2004 International Conference on Dependable Systems and Networks, Florence, Italy, 28 June–1 July 2004. [Google Scholar]
- JPEG JFIF. Available online: http://www.w3.org/Graphics/JPEG/itu-t81.pdf (accessed on 7 June 2016).
Acronym | Definition |
---|---|
MCU | Microcontroller Unit |
WSN | Wireless Sensor Network |
AVR | Alf and Vegard’s RISC processor |
PIC | Peripheral Interface Controller |
MSP | Mixed Signal Processing |
FPGA | Field Programmable Gate Array |
JPEG | Joint Photographic Experts Group |
DCT | Discrete Cosine Transform |
IAP | In-Application Programming |
VLSI | Very-Large-Scale Integration |
TI | Texas Instruments |
RF | Radio Frequency |
PLL | Phase Lock Loop |
CRC | Cyclic Redundancy Check |
LZO | Lempel–Ziv–Oberhumer |
ARM | Acorn RISC Machines |
RISC | Reduced Instruction Set Computing |
USB | Universal Serial Bus |
RTC | Real-Time Clock |
UART | Universal Asynchronous Receiver-Transmitter |
Experiment (with TX.) | Parameters | Energy (mJ) | Energy Saving | |
---|---|---|---|---|
Fixed Frequency | Frequency Switching | |||
CRC-8 | Len = 100 | 0.24 | 0.24 | 0% |
Len = 500 | 0.82 | 0.73 | 10.90% | |
Len = 1000 | 1.6 | 1.35 | 15.70% | |
CRC-32 | Len = 100 | 0.27 | 0.25 | 5.70% |
Len = 500 | 0.88 | 0.76 | 14.20% | |
Len = 1000 | 1.65 | 1.37 | 16.90% | |
JPEG (Lena 64 × 64) | Q = 10 | 24.5 | 8.1 | 66.90% |
Q = 50 | 26.5 | 9.2 | 65.20% | |
Q = 99 | 39.7 | 17.8 | 55.10% | |
LZO (Temperature) | Len = 500 | 3.5 | 1.6 | 54% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duangmanee, P.; Uthansakul, P. Clock-Frequency Switching Technique for Energy Saving of Microcontroller Unit (MCU)-Based Sensor Node. Energies 2018, 11, 1194. https://doi.org/10.3390/en11051194
Duangmanee P, Uthansakul P. Clock-Frequency Switching Technique for Energy Saving of Microcontroller Unit (MCU)-Based Sensor Node. Energies. 2018; 11(5):1194. https://doi.org/10.3390/en11051194
Chicago/Turabian StyleDuangmanee, Pumin, and Peerapong Uthansakul. 2018. "Clock-Frequency Switching Technique for Energy Saving of Microcontroller Unit (MCU)-Based Sensor Node" Energies 11, no. 5: 1194. https://doi.org/10.3390/en11051194
APA StyleDuangmanee, P., & Uthansakul, P. (2018). Clock-Frequency Switching Technique for Energy Saving of Microcontroller Unit (MCU)-Based Sensor Node. Energies, 11(5), 1194. https://doi.org/10.3390/en11051194