High Step-Up 3-Phase Rectifier with Fly-Back Cells and Switched Capacitors for Small-Scaled Wind Generation Systems
<p>Block diagram of the off-grid wind generation system.</p> "> Figure 2
<p>Traditional structure of small-scaled grid-tie wind generation system.</p> "> Figure 3
<p>Diode bridge + boost converter wind generation system.</p> "> Figure 4
<p>The PWM converter wind generation system.</p> "> Figure 5
<p>The matrix converter wind generation system.</p> "> Figure 6
<p>The three-phase single-switch boost converter wind generation system.</p> "> Figure 7
<p>The circuit topology of flyback DC/DC converter.</p> "> Figure 8
<p>The circuit topology of switched-capacitor DC/DC converter.</p> "> Figure 9
<p>The circuit topology of the proposed converter.</p> "> Figure 10
<p>The waveform of the input voltage.</p> "> Figure 11
<p>Key waveforms of the proposed converter.</p> "> Figure 12
<p>Equivalent circuits. (<b>a</b>) mode I; (<b>b</b>) mode II; (<b>c</b>) mode III; (<b>d</b>) mode IV; (<b>e</b>) mode V; (<b>f</b>) mode VI; (<b>g</b>) mode VII.</p> "> Figure 13
<p>Relationship of <span class="html-italic">M</span><sub>gain</sub> and <span class="html-italic">N</span>, <span class="html-italic">D</span>, <span class="html-italic">L</span><sub>k</sub>. (<b>a</b>) case of <span class="html-italic">N</span> = 1; (<b>b</b>) case of <span class="html-italic">N</span> = 3; (<b>c</b>) case of <span class="html-italic">N</span> = 5; (<b>d</b>) case of chosen area.</p> "> Figure 14
<p>Influence on the input current by <span class="html-italic">M</span><sub>FM</sub>.</p> "> Figure 15
<p>Relationship of <span class="html-italic">M</span><sub>FM</sub> and <span class="html-italic">N</span>, <span class="html-italic">D</span>, <span class="html-italic">L</span><sub>k</sub>. (<b>a</b>) case of <span class="html-italic">N</span> = 1; (<b>b</b>) case of <span class="html-italic">N</span> = 3; (<b>c</b>) case of <span class="html-italic">N</span> = 5; (<b>d</b>) case of chosen area.</p> "> Figure 16
<p>Comparison of input current peaks.</p> "> Figure 17
<p>Relationship of <span class="html-italic">M</span><sub>FM</sub> and voltage gain of <span class="html-italic">V</span><sub>F</sub>, <span class="html-italic">V</span><sub>M</sub> and <span class="html-italic">V</span><sub>bus</sub> against <span class="html-italic">D</span> at <span class="html-italic">L</span><sub>k</sub> = 18 μH.</p> "> Figure 18
<p>The proposed converter prototype.</p> "> Figure 19
<p>Experimental results under the rated conditions. (<b>a</b>) input line voltage, output voltage and input current; (<b>b</b>) input line voltage and PMSM output currents; (<b>c</b>) gate signal and three phase input current in detail; (<b>d</b>) <span class="html-italic">u</span><sub>CA</sub> and secondary currents of flyback cells.</p> "> Figure 20
<p>Experimental results at low input voltage. (<b>a</b>) input line voltage, output voltage and input current; (<b>b</b>) input line voltage and PMSM output currents; (<b>c</b>) gate signal and three phase input current in detail; (<b>d</b>) <span class="html-italic">u</span><sub>CA</sub> and secondary currents of flyback cells.</p> "> Figure 21
<p>Experimental results at maximum <span class="html-italic">M</span><sub>FM</sub>. (<b>a</b>) input line voltage, output voltage and input current; (<b>b</b>) input line voltage and PMSM output currents; (<b>c</b>) gate signal and three phase input current in detail; (<b>d</b>) <span class="html-italic">u</span><sub>CA</sub> and secondary currents of flyback cells.</p> "> Figure 22
<p>Relationship between efficiency/THD and output power. (<b>a</b>) measured efficiency; (<b>b</b>) measured THD.</p> ">
Abstract
:1. Introduction
2. Circuit Configuration
AC/DC Converter | High Frequency Transformer/Inductor | Power Switch Quantity | Power Diode Quantity | Auxiliary Diode Quantity | Cost |
---|---|---|---|---|---|
Diode Bridge + Boost Converter | 1 | 1 | 7 | 0 | Lowest |
PWM Converter | 3 | 6 | 0 | 0 | High |
Matrix Converter | 3 | 9 | 0 | 0 | Highest |
Three-phase Single-switched Converter | 3 | 1 | 7 | 0 | Low |
Proposed Converter | 3 | 1 | 7 | 9 | Low |
3. Operation Principles
3.1. Operation States
- (1)
- All three flyback cells are symmetrical, and the corresponding components in each phase are identical.
- (2)
- Switch S1 and all diodes are regarded as ideal components.
- (3)
- VF, VM and input voltages are constant during a whole switching period.
3.2. Operation Analysis
3.3. Parameter Design
Parameters | Value |
---|---|
Filter Capacitors Cf | 0.32 μF |
Switched Capacitors Ca1/Ca2 | 2 μF |
Flyback Output Capacitors Ca | 40 μF |
Boost Output Capacitors Co | 40 μF |
Equivalent Leakage Inductor Lk | 18 μH |
Turn Ratio N | 3 |
Load Resistance R | 440 Ohm |
Switching Frequency fS | 100 kHz |
3.4. Power Devices Selection
3.4.1. Power Switch and Diode Selection
Components | Calculated Max Instantaneous Current | Calculated Max Instantaneous Voltage | Selected Devices |
---|---|---|---|
Power Switch | 16 A | 350 V | FCH47N60N |
Power Diode | 16 A | 350 V | BYC30-600P |
Auxiliary Diode | 1.7 A | 12 V | ES3G |
3.4.2. Transformer Design
3.5. Power Losses Estimation
3.5.1. Uncontrolled Diode Bridge Rectifier D1 ~ D6
3.5.2. Diode Do
3.5.3. Power Switch S1
3.5.4. Flyback Cells
3.5.5. Transformers
Components | Power Losses (Watt) |
---|---|
Rectifier Bridge D1 ~ D6 | 9.67 |
Diode Do | 1.21 |
Power Switch S1 | 3.25 |
Flyback Cells | 2.76 |
Transformers | 35.19 |
4. Experimental Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Wind Energy Half-Year Report 2014; World Wind Energy Association: Bonn, Germany, 2014.
- Blaabjerg, F.; Liserre, M.; Ma, K. Power electronics converters for wind turbine systems. IEEE Trans. Ind. Appl. 2012, 48, 708–719. [Google Scholar] [CrossRef]
- Tsai, C.T.; Shen, C.L. A high step-down interleaved buck converter with active-clamp circuits for wind turbines. Energies 2012, 5, 5150–5170. [Google Scholar] [CrossRef]
- Tsai, C.T.; Shen, C.L.; Su, J.C. A power supply system with ZVS and current-doubler features for hybrid renewable energy conversion. Energies 2013, 6, 4859–4878. [Google Scholar] [CrossRef]
- Koutroulis, E.; Kalaitzakis, K. Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans. Ind. Electron. 2006, 53, 486–494. [Google Scholar] [CrossRef]
- Satpathy, A.S.; Kishore, N.K.; Kastha, D.; Sahoo, N.C. Control scheme for a stand-alone wind energy conversion system. IEEE Trans. Energy Convers. 2014, 29, 418–425. [Google Scholar] [CrossRef]
- Latif, T.; Razzak, M.A. Design of a wind power generation system using permanent magnet synchronous machine along with a boost regulator. In Proceedings of the 3rd International Conference on Developments in Renewable Energy Technology (ICDRET), Dhaka, Bangladesh, 29–31 May 2014; pp. 1–6.
- Wang, S.; Qi, Z.; Undeland, T. State space averaging modeling and analysis of disturbance injection method of MPPT for small wind turbine generating systems. In Proceedings of the Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009; pp. 1–5.
- Wang, H.; Nayar, C.; Su, J.; Ding, M. Control and interfacing of a grid-connected small-scale wind turbine generator. IEEE Trans. Energy Convers. 2011, 26, 428–434. [Google Scholar] [CrossRef]
- Prasad, A.R.; Ziogas, P.D.; Manias, S. An active power factor correction technique for three-phase diode rectifiers. IEEE Trans. Power. Electron. 1991, 6, 83–92. [Google Scholar] [CrossRef]
- Wiroj, T.; Hatada, T.; Wada, K.; Akagi, H. Design and performance of a transformerless shunt hybrid filter integrated into a three-phase diode rectifier. IEEE Trans. Power Electron. 2007, 22, 1882–1889. [Google Scholar] [CrossRef]
- Wu, J.C. AC/DC power conversion interface for self-excited induction generator. IET Renew. Power Gener. 2009, 3, 144–151. [Google Scholar] [CrossRef]
- Orlando, N.A.; Liserre, M.; Mastromauro, R.A.; Aquila, A.D. A survey of control issues in PMSG-based small wind-turbine systems. IEEE Trans. Ind. Inform. 2013, 9, 1211–1221. [Google Scholar] [CrossRef]
- Teodorescu, R.; Blaabjerg, F. Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode. IEEE Trans. Power. Electron. 2004, 19, 1323–1332. [Google Scholar] [CrossRef]
- Pena, R.; Clare, J.; Asher, G. Doubly-fed induction generator using back-to-back PWM converters and its applications to variable-speed wind-energy generation. Proc. Inst. Elect. Eng. B 1996, 53, 231–241. [Google Scholar]
- Kouro, S.; Malinowski, M.; Gopakumar, K.; Pou, J.; Franquelo, L.G.; Wu, B.; Rodriguez, J.; Pérez, M.A.; Leon, J.I. Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 2010, 57, 2553–2580. [Google Scholar] [CrossRef]
- Cárdenas, R.; Peña, R.; Tobar, G.; Clare, J.; Wheeler, P.; Asher, G. Stability analysis of a wind energy conversion system based on a doubly fed induction generator fed by a matrix converter. IEEE Trans. Ind. Electron. 2009, 56, 4194–4206. [Google Scholar] [CrossRef]
- Cárdenas, R.; Peña, R.; Tobar, G.; Clare, J.; Wheeler, P. Analytical and experimental evaluation of a WECS based on a cage induction generator fed by a matrix converter. IEEE Trans. Energy Convers. 2011, 26, 204–215. [Google Scholar] [CrossRef]
- Cisneros, R.; Mancilla-David, F.; Ortega, R. Passivity-Based control of a grid-connected small-scale windmill with limited control authority. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 247–259. [Google Scholar] [CrossRef]
- Carranza, O.; Figures, E.; Carcera, G.; Ortega, R.; Velasco, D. Low power wind generation system based on variable speed permanent magnet synchronous generators. In Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), Gdansk, Poland, 27–30 June 2011; pp. 1063–1068.
- Yao, K.; Ruan, X.; Zou, C.; Ye, Z. Three-phase single-switch boost power factor correction converter with high input power factor. IET Power Electron. 2012, 5, 1095–1103. [Google Scholar] [CrossRef]
- Chen, L.; Soong, W.L.; Pathmanathan, M.; Ertugrul, N. Comparison of AC/DC converters and the principles of a new control strategy in small-scale wind turbine systems. In Proceedings of the 22nd Australasian Universities Power Engineering Conference (AUPEC), Bali, Indonesia, 26–29 September 2012; pp. 1–6.
- Freddy, F.B.; Hugo, V.B.; Josep, M.B.; Antonio, L.M.; Luis, M.S. Grid-Connected boost inverter for small-wind urban integration: Analysis and design. In Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 433–439.
- Zhao, Y.; Li, W.; Deng, Y.; He, X. High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications. IET Power Electron. 2011, 4, 851–859. [Google Scholar] [CrossRef]
- Liang, T.J.; Tseng, K.C. Analysis of integrated boost-flyback step-up converter. IEE Proc. Electr. Power Appl. 2005, 152, 217–225. [Google Scholar] [CrossRef]
- Liang, T.J.; Chen, S.M.; Yang, L.S.; Chen, J.F.; Adrian, I. A single switch boost-flyback dc-dc converter integrated with switched-capacitor cell. In Proceedings of the IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), Jeju, Korea, 30 May–3 June 2011; pp. 2782–2787.
- Zhao, Q.; Lee, F.C. High-Efficiency, high step-up DC–DC converters. IEEE Trans. Power Electron. 2003, 18, 65–73. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Chen, J.F.; Liang, T.J.; Yang, L.S. Novel high step-up DC–DC converter for distributed generation system. IEEE Trans. Ind. Electron. 2013, 60, 1473–1482. [Google Scholar] [CrossRef]
- Prudente, M.; Pfitscher, L.L.; Emmendoerfer, G.; Romaneli, E.F.; Gules, R. Voltage multiplier cells applied to non-isolated DC–DC converters. IEEE Trans. Power Electron. 2008, 23, 871–887. [Google Scholar] [CrossRef]
- Law, K.K.; Cheng, K.W.E.; Yeung, T.P.B. Design and analysis of switched-capacitor-based step-up resonant converters. IEEE Trans. Circuits Syst. I Regul. Papers 2005, 52, 943–948. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Chen, J.F.; Liang, T.J.; Yang, L.S. Novel high step-up DC–DC converter with coupled-inductor and switched-capacitor techniques. IEEE Trans. Ind. Electron. 2012, 59, 998–1007. [Google Scholar] [CrossRef]
- Chung, H.S.H. Design and analysis of a switched-capacitor-based step-up DC/DC converter with continuous input current. IEEE Trans. Circuits Syst. I Fund. Theory Appl. 1999, 46, 772–730. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Chen, J.F.; Liang, T.J.; Yang, L.S. Novel high step-up DC–DC converter with coupled-inductor and switched-capacitor techniques for a sustainable energy system. IEEE Trans. Power Electron. 2011, 26, 3481–3490. [Google Scholar] [CrossRef]
- Mei, Q.; Shan, M.; Liu, L.; Guerrero, J.M. A novel improved variable step-size incremental-resistance MPPT method for PV systems. IEEE Trans. Ind. Electron. 2011, 58, 2427–2434. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, H.; Ren, J.; Shan, L.; Gao, Y. Research on MPPT control and implementation method for photovoltaic generation system and its simulation. In Proceedings of the IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009; pp. 2108–2112.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-F.; Yang, L.; Wang, C.-S.; Li, W.; Qie, W.; Tu, S.-J. High Step-Up 3-Phase Rectifier with Fly-Back Cells and Switched Capacitors for Small-Scaled Wind Generation Systems. Energies 2015, 8, 2742-2768. https://doi.org/10.3390/en8042742
Wang Y-F, Yang L, Wang C-S, Li W, Qie W, Tu S-J. High Step-Up 3-Phase Rectifier with Fly-Back Cells and Switched Capacitors for Small-Scaled Wind Generation Systems. Energies. 2015; 8(4):2742-2768. https://doi.org/10.3390/en8042742
Chicago/Turabian StyleWang, Yi-Feng, Liang Yang, Cheng-Shan Wang, Wei Li, Wei Qie, and Shi-Jie Tu. 2015. "High Step-Up 3-Phase Rectifier with Fly-Back Cells and Switched Capacitors for Small-Scaled Wind Generation Systems" Energies 8, no. 4: 2742-2768. https://doi.org/10.3390/en8042742
APA StyleWang, Y.-F., Yang, L., Wang, C.-S., Li, W., Qie, W., & Tu, S.-J. (2015). High Step-Up 3-Phase Rectifier with Fly-Back Cells and Switched Capacitors for Small-Scaled Wind Generation Systems. Energies, 8(4), 2742-2768. https://doi.org/10.3390/en8042742