A Computer Program for Modeling the Conversion of Organic Waste to Energy
<p>The program’s computation procedure.</p> "> Figure 2
<p>Variation of bulk density of sludge with bulk dryness.</p> "> Figure 3
<p>Illustration of the transformation matrix.</p> "> Figure 4
<p>ADM1 model process flow.</p> "> Figure 5
<p>Metered biogas flow (<b>a</b>) A.A. Dairy farm (<b>b</b>) Noblehurst Dairy farm.</p> ">
Abstract
:1. Introduction
2. Description of the Program
Parameter | Description |
---|---|
Density () | density |
Dryness () | |
C () | organic Carbon |
H () | organic Hydrogen |
O () | organic Oxygen |
N () | organic Nitrogen in ammonia |
S () | organic Sulphur |
Ashes () | inorganic matter |
() | phosphorus; included in the ashes |
() | potassium; included in the ashes |
Soluble organic VS () | soluble organic volatile solids |
Soluble MI () | soluble inorganic matter |
P soluble () | soluble Phosphorus |
K soluble () | soluble Potassium |
Distance (km) | distance to treatment site |
Cost of waste disposal ($/) | avoided cost of waste disposal |
3. Mathematical Modeling of the Process
3.1. Dryness of Matter
3.2. Calorific Values of Input Waste
3.3. Density of Input Waste
Type of Waste | Dry Content () | Bulk Density () |
---|---|---|
manure of cows | 0.21 | 0.83 |
liquid manure of pigs | 0.01 | 1.00 |
liquid manure of pigs | 0.07 | 1.00 |
manure of layers | 0.54 | 0.48 |
manure of layers | 0.63 | 0.52 |
manure of hens | 0.75 | 0.33 |
manure | 0.85 | 0.22 |
manure of turkeys | 0.66 | 0.38 |
compost from paper sludge | 0.50 | 0.45 |
compost from manure of cows | 0.50 | 0.65 |
compost from manure of cows | 0.70 | 0.48 |
granules of municipal sludge | 0.93 | 0.26 |
3.4. Volume Throughput of Waste
3.5. Volume Throughput of Biogas
3.6. Total Throughput of Properties of the Waste
3.7. Temperature and Pressure of Waste
3.8. Organic Loading Rate
3.9. Digester Operating Temperature
3.10. Dilution of Digester Effluent
3.11. Heat of Reaction of Effluent
3.12. Rate of Elimination of Volatile Solids
3.13. Limits of Reaction by C/N Ratio
3.14. Dilution to Control Dryness and Toxicity
Dissolved Compound | Toxic Limit [mg/L] |
---|---|
Potassium | 12,000 |
Sodium |
3.15. Mass Breakdown of the Anaerobic Digestion Process
Property | Value |
---|---|
Density () | 1.02–1.07 |
Dryness () | 0.09 |
C () | 0.500 |
H () | 0.090 |
O () | 0.220 |
N () | 0.120 |
S () | 0.010 |
Ashes () | 0.060 |
) | 0.202 |
) | 0.010 |
Soluble organic VS () | 0.37 |
P soluble () | 0.37 |
K soluble () | 1.0 |
Other soluble | 0.37 |
4. Heat Generation by Boilers
Parameter | Value | |||
---|---|---|---|---|
Energy of evaporation | <3 MW | 3–6 MW | 6–19 MW | >19 MW |
Stoichiometric ratio of air | 1.2–1.3 | 1.2–1.3 | 1.15–1.3 | 1.1–1.2 |
Exhaust gas temperature | 220 C | 200 C | 170 C | 170 C |
5. Spark Ignition Engine Generator Set
Parameter | Value | ||||
---|---|---|---|---|---|
Reference Capacity () | 100 | 300 | 1000 | 3000 | 5000 |
Total CHP efficiency (%) | 78 | 77 | 71 | 69 | 73 |
6. Economic Analysis
6.1. Scaling Parameter
6.2. Operation and Maintenance Costs
7. Comparison of the Computer Program’s Predictions with Results from Case Studies
7.1. Transformation Matrix
7.2. Estimating Ultimate Analysis Data
Parameter | A.A. Dairy | Noblehurst Dairy |
---|---|---|
TS | 11.15% | 10.40% |
COD | 153496 mg/L | 77800 mg/L |
Soluble COD | 24239 mg/L | 23508 mg/L |
TVA | 3687 mg/L | 3042 mg/L |
Organic Nitrogen | 2500 mg/L | 2109 mg/L |
Ammonia Nitrogen | 2159 mg/L | 1925 mg/L |
Total Phosphorus | 813 mg/L | 498 mg/L |
Orthophosphate Phosphorus | 457 mg/L | 240 mg/L |
TVS | 9.44% | 7.72% |
Fixed Solids | 17,106 mg/L | - |
Reduction in TVS | 29.7% | 17.2% |
Measured | CODs-VFA | VFA | TOC | Norg | TAN | TP-orthoP | orthoP | TIC | SCat | FS | |
---|---|---|---|---|---|---|---|---|---|---|---|
Characteristic | [gCODm] | [gCODm] | [gCODm] | [gCm | [gNm | [gNm] | [gPm] | [gPm] | [molHCO] | [equ m] | [gm] |
A.A. Dairy Farm | 129257.00 | 20782.71 | 3456.29 | 53324.40 | 2500.00 | 2159.00 | 356.00 | 457.00 | 1684.00 | 60.00 | 17106.00 |
Noblehurst Dairy | 20465.66 | 3042.34 | 42420.00 | 2108.70 | 1924.56 | 258.39 | 239.58 | 7260.00 | 60.00 | 26532.00 |
Component | ThOD | A.A. Dairy | Noblehurst Dairy |
---|---|---|---|
per unit mass | [kgCODm] | [kgCODm] | |
1.0627 | 91.695 | 46.657 | |
1.5160 | 10.583 | 4.286 | |
2.8900 | 1.593 | 0.574 |
Element | |||
---|---|---|---|
C (g/g of component) | 0.40 | 0.47 | 0.76 |
N (g/g of component) | - | 0.15 | - |
O (g/g of component) | 0.53 | 0.28 | 0.11 |
H (g/g of component) | 0.06 | 0.10 | 0.12 |
P (g/g of component) | 0.01 | - | 0.01 |
Element | Mass Fractions for | Mass Fractions for |
---|---|---|
A.A. Dairy Farm | Noblehurst Dairy Farm | |
0.3392 | 0.3167 | |
0.0093 | 0.0071 | |
0.4239 | 0.4006 | |
0.0527 | 0.0489 | |
0.0077 | 0.0073 |
7.3. Proximate and Ultimate Analysis Data Obtained from Computer Program
Parameter | Value | |
---|---|---|
S | 0.001 | |
Ashes | 0.150 | |
0.031 | ||
Soluble VS | 0.500 | |
Soluble inorganic matter | 0.500 | |
Soluble P | 0.500 | |
Soluble K | 1.000 | |
Soluble N | 0.500 | |
Density | 990 kg/ |
7.4. Operating Conditions of the Digesters from the Case Studies
Temperature | HRT | Reduction of TVS | |
---|---|---|---|
A.A. Dairy Farm | 35 C | 34 days | 29.7% |
Noblehurst Dairy | 38 C | 37 days | 17.2% |
Parameter | A.A. Dairy Farm | Noblehurst Dairy Farm |
---|---|---|
Dryness | 0.114 | 0.104 |
Manure mass flow rate | 34,303.50 kg/day | 67,537.80 kg/day |
8. Results and Discussion
Computer Program’s | Mean Biogas from | % Error | |
---|---|---|---|
Prediction | Empirical Measurements | ||
A.A. Dairy Farm Biogas Yield [] | 47.87 | 44.01 | 8.8% |
Noblehurst Dairy Farm Biogas Yield [] | 84.53 | 78.37 | 7.9% |
A.A. Dairy Farm % Content | 47.5% | 59.1% | 19.6% |
Noblehurst Dairy Farm % Content | 47.2% | 61.0% | 22.6% |
9. Conclusions
Acknowledgements
References
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. Anaerobic Digestion Model No. 1 (ADM1); IWA Publishing: London, UK, 2002. [Google Scholar]
- Page, D.I.; Hickey, K.L.; Narula, R.; Main, A.L.; Grimberg, S.J. Modeling anaerobic digestion of dairy manure using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Sci. Technol. 2008, 58, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Zaher, U.; Li, R.; Jeppsson, U.; Steyer, J.; Chen, S. GISCOD: General integrated solid waste co-digestion model. Water Res. 2009, 43, 2717–2727. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Sharma, M.P. Power generation from MSW of haridwar city: A feasibility study. Renew. Sustain. Energy Rev. 2011, 15, 69–90. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A Review on Biomass as a Fuel for Boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Skoulu, V.; Zabaniotou, A. Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production. Renew. Sustain. Energy Rev. 2007, 11, 1698–1719. [Google Scholar] [CrossRef]
- Nizami, A.; Murphy, J.D. What type of digester configurations should be employed to produce biomethane from grass silage? Renew. Sustain. Energy Rev. 2010, 14, 1558–1568. [Google Scholar] [CrossRef]
- Rajeshwari, K.V.; Balakrishnan, M.; Kansal, A.; Lata, K.; Kishore, V.V.N. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew. Sustain. Energy Rev. 2000, 4, 135–156. [Google Scholar] [CrossRef]
- Karellas, S.; Boukis, I.; Kontopoulos, G. Development of an investment decision tool for biogas production from agricultural waste. Renew. Sustain. Energy Rev. 2010, 14, 1273–1282. [Google Scholar] [CrossRef]
- Rao, P.V.; Baral, S.S.; Dey, R.; Mutnuri, S. Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew. Sustain. Energy Rev. 2010, 14, 2086–2094. [Google Scholar] [CrossRef]
- Jingura, R.M.; Matengaifa, R. Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe. Renew. Sustain. Energy Rev. 2009, 13, 1116–1120. [Google Scholar] [CrossRef]
- Angelis-Dimakis, A.; Biberacher, M.; Dominguez, J.; Fiorese, G.; Gadocha, S.; Gnansounou, E.; Guariso, G.; Kartalidis, A.; Panichelli, L.; Pinedo, I.; Robba, M. Methods and tools to evaluate the availability of renewable energy sources. Renew. Sustain. Energy Rev. 2007, 11, 1208–1226. [Google Scholar] [CrossRef]
- Purohit, P.; Kandpal, T.C. Techno-economics of biogas-based water pumping in India an attempt to internalize CO2 emissions mitigation and other economic benefits. Renew. Sustain. Energy Rev. 2011, 15, 1182–1200. [Google Scholar] [CrossRef]
- Biomass Energy, Proximate and Ultimate Analyses, Woodgas. January 1998. Available online: http://www.woodgas.com/proximat.htm (accessed on 15 November 2011).
- Bary, A.; Miles, C.; Gilbert, K. Composting of Poultry Offal Demonstration Project; Washington State University: Washington, DC, USA, 2005; Available online: http://agsyst.wsu.edu/PoultryOffal.pdf (accessed on 15 November 2011).
- Agriculture, Food and Rural Development (AFRD). Manure Composting Manual; AFRD: Edmonton, Canada, 2006. Available online: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex8875 (accessed on 15 November 2011).
- Arrouge, T. Le compostage des Boues de Papetieres. Aspects de la Problematique Pour le Quebec. Master Thesis, Universite de Sherbrooke, Sherbrooke, Canada, 1997. [Google Scholar]
- Rosenow, P.; Tiry, M.J. Composting Dairy Manure for the Commercial Markets. In Proceedings of the Manure Management Conference, Ames, IA, USA, 10–12 February 1998.
- Browne, M.J.; Whipps, A.P. Development of the sludge thermal drying option for south west water. J. Chart. Inst. Water Environ. Manag. 1995, 9, 445–453. [Google Scholar] [CrossRef]
- Pommier, S.; Llamas, A.M.; Lefebvre, X. Analysis of the Outcome of Shredding Pre-treatment on the Anaerobic Biodegradability of Paper and Cardboard Materials. Bioresour. Technol. 2010, 101, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Moletta, R. La Methanisation; Lavoisier: Paris, France, 2008. [Google Scholar]
- Vor Environnement, Traitement anaerobie, fiche technique Methavor. 2005. Available online: http://methavor.vor.fr (accessed on 15 November 2011).
- Buchanan, J.R.; Seabloom, R.W. Aerobic Treatment of Wastewater and Aerobic Treatment Units. Module Text, University Curriculum Development for Decentralized Wastewater Management. November 2004. Available online: http://www.onsiteconsortium.org/files/Aaerobic_Treatment_&_ATUs.pdf (accessed on 15 November 2011).
- Samson, R.; Guiot, S. Les Nouveaux Secteurs a Fort Potentiel de Developpement en Digestion Anaerobie; Centre Quebecois de Valorisation de la Biomasse: Quebec, Canada, 1990. [Google Scholar]
- The Energy Conservation Center, Japan. Japan Energy Conservation Handbook 2005/2006. Available online: http://www.asiaeec-col.eccj.or.jp/databook/2005-2006e/index.html (accessed on 15 November 2011).
- Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S.I.; Woods, R.; Schweizer, T. Gas-Fired Distributed Energy Resource Technology Characterization, Publication of National Renewable Energy Laboratory for the United States Department of Energy. October 2003. Available online: http://www.eea-inc.com/dgchp_reports/TechCharNREL.pdf (accessed on 15 November 2011).
- Szonyi, A.J.; Fenton, R.G.; White, J.A.; Agee, M.H.; Case, K.E. Principles of Engineering Economic Analysis, Canadian ed.; John Wiley and Sons: Toronto, Canada, 1982. [Google Scholar]
- Martin, J.H. A Comparison of Dairy Cattle Manure Management With and without Anaerobic Digestion and Biogas Utilization; Eastern Research Group, Inc.: Lexington, MA, USA, 2004. [Google Scholar]
- Gooch, C.A.; Inglis, S.F.; Wright, P.E. Biogas Distributed Generation Systems Evaluation and Technology Transfer; NYSERDA Project No. 6597, Interim Report for May 2001 to May 2005; New York State Energy Research and Development Authority: New York, NY, USA, 2007. [Google Scholar]
- Zaher, U.; Buffiere, P.; Steyer, J.P.; Chen, S. A procedure to estimate proximate analysis of mixed organic wastes. Water Environ. Res. 2009, 81, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Gooch, C.; Pronto, J. Anaerobic Digestion at A.A. Dairy, Case Study. February 2008. Available online: http://www.manuremanagement.cornell.edu/Pages/General_Docs/Case_Studies/AA_Case_Study.pdf (accessed on 17 November 2011).
- Martin, J.H. An Evaluation of A Mesophilic, Modified Plug Flow Anaerobic Digester for Dairy Cattle Manure. July 2005. Available online: http://www.ghdinc.net/gordondale_report_final.pdf (accessed on 17 November 2011).
- de Gracia, M.; Sancho, L.; Garcia-Heras, J.L.; Vanrolleghem, P.; Ayesa, E. Mass and charge conservation check in dynamic models: Application to the new ADM1 model. Water Sci. Technol. 2006, 53, 225–240. [Google Scholar] [CrossRef] [PubMed]
- NYSERDA DG/CHP Integrated Data System. Available online: http://chp.nyserda.org/facilities/index.cfm (accessed on 30 October 2011).
- Bilitewski, B.; Hardtle, G.; Marek, K.; Weissbach, A.; Boeddicker, H. Waste Management; Springer: Berlin, Germany, 1997. [Google Scholar]
Abbreviations
ADM1 | Anaerobic Digester Model No. 1 |
C | Carbon |
C/N | carbon-to-nitrogen |
CH4 | methane |
CHP | Combined Heat and Power |
Cl | Chlorine |
CO2 | Carbon dioxide |
COD | Chemical Oxygen Demand |
CODp | particulate Chemical Oxygen Demand |
CODs | soluble Chemical Oxygen Demand |
FS | Fixed Solids |
H | Hydrogen |
HRT | Hydraulic Retention Time |
H2O | water |
H2S | Hydrogen Sulphide |
HCV | Higher Calorific Value |
IRR | Internal Rate of Return |
IWA | International Water Association |
K | Potassium |
K2O | Potassium oxide |
LCV | Lower Calorific Value |
mh | wet mass |
mol | mole |
ms | dry mass |
MI | inorganic matter |
MSW | Municipal Solid Waste |
N | Nitrogen |
NH3 | ammonia |
NPV | Net Present Value |
O | Oxygen |
orthoP | ortho-Phosphorus |
P | Phosphorus |
P2O5 | Phosphorus pentoxide |
S | Sulphur |
Scat | Alkalinity |
tmh | tonnes of wet mass |
tms | tonnes of dry mass |
TAN | Total Ammonia Nitrogen |
TC | Total Carbon |
TIC | Total Inorganic Carbon |
TKN | Total Kjeldahl Nitrogen |
TS | Total Solids |
TVA | Total Volatile Acids |
TVS | Total Volatile Solids |
VFA | Volatile Fatty Acids |
VS | Volatile Solids |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Namuli, R.; Laflamme, C.B.; Pillay, P. A Computer Program for Modeling the Conversion of Organic Waste to Energy. Energies 2011, 4, 1973-2001. https://doi.org/10.3390/en4111973
Namuli R, Laflamme CB, Pillay P. A Computer Program for Modeling the Conversion of Organic Waste to Energy. Energies. 2011; 4(11):1973-2001. https://doi.org/10.3390/en4111973
Chicago/Turabian StyleNamuli, Rachel, Claude B. Laflamme, and Pragasen Pillay. 2011. "A Computer Program for Modeling the Conversion of Organic Waste to Energy" Energies 4, no. 11: 1973-2001. https://doi.org/10.3390/en4111973
APA StyleNamuli, R., Laflamme, C. B., & Pillay, P. (2011). A Computer Program for Modeling the Conversion of Organic Waste to Energy. Energies, 4(11), 1973-2001. https://doi.org/10.3390/en4111973