Brain Dynamics Altered by Photic Stimulation in Patients with Alzheimer’s Disease and Mild Cognitive Impairment
<p>Photic stimulation (PS) session performed during routine clinical EEG examination. Pre- and Post-PS resting-state EEG signals were recorded. PS involved flashing a white light for 10 s at various frequencies with 10-s breaks in between. Subjects kept their eyes closed throughout the EEG recording.</p> "> Figure 2
<p>Significant between-group differences in EEG power ratios of 36-Hz harmonic responses to 9-Hz PS at (<b>a</b>) electrode O2 and (<b>b</b>) electrode P4 (* Bonferroni-corrected <span class="html-italic">p</span> < 0.05). Distribution plots integrated with box plots are presented; violin plots represent the distributions of the data, black boxes represent interquartile ranges (IQR; 25th to 75th percentiles), white circles in each box indicate medians (50%), and red crosses indicate means.</p> "> Figure 3
<p>Significant between-group differences in EEG power ratios of 30-Hz harmonic responses to 15-Hz PS at electrodes (<b>a</b>) O1, (<b>b</b>) O2, (<b>c</b>) P3, and (<b>d</b>) P4 (* Bonferroni-corrected <span class="html-italic">p</span> < 0.05). Distribution plots integrated with box plots are presented; violin plots represent the distributions of the data, boxes represent interquartile ranges (IQR; 25th to 75th percentiles), white circles in each box indicate medians (50%), and red crosses indicate means.</p> "> Figure 4
<p>MSE profiles and between-group differences before PS (Pre-PS), under the effects of 15-Hz PS (During PS), and after PS (Post-PS) at electrodes (<b>a</b>) O1, (<b>b</b>) O2, (<b>c</b>) P3, and (<b>d</b>) P4. In each subfigure, lines in different colors are the mean SE values at each scale factor for each group (* <span class="html-italic">p</span> < 0.05, one-way ANCOVAs).</p> "> Figure 5
<p>MSE profiles and PS-induced changes (Pre-PS, during 15-Hz PS, and Post-PS) in each group at the representative O1 electrode: (<b>a</b>) Healthy control, (<b>b</b>) Mild cognitive impairment group, (<b>c</b>) Mild AD group, (<b>d</b>) Moderate AD group, and (<b>e</b>) Severe AD group. In each subfigure, each line plots the mean SE values at each scale factor under each condition (Pre-PS, During PS, Post-PS). The shaded error area surrounding each line shows its 95% confidence interval. (* Bonferroni-corrected <span class="html-italic">p</span> < 0.05, † Bonferroni-corrected <span class="html-italic">p</span> < 0.01).</p> "> Figure 6
<p>Correlations between mean MSE values at large scale factors and EEG power ratios of 30-Hz harmonic responses to 15-Hz PS at electrode O1: (<b>a</b>) SF 9–14 and (<b>b</b>) SF 15–20 (** <span class="html-italic">p</span> < 0.01).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. EEG Recording and Data Pre-Processing
2.3. EEG Power Analysis
2.4. EEG Multiscale Sample Entropy (MSE) Analysis
2.5. Statistical Analysis
3. Results
3.1. Demographics and MMSE Scores
3.2. EEG Power Ratios of Harmonic Responses during PS Were Lower in AD Subgroups
3.3. Higher MSE Values at Large Scales before and during PS in AD Subgroups
3.4. Distinct Patterns in PS-Induced Changes in MSE Values in AD and Non-AD Groups
3.5. Negative Correlations between MSE Values and EEG Power Ratios in Non-AD Groups
4. Discussion
4.1. Diminished EEG Harmonic Responses in AD Patients during Repetitive PS
4.2. Irregular Long-Range Brain Dynamics in AD Patients
4.3. Diminished PS-Induced Changes in EEG Complexity in AD Patients
4.4. Disrupted Association between EEG Complexity and Neural Oscillatory Responses during PS in AD Patients
4.5. Similar Neural Oscillatory Responses and Brain Complexity in HC and MCI Groups
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulkarni, N.; Bairagi, V. EEG-Based Diagnosis of Alzheimer Disease: A Review and Novel Approaches for Feature Extraction and Classification Techniques; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Kavcic, V.; Ni, H.; Zhu, T.; Zhong, J.; Duffy, C.J. White matter integrity linked to functional impairments in aging and early Alzheimer’s disease. Alzheimer Dement. 2008, 4, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Delbeuck, X.; Van der Linden, M.; Collette, F. Alzheimer’disease as a disconnection syndrome? Neuropsychol. Rev. 2003, 13, 79–92. [Google Scholar] [CrossRef]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Kokmen, E.; Tangelos, E.G. Aging, memory, and mild cognitive impairment. Int. Psychogeriatr. 1997, 9, 65–69. [Google Scholar] [CrossRef]
- Tierney, M.; Szalai, J.; Snow, W.; Fisher, R.; Nores, A.; Nadon, G.; Dunn, E.; George-Hyslop, P.S. Prediction of probable Alzheimer’s disease in memory-impaired patients: A prospective longitudinal study. Neurology 1996, 46, 661–665. [Google Scholar] [CrossRef]
- Carlson, M.L.; DiGiacomo, P.S.; Fan, A.P.; Goubran, M.; Khalighi, M.M.; Chao, S.Z.; Vasanawala, M.; Wintermark, M.; Mormino, E.; Zaharchuk, G. Simultaneous FDG-PET/MRI detects hippocampal subfield metabolic differences in AD/MCI. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Farina, F.R.; Emek-Savaş, D.; Rueda-Delgado, L.; Boyle, R.; Kiiski, H.; Yener, G.; Whelan, R. A comparison of resting state EEG and structural MRI for classifying Alzheimer’s disease and mild cognitive impairment. NeuroImage 2020, 215, 116795. [Google Scholar] [CrossRef]
- Sporns, O.; Tononi, G.; Edelman, G.M. Connectivity and complexity: The relationship between neuroanatomy and brain dynamics. Neural Netw. 2000, 13, 909–922. [Google Scholar] [CrossRef]
- Yang, A.C.; Jann, K.; Michel, C.M.; Wang, D.J. Advances in Multi-Scale Analysis of Brain Complexity. Front. Neurosci. 2020, 14, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pincus, S.M.; Goldberger, A.L. Physiological time-series analysis: What does regularity quantify? Am. J. Physiol. 1994, 266, H1643–H1656. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, B.; Niu, Y.; Tan, Y.; Fan, C.; Zhang, N.; Xue, J.; Wei, J.; Xiang, J. Complexity Analysis of EEG, MEG, and fMRI in Mild Cognitive Impairment and Alzheimer’s Disease: A Review. Entropy 2020, 22, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.-J.; Chung, C.-C.; Kang, J.-H. Measuring entropy in functional neuroscience: Pathophysiological and clinical applications. Neurosci. Neuroecon. 2016, 5, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Courtiol, J.; Perdikis, D.; Petkoski, S.; Müller, V.; Huys, R.; Sleimen-Malkoun, R.; Jirsa, V.K. The multiscale entropy: Guidelines for use and interpretation in brain signal analysis. J. Neurosci. Methods 2016, 273, 175–190. [Google Scholar] [CrossRef]
- Wang, D.J.; Jann, K.; Fan, C.; Qiao, Y.; Zang, Y.-F.; Lu, H.; Yang, Y. Neurophysiological basis of multi-scale entropy of brain complexity and its relationship with functional connectivity. Front. Neurosci. 2018, 12, 352. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, C.; Zhang, X.; Liu, J.; Duan, Y.; Alexander-Bloch, A.F.; Liu, B.; Jiang, T.; Bullmore, E. Impaired long distance functional connectivity and weighted network architecture in Alzheimer’s disease. Cerebral Cortex 2014, 24, 1422–1435. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, L.C.; Tedrus, G.M.A.S.; Prandi, L.R.; Andrade, A. Quantitative electroencephalography power and coherence measurements in the diagnosis of mild and moderate Alzheimer’s disease. Arq. Neuro Psiquiatr. 2011, 69, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; Lee, S.-H.; Park, G.; Kim, S.; Bae, S.-M.; Kim, D.-W.; Im, C.-H. Clinical implications of quantitative electroencephalography and current source density in patients with Alzheimer’s disease. Brain Topogr. 2012, 25, 461–474. [Google Scholar] [CrossRef]
- Llinás, R.R.; Ribary, U.; Jeanmonod, D.; Kronberg, E.; Mitra, P.P. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA 1999, 96, 15222–15227. [Google Scholar] [CrossRef] [Green Version]
- Prichep, L.; John, E.; Ferris, S.H.; Reisberg, B.; Almas, M.; Alper, K.; Cancro, R. Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiol. Aging 1994, 15, 85–90. [Google Scholar] [CrossRef]
- Schmidt, M.; Kanda, P.; Basile, L.; da Silva Lopes, H.F.; Baratho, R.; Demario, J.; Jorge, M.; Nardi, A.; Machado, S.; Ianof, J.N. Index of alpha/theta ratio of the electroencephalogram: A new marker for Alzheimer’s disease. Front. Aging Neurosci. 2013, 5, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soininen, H.; Partanen, J.; Pääkkonen, A.; Koivisto, E.; Riekkinen, P. Changes in absolute power values of EEG spectra in the follow-up of Alzheimer’s disease. Acta Neurol. Scand. 1991, 83, 133–136. [Google Scholar] [CrossRef]
- Keshmiri, S. Entropy and the Brain: An Overview. Entropy 2020, 22, 917. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, N.; Wang, H.; Smith, D.M.; Blier, P.; Knott, V.; Protzner, A.B. Pre-treatment EEG signal variability is associated with treatment success in depression. NeuroImage Clin. 2018, 17, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Brookes, M.J.; Hall, E.L.; Robson, S.E.; Price, D.; Palaniyappan, L.; Liddle, E.B.; Liddle, P.F.; Robinson, S.E.; Morris, P.G. Complexity Measures in Magnetoencephalography: Measuring “Disorder” in Schizophrenia. PLoS ONE 2015, 10, e0120991. [Google Scholar]
- Sitges, C.; Bornas, X.; Llabrés, J.; Noguera, M.; Montoya, P. Linear and nonlinear analyses of EEG dynamics during non-painful somatosensory processing in chronic pain patients. Int. J. Psychophysiol. 2010, 77, 176–183. [Google Scholar] [CrossRef]
- Kuo, P.-C.; Chen, Y.-T.; Chen, Y.-S.; Chen, L.-F. Decoding the perception of endogenous pain from resting-state MEG. NeuroImage 2017, 144, 1–11. [Google Scholar] [CrossRef]
- Low, I.; Kuo, P.-C.; Tsai, C.-L.; Liu, Y.-H.; Lin, M.-W.; Chao, H.-T.; Chen, Y.-S.; Hsieh, J.-C.; Chen, L.-F. Interactions of BDNF Val66Met Polymorphism and Menstrual Pain on Brain Complexity. Front. Neurosci. 2018, 12, 826. [Google Scholar] [CrossRef]
- Low, I.; Kuo, P.-C.; Liu, Y.-H.; Tsai, C.-L.; Chao, H.-T.; Hsieh, J.-C.; Chen, L.-F.; Chen, Y.-S. Altered Brain Complexity in Women with Primary Dysmenorrhea: A Resting-State Magneto-Encephalography Study Using Multiscale Entropy Analysis. Entropy 2017, 19, 680. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.-Y.; Chen, J.-Y.; Chang, C.-F.; Weng, W.-C.; Lee, W.-T.; Shieh, J.-S. Multiscale Entropy of Electroencephalogram as a Potential Predictor for the Prognosis of Neonatal Seizures. PLoS ONE 2015, 10, e0144732. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.F.; Chao, H.-H.; Yang, A.C.; Yeh, C.-W.; Hsu, L.; Chi, S. Discrimination of Severity of Alzheimer’s Disease with Multiscale Entropy Analysis of EEG Dynamics. Appl. Sci. 2020, 10, 1244. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.C.; Wang, S.-J.; Lai, K.-L.; Tsai, C.-F.; Yang, C.-H.; Hwang, J.-P.; Lo, M.-T.; Huang, N.E.; Peng, C.-K.; Fuh, J.-L. Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer’s disease. Prog. Neuro Psychopharmacol. Biol. Psychiatr. 2013, 47, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Takahashi, T.; Cho, R.Y.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clin. Neurophysiol. 2010, 121, 1438–1446. [Google Scholar] [CrossRef] [Green Version]
- Chai, X.; Weng, X.; Zhang, Z.; Lu, Y.; Liu, G.; Niu, H. Quantitative EEG in Mild Cognitive Impairment and Alzheimer’s Disease by AR-Spectral and Multi-Scale Entropy Analysis. In World Congress on Medical Physics and Biomedical Engineering 2018; Springer: Singapore, 2019; pp. 159–163. [Google Scholar]
- Park, J.-H.; Kim, S.; Kim, C.-H.; Cichocki, A.; Kim, K. Multiscale Entropy Analysis of Eeg from Patients under Different Pathological Conditions. Fractals 2011, 15, 399–404. [Google Scholar] [CrossRef]
- Gomez, C.; Hornero, R.; Abasolo, D.; Fernandez, A.; Escudero, J. Analysis of MEG recordings from Alzheimer’s disease patients with sample and multiscale entropies. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 6183–6186. [Google Scholar]
- Li, X.; Zhu, Z.; Zhao, W.; Sun, Y.; Wen, D.; Xie, Y.; Liu, X.; Niu, H.; Han, Y. Decreased resting-state brain signal complexity in patients with mild cognitive impairment and Alzheimer’s disease: A multiscale entropy analysis. Biomed. Opt. Express 2018, 9, 1916–1929. [Google Scholar] [CrossRef] [Green Version]
- Hornero, R.; Abásolo, D.; Escudero, J.; Gómez, C. Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 317–336. [Google Scholar] [CrossRef] [Green Version]
- McBride, J.; Zhao, X.; Munro, N.; Jicha, G.; Smith, C.; Jiang, Y. Resting State EEG Multiscale Entropy Dynamics in Mild Cognitive Impairment and Early Alzheimer’s Disease. In Proceedings of the ASME 2014 Dynamic Systems and Control Conference, San Antonio, TX, USA, 22–24 October 2014. [Google Scholar]
- Tsai, P.-H.; Chang, S.-C.; Liu, F.-C.; Tsao, J.; Wang, Y.-H.; Lo, M.-T. A Novel Application of Multiscale Entropy in Electroencephalography to Predict the Efficacy of Acetylcholinesterase Inhibitor in Alzheimer’s Disease. Comput. Math. Methods Med. 2015, 2015, 953868. [Google Scholar] [CrossRef] [PubMed]
- Escudero, J.; Abásolo, D.; Hornero, R.; Espino, P.; López, M. Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 2006, 27, 1091–1106. [Google Scholar] [CrossRef] [Green Version]
- Coull, B.M.; Pedley, T.A. Intermittent photic stimulation. Clinical usefulness of non-convulsive responses. Electroencephal. Clin. Neurophysiol. 1978, 44, 353–363. [Google Scholar] [CrossRef]
- Takahashi, T. Activation Methods. In Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 2nd ed.; Niedermeyer, L., Ed.; Urban and Schwarzenberg: Baltimore, MD, USA, 1987; pp. 209–227. [Google Scholar]
- Zhang, Y.; Xu, P.; Huang, Y.; Cheng, K.; Yao, D. SSVEP response is related to functional brain network topology entrained by the flickering stimulus. PLoS ONE 2013, 8, e72654. [Google Scholar] [CrossRef] [PubMed]
- Vakorin, V.A.; Ross, B.; Krakovska, O.; Bardouille, T.; Cheyne, D.; McIntosh, A.R. Complexity analysis of source activity underlying the neuromagnetic somatosensory steady-state response. NeuroImage 2010, 51, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Cho, R.Y.; Murata, T.; Mizuno, T.; Kikuchi, M.; Mizukami, K.; Kosaka, H.; Takahashi, K.; Wada, Y. Age-related variation in EEG complexity to photic stimulation: A multiscale entropy analysis. Clin. Neurophysiol. 2009, 120, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, M.; Wada, Y.; Koshino, Y. Differences in EEG harmonic driving responses to photic stimulation between normal aging and Alzheimer’s disease. Clin. Electroencephalogr. 2002, 33, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Nanbu, Y.; Jiang, Z.-Y.; Koshino, Y.; Yamaguchi, N.; Hashimoto, T. Electroencephalographic abnormalities in patients with presenile dementia of the Alzheimer type: Quantitative analysis at rest and during photic stimulation. Biol. Psychiatr. 1997, 41, 217–225. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Albert, M.S.; Knopman, D.S.; McKhann, G.M.; Sperling, R.A.; Carrillo, M.C.; Thies, B.; Phelps, C.H. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer Dement. 2011, 7, 257–262. [Google Scholar] [CrossRef] [Green Version]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O. Mild cognitive impairment–beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Petersen, R.C. Clinical practice. Mild cognitive impairment. N. Engl. J. Med. 2011, 364, 2227–2234. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 2011, 879716. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, T.; Jijiwa, H.; Watanabe, S. The dynamics of phase relationships of alpha waves during photic driving. Electroencephalogr. Clin. Neurophysiol. 1993, 87, 88–96. [Google Scholar] [CrossRef]
- Smith, Y.; Pare, D.; Deschenes, M.; Parent, A.; Steriade, M. Cholinergic and non-cholinergic projections from the upper brainstem core to the visual thalamus in the cat. Exp. Brain Res. 1988, 70, 166–180. [Google Scholar] [PubMed]
- Kikuchi, M.; Wada, Y.; Tachibana, H.; Shiraishi, J.; Koshino, Y. EEG changes following scopolamine administration in healthy subjects: Quantitative analysis during rest and photic stimulation. Int. J. Psychophysiol. 1998, 30, 201. [Google Scholar] [CrossRef]
- Tabet, N. Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing! Age Ageing 2006, 35, 336–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016, 14, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef]
- Bentley, P.; Driver, J.; Dolan, R.J. Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging. Prog. Neurobiol. 2011, 94, 360–388. [Google Scholar] [CrossRef] [Green Version]
- Bosboom, J.L.W.; Stoffers, D.; Wolters, E.C. The role of acetylcholine and dopamine in dementia and psychosis in Parkinson’s disease. In Advances in Research on Neurodegeneration; Springer: Vienna, Austria, 2003; pp. 185–195. [Google Scholar]
- Simpraga, S.; Alvarez-Jimenez, R.; Mansvelder, H.D.; van Gerven, J.M.A.; Groeneveld, G.J.; Poil, S.-S.; Linkenkaer-Hansen, K. EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease. Sci. Rep. 2017, 7, 5775. [Google Scholar] [CrossRef]
- Johannsson, M.; Snaedal, J.; Johannesson, G.H.; Gudmundsson, T.E.; Johnsen, K. The acetylcholine index: An electroencephalographic marker of cholinergic activity in the living human brain applied to Alzheimer’s disease and other dementias. Dement. Geriatr. Cogn. Disord. 2015, 39, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Hamel, B.; Bourne, J.R.; Ward, J.W.; Teschan, P.E. Quantitative assessment of photic driving in renal failure. Electroencephalogr. Clin. Neurophysiol. 1978, 45, 719–730. [Google Scholar] [CrossRef]
- Adrian, E.D.; Matthews, B.H.C. The interpretation of potential waves in the cortex. J. Physiol. 1934, 81, 440–471. [Google Scholar] [CrossRef]
- Vialatte, F.-B.; Maurice, M.; Dauwels, J.; Cichocki, A. Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Prog. Neurobiol. 2010, 90, 418–438. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Lin, C.-T.; Lai, K.-L.; Ko, L.-W.; King, J.-T.; Liao, K.-K.; Fuh, J.-L.; Wang, S.-J. Extraction of SSVEPs-based inherent fuzzy entropy using a wearable headband EEG in migraine patients. IEEE Trans. Fuzzy Syst. 2019, 28, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Kosciessa, J.Q.; Kloosterman, N.A.; Garrett, D.D. Standard multiscale entropy reflects neural dynamics at mismatched temporal scales: What’s signal irregularity got to do with it? PLoS Comput. Biol. 2020, 16, e1007885. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, D.; Cheng, K.; Yao, D.; Xu, P. The graph theoretical analysis of the SSVEP harmonic response networks. Cogn. Neurodyn. 2015, 9, 305–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonough, I.M.; Nashiro, K. Network complexity as a measure of information processing across resting-state networks: Evidence from the Human Connectome Project. Front. Hum. Neurosci. 2014, 8, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberger, A.L.; Peng, C.-K.; Lipsitz, L.A. What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging 2002, 23, 23–26. [Google Scholar] [CrossRef]
- Cao, Z.; Ding, W.; Wang, Y.-K.; Hussain, F.K.; Al-Jumaily, A.; Lin, C.-T. Effects of repetitive SSVEPs on EEG complexity using multiscale inherent fuzzy entropy. Neurocomputing 2020, 389, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Luckhaus, C.; Grass-Kapanke, B.; Blaeser, I.; Ihl, R.; Supprian, T.; Winterer, G.; Zielasek, J.; Brinkmeyer, J. Quantitative EEG in progressing vs. stable mild cognitive impairment (MCI): Results of a 1-year follow-up study. Int. J. Geriatr. Psychiatr. J. Psychiatr. Late Life Allied Sci. 2008, 23, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.R.; Sheng, L.Q.; Pan, P.L.; Di Wang, G.; Luo, R.; Shi, H.C.; Dai, Z.Y.; Zhong, J.G. Cerebral glucose metabolic prediction from amnestic mild cognitive impairment to Alzheimer’s dementia: A meta-analysis. Transl. Neurodegener. 2018, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babiloni, C.; Del Percio, C.; Bordet, R.; Bourriez, J.L.; Bentivoglio, M.; Payoux, P.; Derambure, P.; Dix, S.; Infarinato, F.; Lizio, R.; et al. Effects of acetylcholinesterase inhibitors and memantine on resting-state electroencephalographic rhythms in Alzheimer’s disease patients. Clin. Neurophysiol. 2013, 124, 837–850. [Google Scholar] [CrossRef]
- Brassen, S.; Adler, G. Short-term Effects of Acetylcholinesterase Inhibitor Treatment on EEG and Memory Performance in Alzheimer Patients: An Open, Controlled Trial. Pharmacopsychiatry 2003, 36, 304–308. [Google Scholar] [PubMed]
- Hu, M.; Liang, H. Multiscale Entropy: Recent Advances. In Complexity and Nonlinearity in Cardiovascular Signals; Barbieri, R., Scilingo, E.P., Valenza, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 115–138. [Google Scholar]
- Humeau-Heurtier, A. The Multiscale Entropy Algorithm and Its Variants: A Review. Entropy 2015, 17, 3110–3123. [Google Scholar] [CrossRef] [Green Version]
- Humeau-Heurtier, A. Multiscale Entropy Approaches and Their Applications. Entropy 2020, 22, 644. [Google Scholar] [CrossRef]
- Kulkarni, N.; Bairagi, V. Chapter Four—Use of Complexity Features for Diagnosis of Alzheimer Disease. In EEG-Based Diagnosis of Alzheimer Disease; Kulkarni, N., Bairagi, V., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 47–59. [Google Scholar]
- Azami, H.; Faes, L.; Escudero, J.; Humeau-Heurtier, A.; Silva, L.E. Entropy Analysis of Univariate Biomedical Signals: Review and Comparison of Methods. 2020. Available online: http://www.lucafaes.net/pubs_content/other/B08-EntropyAnalysis_submitted.pdf (accessed on 1 April 2021).
- Mayor, D.; Panday, D.; Kandel, H.K.; Steffert, T.; Banks, D. CEPS: An Open Access MATLAB Graphical User Interface (GUI) for the Analysis of Complexity and Entropy in Physiological Signals. Entropy 2021, 23, 321. [Google Scholar] [CrossRef]
- Azami, H.; Rostaghi, M.; Abásolo, D.; Escudero, J. Refined Composite Multiscale Dispersion Entropy and its Application to Biomedical Signals. IEEE Trans. Biomed. Eng. 2017, 64, 2872–2879. [Google Scholar]
- Rostaghi, M.; Azami, H. Dispersion Entropy: A Measure for Time-Series Analysis. IEEE Signal Process. Lett. 2016, 23, 610–614. [Google Scholar] [CrossRef]
- Azami, H.; Escudero, J. Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals. Phys. A Stat. Mech. Appl. 2017, 465, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Shi, C.C.; Wei, Z.B.; Lin, T.R. Analysis of Complex Time Series Using a Modified Multiscale Fuzzy Entropy Algorithm. In Proceedings of the 2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI), Beijing, China, 20–21 October 2016; pp. 45–51. [Google Scholar]
- Azami, H.; Escudero, J. Amplitude- and Fluctuation-Based Dispersion Entropy. Entropy 2018, 20, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HC (N = 20) | MCI (N = 34) | Mild AD (N = 38) | Moderate AD (N = 31) | Severe AD (N = 11) | p Values | Post-Hoc Comparisons * (with Bonferroni Correction) | |
---|---|---|---|---|---|---|---|
Age (y) | 71.00 ± 5.63 | 68.38 ± 6.49 | 75.13 ± 8.81 | 77.87 ± 8.50 | 72.64 ± 11.54 | <0.001 * | Moderate AD > HC Moderate AD > MCI Mild AD > MCI |
Gender (Male%) | 50% | 44% | 66% | 45% | 36% | 0.254 | - |
Education (y) | 11.90 ± 4.38 | 11.89 ± 3.77 | 11.09 ± 4.42 | 8.65 ± 3.80 | 8.73 ± 4.92 | 0.007 * | MCI > Moderate AD |
MMSE | 28.15 ± 1.57 | 26.82 ± 1.91 | 21.47 ± 1.27 | 17.29 ± 1.53 | 10.18 ± 3.74 | <0.001 * | HC ≈ MCI > Mild AD > Moderate AD > Severe AD |
SF (Electrode) | HC | MCI | Mild AD | Moderate AD | Severe AD |
---|---|---|---|---|---|
SF 9–14 (O1) | |||||
rho | −0.621 | −0.441 | −0.240 | −0.229 | 0.182 |
p | 0.003 ** | 0.009 ** | 0.146 | 0.215 | 0.593 |
SF 15–20 (O1) | |||||
rho | −0.644 | −0.516 | −0.216 | −0.195 | 0.082 |
p | 0.002 ** | 0.002 ** | 0.193 | 0.293 | 0.811 |
SF 9–14 (O2) | |||||
rho | −0.621 | −0.437 | −0.289 | 0.033 | 0.396 |
p | 0.003 ** | 0.010 ** | 0.079 | 0.859 | 0.228 |
SF 15–20 (O2) | |||||
rho | −0.520 | −0.487 | −0.324 | −0.096 | −0.050 |
p | 0.019 * | 0.003 ** | 0.047* | 0.606 | 0.884 |
SF 9–14 (P3) | |||||
rho | −0.568 | −0.165 | −0.173 | −0.083 | 0.136 |
p | 0.009 ** | 0.35 | 0.298 | 0.656 | 0.689 |
SF 15–20 (P3) | |||||
rho | −0.442 | −0.125 | −0.038 | −0.203 | 0.136 |
p | 0.051 | 0.48 | 0.821 | 0.273 | 0.689 |
SF 9–14 (P4) | |||||
rho | −0.496 | −0.291 | −0.175 | 0.059 | 0.236 |
p | 0.026 * | 0.094 | 0.294 | 0.751 | 0.484 |
SF 15–20 (P4) | |||||
rho | −0.262 | −0.213 | −0.161 | −0.060 | −0.018 |
p | 0.265 | 0.226 | 0.336 | 0.747 | 0.958 |
SF (Electrode) | HC | MCI | Mild AD | Moderate AD | Severe AD |
---|---|---|---|---|---|
SF 9–14 (O2) | |||||
rho | −0.534 | −0.224 | −0.147 | −0.125 | 0.627 |
p | 0.015 * | 0.203 | 0.380 | 0.501 | 0.039 * |
SF 15–20 (O2) | |||||
rho | −0.498 | −0.178 | −0.187 | −0.244 | 0.336 |
p | 0.026 * | 0.313 | 0.261 | 0.186 | 0.312 |
SF 9–14 (P4) | |||||
rho | −0.600 | −0.251 | −0.005 | 0.026 | 0.182 |
p | 0.005 ** | 0.152 | 0.975 | 0.891 | 0.592 |
SF 15–20 (P4) | |||||
rho | −0.586 | −0.388 | 0.037 | −0.096 | −0.073 |
p | 0.007 ** | 0.023 * | 0.825 | 0.608 | 0.831 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.-Y.; Low, I.; Chen, C.; Fuh, J.-L.; Chen, L.-F. Brain Dynamics Altered by Photic Stimulation in Patients with Alzheimer’s Disease and Mild Cognitive Impairment. Entropy 2021, 23, 427. https://doi.org/10.3390/e23040427
Yu W-Y, Low I, Chen C, Fuh J-L, Chen L-F. Brain Dynamics Altered by Photic Stimulation in Patients with Alzheimer’s Disease and Mild Cognitive Impairment. Entropy. 2021; 23(4):427. https://doi.org/10.3390/e23040427
Chicago/Turabian StyleYu, Wei-Yang, Intan Low, Chien Chen, Jong-Ling Fuh, and Li-Fen Chen. 2021. "Brain Dynamics Altered by Photic Stimulation in Patients with Alzheimer’s Disease and Mild Cognitive Impairment" Entropy 23, no. 4: 427. https://doi.org/10.3390/e23040427
APA StyleYu, W.-Y., Low, I., Chen, C., Fuh, J.-L., & Chen, L.-F. (2021). Brain Dynamics Altered by Photic Stimulation in Patients with Alzheimer’s Disease and Mild Cognitive Impairment. Entropy, 23(4), 427. https://doi.org/10.3390/e23040427