Quantitative Prediction of Power Loss for Damaged Photovoltaic Modules Using Electroluminescence
<p>Equivalent circuit of each solar cell i in a PV module (<b>a</b>) and simplified circuit for an idealized solar cell (<math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi mathvariant="normal">p</mi> </mrow> </msub> <mo>=</mo> <mo>∞</mo> </mrow> </semantics></math>) in the dark (<math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mrow> <mi>ph</mi> </mrow> </msub> <mo>=</mo> <mo> </mo> </mrow> </semantics></math>0) (<b>b</b>). Mechanically damaged and cracked solar cells influence the junction voltage <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi mathvariant="normal">i</mi> </msub> </mrow> </semantics></math> by means of a changed series resistance <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </semantics></math>. In contrast, PID can be modeled as a change in parallel resistance of cell i and influences the junction voltage <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi mathvariant="normal">i</mi> </msub> </mrow> </semantics></math> by reducing the current through the junction. The luminescence intensity <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Φ</mi> <mi mathvariant="normal">i</mi> </msub> </mrow> </semantics></math> results from the junction voltage <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi mathvariant="normal">i</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 2
<p>Equivalent circuit for referencing the local luminescence <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">Φ</mi> <mi mathvariant="normal">i</mi> <mo>′</mo> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> to the reference luminescence <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Φ</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi>ref</mi> </mrow> </msub> </mrow> </semantics></math>(<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </semantics></math>), the highest luminescence intensity of cell i. The resistance <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>con</mi> </mrow> </msub> </mrow> </semantics></math> cumulates the contact resistance as well as bus bar resistance between the individual cells. The local junction voltage <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mi mathvariant="normal">i</mi> <mo>′</mo> </msubsup> </mrow> </semantics></math> generates the local luminescence <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">Φ</mi> <mi mathvariant="normal">i</mi> <mo>′</mo> </msubsup> </mrow> </semantics></math>(<math display="inline"><semantics> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </semantics></math>) as part of to the cell voltage <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi mathvariant="normal">c</mi> </mrow> </msub> </mrow> </semantics></math> taking the voltage drop <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>V</mi> <mi mathvariant="normal">i</mi> <mo>′</mo> </msubsup> </mrow> </semantics></math> at each local series resistance <math display="inline"><semantics> <mrow> <msubsup> <mi>r</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi mathvariant="normal">s</mi> </mrow> <mo>′</mo> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> into account. The reference luminescence <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Φ</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi>ref</mi> </mrow> </msub> </mrow> </semantics></math>(<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </semantics></math>) is generated by the local reference junction voltage <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi>ref</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>Equivalent circuit for referencing the mean luminescence <math display="inline"><semantics> <mrow> <msub> <mover> <mi mathvariant="sans-serif">Φ</mi> <mo stretchy="false">¯</mo> </mover> <mi mathvariant="normal">i</mi> </msub> </mrow> </semantics></math> of individual cells i (PID affected cells) to the cell with the maximal mean luminescence <math display="inline"><semantics> <mrow> <msub> <mover> <mi mathvariant="sans-serif">Φ</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>ref</mi> </mrow> </msub> </mrow> </semantics></math> (best cell). The cell current density <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics></math> is identical for all cells connected in series and for each cell i divided into the current <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi mathvariant="normal">p</mi> </mrow> </msub> </mrow> </semantics></math> through the parallel resistance and the current density <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi mathvariant="normal">d</mi> </mrow> </msub> </mrow> </semantics></math> through the local diode.</p> "> Figure 4
<p>False color EL image of a hail-damaged photovoltaic module with 60 multicrystalline silicon solar cells (module A) at (<b>a</b>) supplied current of 37% of short circuit current <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>sc</mi> </mrow> </msub> <mo>=</mo> </mrow> </semantics></math> 8.3 A with 100 s exposure time and (<b>b</b>) with 7% <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>sc</mi> </mrow> </msub> </mrow> </semantics></math> with 360 s exposure time. The local intensities <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi mathvariant="sans-serif">Φ</mi> </mrow> <mi mathvariant="normal">i</mi> <mo>′</mo> </msubsup> </mrow> </semantics></math> in the low current EL image in (<b>b</b>) are downscaled proportional to the exposure time ratio. For the false color visualization, both images are normalized to the individual maximal luminescence intensity <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Φ</mi> <mrow> <mi>max</mi> </mrow> </msub> </mrow> </semantics></math> of the high current image in (<b>a</b>).</p> "> Figure 5
<p>False color segmentation of series resistance mapping (<b>a</b>). Predefined and separated into ten segments with the relative area <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi>seg</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>A</mi> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics></math> as a share of the total cell area <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics></math>, all cells are individually modeled, as shown by the area segmentation histogram in (<b>b</b>). The model shown in (<b>c</b>) contains the series resistance segments <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi>seg</mi> </mrow> </msub> </mrow> </semantics></math> and the constant diode model parameters extracted from the data sheet (green box). The ideality factor <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mrow> <mi>id</mi> </mrow> </msub> </mrow> </semantics></math> is identical for all cells and varied between <math display="inline"><semantics> <mrow> <mn>1.0</mn> <mo><</mo> <msub> <mi>n</mi> <mrow> <mi>id</mi> </mrow> </msub> <mo><</mo> <mn>1.4</mn> </mrow> </semantics></math>. The reverse characteristics for describing the reverse current density <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mrow> <mi>rev</mi> </mrow> </msub> </mrow> </semantics></math> depending on the breakdown voltage <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>br</mi> </mrow> </msub> </mrow> </semantics></math> = −15 V as well as the breakdown model parameters <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> </mrow> </semantics></math> 2.3 × 10<sup>−3</sup> and <math display="inline"><semantics> <mi>a</mi> </semantics></math> = 1.9 are numerically modeled, as proposed by Quaschning [<a href="#B7-energies-11-01172" class="html-bibr">7</a>]. From the data sheet, all other parameters are calculated, transposed into the series resistance map and scaled by the relative area of the segment. All cells i are connected in series and simulated with the bypass-diode configuration of the module.</p> "> Figure 6
<p>Measured irradiance <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>irrad</mi> </mrow> </msub> </mrow> </semantics></math> (<b>a</b>) and temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi>meas</mi> </mrow> </msub> </mrow> </semantics></math> (<b>b</b>) during <span class="html-italic">I/V</span> curve acquisition of each cell i of a multicrystalline module with 60 cells (module A). (<b>c</b>) Calculated series resistance <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </semantics></math> for each cell i from a two-diode equivalent circuit reproducing the measured <span class="html-italic">I/V</span> curve. All three values (<math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>irrad</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi>meas</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </semantics></math>) illustrated in the images (a) to (c) were used to calculate the <span class="html-italic">I/V</span> curve at STC.</p> "> Figure 7
<p>Measured maximal power output (<b>a</b>) and simulated maximal power output (<b>b</b>) for all individual cells. All cell powers were normalized according to the maximal measured or simulated cell power in the module and colored by the same false color scale. The location of defective cells and the normalized cell power was in good agreement comparing simulation and measurement.</p> "> Figure 8
<p>Normalized false color EL images (<b>a</b>), calculated series resistance maps colored by categorized mean series resistance of segments <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi mathvariant="normal">i</mi> <mo>,</mo> <mi>seg</mi> </mrow> </msub> </mrow> </semantics></math> (<b>b</b>) and simulated normalized power output of all cells of modules A, B and C (<b>c</b>). The simulated and normalized power output of cells identify the most severe defects in each module.</p> "> Figure 9
<p>False color EL image of a PID affected monocrystalline silicon photovoltaic module with back-contact solar cells at (<b>a</b>) supplied current of 7% <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>sc</mi> </mrow> </msub> </mrow> </semantics></math> with 300 s exposure time and (<b>b</b>) calculated parallel resistance map based on Equations (9) and (10).</p> ">
Abstract
:1. Introduction
2. Modelling Principle
2.1. Basic Principle of the ELMO Method
- The junction voltage (which is only part of the externally applied voltage due to series resistances);
- The ideality factor and saturation current density of the diode; and
- The shunt currents that circumvent the diode.
2.1.1. Series Resistance Mapping of Mechanically Damaged Modules
2.1.2. Parallel Resistance Mapping of PID Modules
2.2. Mathematical Description of ELMO
2.2.1. Series Resistance Mapping from EL Images
2.2.2. Parallel Resistance Mapping from EL Images
2.3. Series Resistance Segmentation and Module Simulation
3. Experimental Results
3.1. Hail-Damage Modules with Cracked Cells
3.2. PID Affected Module
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kajari-Schröder, S.; Kunze, I.; Eitner, U.; Köntges, M. Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by mechanical load tests. Sol. Energy Mater. Sol. Cells 2011, 95, 3054–3059. [Google Scholar] [CrossRef]
- Hara, K.; Jonai, S.; Masuda, A. Potential-induced degradation in photovoltaic modules based on n-type single crystalline Si solar cells. Sol. Energy Mater. Sol. Cells 2015, 140, 361–365. [Google Scholar] [CrossRef]
- Potthoff, T.; Bothe, K.; Eitner, U.; Hinken, D.; Köntges, M. Detection of the voltage distribution in photovoltaic modules by electroluminescence imaging. Prog. Photovolt. Res. Appl. 2010, 18, 100–106. [Google Scholar] [CrossRef]
- Fruehauf, F.; Turek, M. Quantification of Electroluminescence Measurements on Modules. Energy Procedia 2015, 77, 63–68. [Google Scholar] [CrossRef]
- Bauer, J.; Frühauf, F.; Breitenstein, O. Quantitative local current-voltage analysis and calculation of performance parameters of single solar cells in modules. Sol. Energy Mater. Sol. Cells 2017, 159, 8–19. [Google Scholar] [CrossRef]
- Köntges, M.; Kunze, I.; Kajari-Schröder, S.; Breitenmoser, X.; Bjorneklett, B. The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Sol. Energy Mater. Sol. Cells 2011, 99, 1131–1137. [Google Scholar] [CrossRef]
- Quaschning, V.; Hanitsch, R. Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells. Sol. Energy 1996, 56, 513–520. [Google Scholar] [CrossRef]
- Bishop, J.W. Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits. Sol. Cells 1998, 25, 73–89. [Google Scholar] [CrossRef]
- Oh, J.; Bowden, S.; TamizhMani, G. Potential-Induced Degradation (PID): Incomplete Recovery of Shunt Resistance and Quantum Efficiency Losses. IEEE J. Photovolt. 2015, 5, 1540–1548. [Google Scholar] [CrossRef]
- Lausch, D.; Naumann, V.; Breitenstein, O.; Bauer, J.; Graff, A.; Bagdahn, J.; Hagendorf, C. Potential-Induced Degradation (PID): Introduction of a Novel Test Approach and Explanation of Increased Depletion Region Recombination. IEEE J. Photovolt. 2014, 4, 834–840. [Google Scholar] [CrossRef]
- Naumann, V.; Geppert, T.; Großer, S.; Wichmann, D.; Krokoszinski, H.; Werner, M.; Hagendorf, C. Potential-induced degradation at interdigitated back contact solar cells. Energy Procedia 2014, 55, 498–503. [Google Scholar] [CrossRef]
- Naumann, V.; Lausch, D.; Hähnel, A.; Bauer, J.; Breitenstein, O.; Graff, A.; Werner, M.; Swatek, S.; Großer, S.; Bagdahn, J.; Hagendorf, C. Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells. Sol. Energy Mater. Sol. Cells 2015, 120, 383–389. [Google Scholar] [CrossRef]
Module Number | Measured Power [W] | Measured Power Loss p [%] | Calibrated and Simulated Power [W] |
---|---|---|---|
A | 209 W | 9.1% | 209 W |
B | 198 W | 13.9% | 197 W |
C | 186 W | 19.1% | 186 W |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kropp, T.; Schubert, M.; Werner, J.H. Quantitative Prediction of Power Loss for Damaged Photovoltaic Modules Using Electroluminescence. Energies 2018, 11, 1172. https://doi.org/10.3390/en11051172
Kropp T, Schubert M, Werner JH. Quantitative Prediction of Power Loss for Damaged Photovoltaic Modules Using Electroluminescence. Energies. 2018; 11(5):1172. https://doi.org/10.3390/en11051172
Chicago/Turabian StyleKropp, Timo, Markus Schubert, and Jürgen H. Werner. 2018. "Quantitative Prediction of Power Loss for Damaged Photovoltaic Modules Using Electroluminescence" Energies 11, no. 5: 1172. https://doi.org/10.3390/en11051172
APA StyleKropp, T., Schubert, M., & Werner, J. H. (2018). Quantitative Prediction of Power Loss for Damaged Photovoltaic Modules Using Electroluminescence. Energies, 11(5), 1172. https://doi.org/10.3390/en11051172