A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem
<p>Graphical illustration of a crossover.</p> "> Figure 2
<p>Visual conceptual interpretation of hierarchicity.</p> "> Figure 3
<p>Illustration of the mutation procedure (<math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>) (The mutation process steps are as follows: (1) element 3 is interchanged with element 4; (2) element 3 (in position 3) is interchanged with element 1; (3) element 3 (in position 4) is interchanged with element 8; (4) element 3 (in position 6) is interchanged with element 5 (element 3 is eventually in position 8)).</p> "> Figure A1
<p>Histograms of the frequency of the objective function values for the instance bl64 for different examined scenarios: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <msup> <mi>S</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>300</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>640</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <msup> <mi>S</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>300</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>768</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <msup> <mi>S</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>300</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>896</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <msup> <mi>S</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>τ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>300</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>1024</mn> </mrow> </semantics></math>. The histograms are developed in such a way that the frequency of the average deviation is visualized over <math display="inline"><semantics> <mrow> <mn>10</mn> </mrow> </semantics></math> discrete sub-intervals of the interval <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">[</mo> <mrow> <mn>0.0</mn> <mo>,</mo> <mo> </mo> <mo> </mo> </mrow> </mrow> </mrow> </semantics></math>: <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">[</mo> <mrow> <mn>0.0</mn> <mo>,</mo> <mo> </mo> <mrow> <mrow> <mn>0.1</mn> </mrow> <mo stretchy="false">)</mo> </mrow> </mrow> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">[</mo> <mrow> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mrow> <mrow> <mn>0.2</mn> </mrow> <mo stretchy="false">)</mo> </mrow> </mrow> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">[</mo> <mrow> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mrow> <mrow> <mn>0.3</mn> </mrow> <mo stretchy="false">)</mo> </mrow> </mrow> </mrow> </mrow> </semantics></math>; …; <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">[</mo> <mrow> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mrow> <mrow> <mn>1.0</mn> </mrow> <mo stretchy="false">)</mo> </mrow> </mrow> </mrow> </mrow> </semantics></math>. It can be seen that the average deviation from (pseudo-)optimal solutions stably decreases by increasing the number of search iterations (<math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>).</p> ">
Abstract
:1. Introduction
2. Basic Definitions
3. Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem
Algorithm 1. High-level pseudo-code of the genetic-hierarchical algorithm. |
Genetic_Hierarchical_Algorithm Procedure; |
/ input: n—problem size, A, B—data matrices, |
/ PS—population size, Ngen—total number of generations, |
/ InitPopVar—initial population variant, SelectVar—parents selection variant, CrossVar—crossover variant, |
/ MutVar—mutation variant, RepVar—population replacement variant, |
/ σ—selection factor, DT—distance threshold, Lidle_gen—idle generations limit |
/ output: p✸—the best found solution (final solution) |
begin |
/ create a starting population P of size PS, depending on the initial population variant |
InitPopVar |
switch (InitPopVar) |
1: create the initial population P by applying the algorithm |
k-Level_Hierarchical_Iterated_Tabu_Search; |
2: create the initial population P by applying a copy of |
Genetic_Hierarchical_Algorithm using InitPopVar = 1 |
endswitch; |
p✸ = GetBestMember(P); / initialization of the best so far solution |
for i := 1 to Ngen do begin / main loop |
sort the members of the population P in the ascending order of the values of the |
objective function; |
select parents p′, p″ ∈ P for reproduction (crossover), depending on the selection |
variant SelectVar and the selection factor σ; |
perform the crossover operator on the solution-parents p′, p″ |
and get the offspring p″′, taking into account the crossover variant CrossVar; |
apply improvement procedure k-Level_Hierarchical_Iterated_Tabu_Search |
to the offspring p″′, get the (improved) offspring p✩; |
get new population P from the union of the existing parents’ |
population and the offspring P ∪ {p✩} (such that |P| = PS) |
(the minimum distance criterion and population replacement variant RepVar |
are taken into account); |
if z(p✩) < z(p✸) then p✸ = p✩; / the best found solution is memorized |
if number of idle generations exceeds the predefined limit Lidle_gen then begin |
perform the population restart process; |
if z(GetBestMember(P)) < z(p✸) then p✸ = GetBestMember(P) |
endif |
endfor; |
return p✸ |
end. |
3.1. Creation of Initial Population
3.2. Selection of Parents
3.3. Crossover Operators
3.3.1. One-Point Crossover—1PX
3.3.2. Two-Point Crossover—2PX
3.3.3. Uniform Crossover—UX
3.3.4. Shuffle Crossover—SX
3.3.5. Partially-Mapped Crossover—PMX
3.3.6. Swap-Path Crossover (SPX)
3.3.6.1. Swap-Path Crossover (Basic Version)—SPX1
3.3.6.2. Swap-Path Crossover (Modified Version I)—SPX2
3.3.6.3. Swap-Path Crossover (Modified Version II)—SPX3
3.3.7. Cycle Crossover—CX
3.3.8. Cohesive Crossover—COHX
3.3.9. Multi-Parent Crossover—MPX
3.3.10. Universal Crossover—UNIVX
3.4. Offspring Improvement
3.4.1. Hierarchical Iterated Tabu Search Algorithm
- (1)
- Set the number of levels, ().
- (2)
- Generate an initial solution .
- (3)
- Apply k‒1-level algorithm to the solution . Let be the improved solution.
- (4)
- Memorize the best found solution.
- (5)
- Set or select a solution from the history of solutions.
- (6)
- Apply a perturbation procedure to the solution . Let be the perturbed solution.
- (7)
- Set .
- (8)
- If the termination criterion is not satisfied, then go to Step 2; otherwise, stop the algorithm.
Algorithm 2. Pseudocode of the k-level hierarchical iterated tabu search algorithm. |
k-Level_Hierarchical_Iterated_Tabu_Search procedure; |
/ input: p—current solution |
/ output: p✩—the best found solution |
/ parameter: Q〈k〉—number of iterations of the k-level HITS algorithm |
begin |
p✩: = p; |
for q〈k〉: = 1 to Q〈k〉 do begin |
apply k–1-Level_Hierarchical_Iterated_Tabu_Search to p and get p∇; |
if z(p∇) < z(p✩) then p✩: = p∇; / the best found solution is memorized |
if q〈k〉 < Q〈k〉 then begin |
p: = Candidate_Acceptance(p∇, p✩); |
apply mutation procedure to p |
endif |
endfor |
end. |
Algorithm 3. Pseudocode of the iterated tabu search algorithm. |
Iterated_Tabu_Search procedure; |
/ 0-level hierarchical iterated tabu search algorithm |
/ input: p—current solution |
/ output: p〈0〉—the best found solution |
/ parameter: Q〈0〉—number of iterations of the ITS algorithm |
begin |
p〈0〉: = p; |
for q〈0〉 := 1 to Q〈0〉 do begin |
apply Tabu_Search to p and get p•; |
if z(p•) < z(p〈0〉) then p〈0〉: = p•; / the best found solution is memorized |
if q〈0〉 < Q〈0〉 then begin |
p: = Candidate_Acceptance(p•, p〈0〉); |
apply mutation procedure to p |
endif |
endfor |
end. |
Algorithm 4. Pseudo-code of the tabu search algorithm. |
Tabu_Search procedure; |
/input: n—problem size, |
/ p—current solution, Ξ—difference matrix |
/output: p•—the best found solution (along with the corresponding difference matrix) |
/parameters: τ—total number of tabu search iterations, h—tabu tenure, α—randomization coefficient, |
/ Lidle_iter—idle iterations limit |
begin |
clear tabu list TabuList and hash table HashTable; |
p•: = p; k: = 1; k′: = 1; secondary_memory_index: = 0; improved: = FALSE; |
while (k ≤ τ) or (improved = TRUE) then begin / main cycle |
Δ′min: = ∞; Δ″min: = ∞; u′: = 1; v′: = 1; |
for i: = 1 to n − 1 do |
for j: = i + 1 to n do begin / n(n − 1)/2 neighbours of p are scanned |
Δ: = Ξ(i, j); |
forbidden: = iif(((TabuList(i, j) ≥ k) and (HashTable((z(p) + Δ) mod HashSize) = TRUE) and |
(random() ≥ α)), TRUE, FALSE); |
aspired := iif(z(p) + Δ < z(p•), TRUE, FALSE); |
if ((Δ < Δ′min) and (forbidden = FALSE)) or (aspired = TRUE) then begin |
if Δ < Δ′min then begin Δ″min: = Δ′min; u″: = u′; v″: = v′; Δ′min: = Δ; u′: = i; v′: = j; endif |
else if Δ < Δ″min then begin Δ″min: = Δ; u″: = i; v″: = j; endif |
endif |
endfor; |
if Δ″min < ∞ then begin / archiving second solution, Ξ, u″, v″ |
secondary_memory_index: = secondary_memory_index + 1; Γ(secondary_memory_index) ← p, Ξ, u″, v″ |
endif; |
if Δ′min < ∞ |
; |
recalculate the values of the matrix Ξ; |
if z(p) < z(p•) then begin p•: = p; k′: = k endif; / the best so far solution is memorized |
TabuList(u′, v′): = k + h; / the elements p(u′), p(v′) become tabu |
HashTable((z(p) + Δ) mod HashSize): = TRUE |
endif; |
improved: = iif(Δ′min < 0, TRUE, FALSE); |
if (improved = FALSE) and (k − k′ > Lidle_iter) and (k < τ − Lidle_iter) then begin |
/ retrieving solution from the secondary memory |
random_access_index: = random(β × secondary_memory_index, secondary_memory_index); |
p, Ξ, u″, v″ ← Γ(random_access_index); |
; |
recalculate the values of the matrix Ξ; |
clear tabu list TabuList; |
TabuList(u″, v″): = k + h; / the elements p(u″), p(v″) become tabu |
k′: = k |
endif; |
k: = k + 1 |
endwhile |
end. |
3.4.2. Mutation
3.4.2.1. Mutation Based on Random Pairwise Interchanges (M1)
3.4.2.2. Random Pairwise Interchanges Using Random Key (M2)
3.4.2.3. Mutation Using Opposite Values (M3)
3.4.2.4. Distance-Based Mutation (M4)
3.4.2.5. Modified Random Pairwise Interchanges—Variant I (M5)
3.4.2.6. Modified Random Pairwise Interchanges—Variant II (M6)
3.4.2.7. Combined Mutation (M7)
3.4.2.8. Greedy Adaptive Search Based Mutation (M8)
3.4.2.9. Greedy Randomized Adaptive Search Based Mutation (M9)
3.4.2.10. Randomized Local Search Based Mutation—Variant I (M10)
3.4.2.11. Randomized Local Search Based Mutation—Variant II (M11)
3.4.2.12. Randomized Tabu Search Based Mutation (M12)
Algorithm 5. Pseudo-code of the procedure for recalculation of the differences of the objective function. |
Recalculation_of_the_Differences_of_the_Objective_Function procedure; |
/ input: ξ—mutation rate, p—initial permutation before mutation, r—random index array, Ξ—current differences |
/ output: Ξ—new differences |
begin |
for l: = 1 toξ − 1 do begin |
recalculate values of the matrix Ξ |
endfor |
end. |
3.4.3. Candidate Acceptance
3.5. Population Replacement
3.6. Population Restart
4. Computational Experiments
- (a)
- random, unstructured instances (these instances are denoted by: rou20, tai10a, tai12a, tai15a, tai17a, tai20a, tai25a, tai30a, tai35a, tai40a, tai50a, tai60a, tai80a, tai100a);
- (b)
- randomly generated, grid-based instances (they are denoted by: had20, nug30, scr20, sko42, sko49, sko56, sko64, sko72, sko81, sko90, sko100a..sko100f, tho30, tho40, wil50, wil100);
- (c)
- real-life, structured instances from practical applications (denoted by: chr25a, els19, esc32a..esc32h, esc64a, esc128, kra30a, kra30b, ste36a. ste36c, tai64c);
- (d)
- real-life like (pseudo-random), structured instances (denoted by: tai10b, tai12b, tai15b, tai20b, tai25b, tai30b, tai35b, tai40b, tai50b, tai60b, tai80b, tai100b).
- (e)
- instances with known optimal solutions (denoted by: lipa20a, lipa20b, lipa30a, lipa30b, lipa40a, lipa40b, lipa50a, lipa50b, lipa60a, lipa60b, lipa70a, lipa70b, lipa80a, lipa80b, lipa90a, lipa90b).
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Burkard, R.E.; Çela, E.; Pardalos, P.M.; Pitsoulis, L.S. The quadratic assignment problem. In Handbook of Combinatorial Optimization; Du, D.Z., Pardalos, P.M., Eds.; Kluwer: Dordrecht, The Netherlands, 1998; Volume 3, pp. 241–337. [Google Scholar]
- Burkard, R.E.; Dell’amico, M.; Martello, S. Assignment Problems; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
- Çela, E. The Quadratic Assignment Problem: Theory and Algorithms; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Drezner, Z. The quadratic assignment problem. In Location Science; Laporte, G., Nickel, S., Saldanha da Gama, F., Eds.; Springer: Cham, Switzerland, 2015; pp. 345–363. [Google Scholar] [CrossRef]
- Koopmans, T.; Beckmann, M. Assignment problems and the location of economic activities. Econometrica 1957, 25, 53–76. [Google Scholar] [CrossRef]
- Rendl, F. The quadratic assignment problem. In Facility Location: Applications and Theory; Drezner, Z., Hamacher, H., Eds.; Springer: Berlin, Germany, 2002; pp. 439–457. [Google Scholar]
- Hanan, M.; Kurtzberg, J.M. Placement techniques. In Design Automation of Digital Systems: Theory and Techniques; Breuer, M.A., Ed.; Prentice-Hall: Englwood Cliffs, NJ, USA, 1972; Volume 1, pp. 213–282. [Google Scholar]
- Steinberg, L. The backboard wiring problem: A placement algorithm. SIAM Rev. 1961, 3, 37–50. [Google Scholar] [CrossRef]
- Heffley, D.R. Assigning runners to a relay team. In Optimal Strategies in Sports; Ladany, S.P., Machol, R.E., Eds.; North-Holland: Amsterdam, The Netherlands, 1977; pp. 169–171. [Google Scholar]
- Drezner, Z. Finding a cluster of points and the grey pattern quadratic assignment problem. OR Spectr. 2006, 28, 417–436. [Google Scholar] [CrossRef]
- Burkard, R.E.; Offermann, J. Entwurf von schreibmaschinentastaturen mittels quadratischer zuordnungsprobleme. Z. Oper. Res. 1977, 21, 121–132. [Google Scholar] [CrossRef]
- Dell’amico, M.; Díaz, J.C.D.; Iori, M.; Montanari, R. The single-finger keyboard layout problem. Comput. Oper. Res. 2009, 36, 3002–3012. [Google Scholar] [CrossRef] [Green Version]
- Herthel, A.B.; Subramanian, A. Optimizing single-finger keyboard layouts on smartphones. Comput. Oper. Res. 2020, 120, 104947. [Google Scholar] [CrossRef]
- Drezner, Z.; Hahn, P.M.; Taillard, E.D. Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for metaheuristic methods. Ann. Oper. Res. 2005, 139, 65–94. [Google Scholar] [CrossRef]
- Francis, R.L.; White, J.A. Facility Layout and Location: An Analytical Approach; Prentice Hall: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Phillips, A.T.; Rosen, J.B. A quadratic assignment formulation of the molecular conformation problem. J. Glob. Optim. 1994, 4, 229–241. [Google Scholar] [CrossRef]
- Taillard, E.D. Comparison of iterative searches for the quadratic assignment problem. Locat. Sci. 1995, 3, 87–105. [Google Scholar] [CrossRef]
- Ben-David, G.; Malah, D. Bounds on the performance of vector-quantizers under channel errors. IEEE Trans. Inf. Theory 2005, 51, 2227–2235. [Google Scholar] [CrossRef]
- De Carvalho, S.A., Jr.; Rahmann, S. Microarray layout as a quadratic assignment problem. In German Conference on Bioinformatics, GCB 2006, Lecture Notes in Informatics–Proceedings; Huson, D., Kohlbacher, O., Lupas, A., Nieselt, K., Zell, A., Eds.; Gesellschaft für Informatik: Bonn, Germany, 2006; Volume P-83, pp. 11–20. [Google Scholar]
- Brusco, M.J.; Stahl, S. Using quadratic assignment methods to generate initial permutations for least-squares unidimensional scaling of symmetric proximity matrices. J. Classif. 2000, 17, 197–223. [Google Scholar] [CrossRef]
- Dickey, J.W.; Hopkins, J.W. Campus building arrangement using TOPAZ. Transp. Res. 1972, 6, 59–68. [Google Scholar] [CrossRef]
- Elshafei, A.N. Hospital layout as a quadratic assignment problem. Oper. Res. Q. 1977, 28, 167–179. [Google Scholar] [CrossRef]
- Lstibůrek, M.; Stejskal, J.; Misevičius, A.; Korecký, J.; El-Kassaby, Y. Expansion of the minimum-inbreeding seed orchard design to operational scale. Tree Genet. Genomes 2015, 11, 1–8. [Google Scholar] [CrossRef]
- Laporte, G.; Mercure, H. Balancing hydraulic turbine runners: A quadratic assignment problem. Eur. J. Oper. Res. 1988, 35, 378–381. [Google Scholar] [CrossRef]
- Saremi, H.Q.; Abedin, B.; Kermani, A.M. Website structure improvement: Quadratic assignment problem approach and ant colony metaheuristic technique. Appl. Math. Comput. 2008, 195, 285–298. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Manogaran, G.; Rashad, H.; Zaied, A.N.H. A comprehensive review of quadratic assignment problem: Variants, hybrids and applications. J. Ambient Intell. Hum. Comput. 2018, 9, 1–24. [Google Scholar] [CrossRef]
- Sahni, S.; Gonzalez, T. P-complete approximation problems. J. ACM 1976, 23, 555–565. [Google Scholar] [CrossRef]
- Anstreicher, K.M.; Brixius, N.W.; Gaux, J.P.; Linderoth, J. Solving large quadratic assignment problems on computational grids. Math. Program. 2002, 91, 563–588. [Google Scholar] [CrossRef]
- Burkard, R.E.; Karisch, S.; Rendl, F. QAPLIB—A quadratic assignment problem library. J. Glob. Optim. 1997, 10, 391–403. [Google Scholar] [CrossRef]
- Date, K.; Nagi, R. Level 2 reformulation linearization technique–based parallel algorithms for solving large quadratic assignment problems on graphics processing unit clusters. INFORMS J. Comput. 2019, 31, 771–789. [Google Scholar] [CrossRef]
- Ferreira, J.F.S.B.; Khoo, Y.; Singer, A. Semidefinite programming approach for the quadratic assignment problem with a sparse graph. Comput. Optim. Appl. 2018, 69, 677–712. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.D.; Pessoa, A.A.; Bentes, C.; Farias, R.; De Drummond, A.L.M. A graphics processing unit algorithm to solve the quadratic assignment problem using level-2 reformulation-linearization technique. INFORMS J. Comput. 2017, 29, 676–687. [Google Scholar] [CrossRef]
- Hahn, P.M.; Zhu, Y.-R.; Guignard, M.; Hightower, W.L.; Saltzman, M.J. A level-3 reformulation-linearization technique-based bound for the quadratic assignment problem. INFORMS J. Comput. 2012, 24, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, A.; Westerlund, T. A new exact discrete linear reformulation of the quadratic assignment problem. Eur. J. Oper. Res. 2012, 220, 314–319. [Google Scholar] [CrossRef]
- Rendl, F.; Sotirov, R. Bounds for the quadratic assignment problem using the bundle method. Math. Program. 2007, 109, 505–524. [Google Scholar] [CrossRef] [Green Version]
- Nyström, M. Solving Certain Large Instances of the Quadratic Assignment Problem: Steinberg’s Examples; Tech. Rep.; California Institute of Technology: Pasadena, CA, USA, 1999. [Google Scholar]
- Martí, R.; Pardalos, P.M.; Resende, M.G.C. (Eds.) Handbook of Heuristics; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Armour, G.C.; Buffa, E.S. A heuristic algorithm and simulation approach to relative location of facilities. Manag. Sci. 1963, 9, 294–304. [Google Scholar] [CrossRef]
- Buffa, E.S.; Armour, G.C.; Vollmann, T.E. Allocating facilities with CRAFT. Harv. Bus. Rev. 1964, 42, 136–158. [Google Scholar]
- Murtagh, B.A.; Jefferson, T.R.; Sornprasit, V. A heuristic procedure for solving the quadratic assignment problem. Eur. J. Oper. Res. 1982, 9, 71–76. [Google Scholar] [CrossRef]
- Nugent, C.E.; Vollmann, T.E.; Ruml, J. An experimental comparison of techniques for the assignment of facilities to locations. J. Oper. Res. 1968, 16, 150–173. [Google Scholar] [CrossRef]
- Angel, E.; Zissimopoulos, V. On the quality of local search for the quadratic assignment problem. Discret. Appl. Math. 1998, 82, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Chiang, W.-C.; Chiang, C. Intelligent local search strategies for solving facility layout problems with the quadratic assignment problem formulation. Eur. J. Oper. Res. 1998, 106, 457–488. [Google Scholar] [CrossRef]
- Murthy, K.A.; Li, Y.; Pardalos, P.M. A local search algorithm for the quadratic assignment problem. Informatica 1992, 3, 524–538. [Google Scholar]
- Pardalos, P.M.; Murthy, K.A.; Harrison, T.P. A computational comparison of local search heuristics for solving quadratic assigment problems. Informatica 1993, 4, 172–187. [Google Scholar]
- Aksan, Y.; Dokeroglu, T.; Cosar, A. A stagnation-aware cooperative parallel breakout local search algorithm for the quadratic assignment problem. Comput. Ind. Eng. 2017, 103, 105–115. [Google Scholar] [CrossRef]
- Benlic, U.; Hao, J.-K. Breakout local search for the quadratic assignment problem. Appl. Math. Comput. 2013, 219, 4800–4815. [Google Scholar] [CrossRef] [Green Version]
- Burkard, R.E.; Rendl, F. A thermodynamically motivated simulation procedure for combinatorial optimization problems. Eur. J. Oper. Res. 1984, 17, 169–174. [Google Scholar] [CrossRef]
- Connolly, D.T. An improved annealing scheme for the QAP. Eur. J. Oper. Res. 1990, 46, 93–100. [Google Scholar] [CrossRef]
- Wilhelm, M.; Ward, T. Solving quadratic assignment problems by simulated annealing. IIE Trans. 1987, 19, 107–119. [Google Scholar] [CrossRef]
- Bölte, A.; Thonemann, U.W. Optimizing simulated annealing schedules with genetic programming. Eur. J. Oper. Res. 1996, 92, 402–416. [Google Scholar] [CrossRef]
- Misevičius, A. A modified simulated annealing algorithm for the quadratic assignment problem. Informatica 2003, 14, 497–514. [Google Scholar] [CrossRef]
- Paul, G. An efficient implementation of the simulated annealing heuristic for the quadratic assignment problem. arXiv 2011, arXiv:1111.1353. [Google Scholar]
- Taillard, E.D. Robust taboo search for the QAP. Parallel. Comput. 1991, 17, 443–455. [Google Scholar] [CrossRef]
- Battiti, R.; Tecchiolli, G. The reactive tabu search. ORSA J. Comput. 1994, 6, 126–140. [Google Scholar] [CrossRef]
- Drezner, Z. The extended concentric tabu for the quadratic assignment problem. Eur. J. Oper. Res. 2005, 160, 416–422. [Google Scholar] [CrossRef]
- Misevicius, A. A tabu search algorithm for the quadratic assignment problem. Comput. Optim. Appl. 2005, 30, 95–111. [Google Scholar] [CrossRef]
- Zhu, W.; Curry, J.; Marquez, A. SIMD tabu search for the quadratic assignment problem with graphics hardware acceleration. Int. J. Prod. Res. 2010, 48, 1035–1047. [Google Scholar] [CrossRef]
- Fescioglu-Unver, N.; Kokar, M.M. Self controlling tabu search algorithm for the quadratic assignment problem. Comput. Ind. Eng. 2011, 60, 310–319. [Google Scholar] [CrossRef]
- Sergienko, I.V.; Shylo, V.P.; Chupov, S.V.; Shylo, P.V. Solving the quadratic assignment problem. Cybern. Syst. Anal. 2020, 56, 53–57. [Google Scholar] [CrossRef]
- Shylo, P.V. Solving the quadratic assignment problem by the repeated iterated tabu search method. Cybern. Syst. Anal. 2017, 53, 308–311. [Google Scholar] [CrossRef]
- Abdelkafi, O.; Derbel, B.; Liefooghe, A. A parallel tabu search for the large-scale quadratic assignment problem. In Proceedings of the IEEE Congress on Evolutionary Computation, IEEE CEC 2019, Wellington, New Zealand, 10–13 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3070–3077. [Google Scholar] [CrossRef]
- Czapiński, M. An effective parallel multistart tabu search for quadratic assignment problem on CUDA platform. J. Parallel Distrib. Comput. 2013, 73, 1461–1468. [Google Scholar] [CrossRef]
- Ramkumar, A.S.; Ponnambalam, S.G.; Jawahar, N.; Suresh, R.K. Iterated fast local search algorithm for solving quadratic assignment problems. Robot. Comput. Integr. Manuf. 2008, 24, 392–401. [Google Scholar] [CrossRef]
- Stützle, T. Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res. 2006, 174, 1519–1539. [Google Scholar] [CrossRef]
- Misevicius, A. An implementation of the iterated tabu search algorithm for the quadratic assignment problem. OR Spectr. 2012, 34, 665–690. [Google Scholar] [CrossRef]
- Dokeroglu, T.; Cosar, A. A novel multistart hyper-heuristic algorithm on the grid for the quadratic assignment problem. Eng. Appl. Artif. Intell. 2016, 52, 10–25. [Google Scholar] [CrossRef]
- Fleurent, C.; Glover, F. Improved constructive multistart strategies for the quadratic assignment problem using adaptive memory. INFORMS J. Comput. 1999, 11, 198–204. [Google Scholar] [CrossRef]
- Wang, J. A multistart simulated annealing algorithm for the quadratic assignment problem. In Proceedings of the 2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2012, Kaohsiung, Taiwan, 26–28 September 2012; IEEE: Los Alamitos, CA, USA; Washington, DC, USA; Tokyo, Japan, 2012; pp. 19–23. [Google Scholar] [CrossRef]
- Li, Y.; Pardalos, P.M.; Resende, M.G.C. A greedy randomized adaptive search procedure for the quadratic assignment problem. In Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science; Pardalos, P.M., Wolkowicz, H., Eds.; AMS: Providence, RI, USA, 1994; Volume 16, pp. 237–261. [Google Scholar]
- Ahuja, R.K.; Orlin, J.B.; Tiwari, A. A greedy genetic algorithm for the quadratic assignment problem. Comput. Oper. Res. 2000, 27, 917–934. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.H.; Yuan, Y.; Omatu, S. Efficient genetic algorithms using simple genes exchange local search policy for the quadratic assignment problem. Comput. Optim. Appl. 2000, 15, 249–268. [Google Scholar] [CrossRef]
- Merz, P.; Freisleben, B. Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans. Evol. Comput. 2000, 4, 337–352. [Google Scholar] [CrossRef]
- Migkikh, V.V.; Topchy, A.A.; Kureichik, V.M.; Tetelbaum, A.Y. Combined genetic and local search algorithm for the quadratic assignment problem. In Proceedings of the First International Conference on Evolutionary Computation and Its Applications (EvCA’96); Russian Academy of Sciences: Moscow, Russia, 1996; pp. 335–341. [Google Scholar]
- Drezner, Z. A new genetic algorithm for the quadratic assignment problem. INFORMS J. Comput. 2003, 15, 320–330. [Google Scholar] [CrossRef]
- Misevicius, A. An improved hybrid genetic algorithm: New results for the quadratic assignment problem. Knowl.-Based Syst. 2004, 17, 65–73. [Google Scholar] [CrossRef]
- Tosun, U.; Dokeroglu, T.; Cosar, A. A robust island parallel genetic algorithm for the quadratic assignment problem. Int. J. Prod. Res. 2013, 51, 4117–4133. [Google Scholar] [CrossRef]
- Benlic, U.; Hao, J.-K. Memetic search for the quadratic assignment problem. Expert Syst. Appl. 2015, 42, 584–595. [Google Scholar] [CrossRef] [Green Version]
- Özçetin, E.; Öztürk, G. A hybrid genetic algorithm for the quadratic assignment problem on graphics processing units. Anadolu Univ. J. Sci. Technol. A Appl. Sci. Eng. 2016, 17, 167–180. [Google Scholar] [CrossRef]
- Chmiel, W.; Kwiecień, J. Quantum-inspired evolutionary approach for the quadratic assignment problem. Entropy 2018, 20, 781. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Z.H. A multi-parent genetic algorithm for the quadratic assignment problem. OPSEARCH 2015, 52, 714–732. [Google Scholar] [CrossRef]
- Ahmed, Z.H. A hybrid algorithm combining lexisearch and genetic algorithms for the quadratic assignment problem. Cogent Eng. 2018, 5, 1423743. [Google Scholar] [CrossRef]
- Baldé, M.A.M.T.; Gueye, S.; Ndiaye, B.M. A greedy evolutionary hybridization algorithm for the optimal network and quadratic assignment problem. Oper. Res. 2020, 1–28. [Google Scholar] [CrossRef]
- Chmiel, W. Evolutionary algorithm using conditional expectation value for quadratic assignment problem. Swarm Evol. Comput. 2019, 46, 1–27. [Google Scholar] [CrossRef]
- Drezner, Z.; Drezner, T.D. The alpha male genetic algorithm. IMA J. Manag. Math. 2019, 30, 37–50. [Google Scholar] [CrossRef]
- Drezner, Z.; Misevičius, A. Enhancing the performance of hybrid genetic algorithms by differential improvement. Comput. Oper. Res. 2013, 40, 1038–1046. [Google Scholar] [CrossRef]
- Harris, M.; Berretta, R.; Inostroza-Ponta, M.; Moscato, P. A memetic algorithm for the quadratic assignment problem with parallel local search. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 838–845. [Google Scholar] [CrossRef]
- Tang, J.; Lim, M.-H.; Ong, Y.S.; Er, M.J. Parallel memetic algorithm with selective local search for large scale quadratic assignment problems. Int. J. Innov. Comput. Inf. Control 2006, 2, 1399–1416. [Google Scholar]
- Tosun, U. A new recombination operator for the genetic algorithm solution of the quadratic assignment problem. Procedia Comput. Sci. 2014, 32, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. Integrating the whale algorithm with tabu search for quadratic assignment problem: A new approach for locating hospital departments. Appl. Soft Comput. 2018, 73, 530–546. [Google Scholar] [CrossRef]
- Acan, A.; Ünveren, A. A great deluge and tabu search hybrid with two-stage memory support for quadratic assignment problem. Appl. Soft Comput. 2015, 36, 185–203. [Google Scholar] [CrossRef]
- Drezner, Z.; Drezner, T.D. Biologically inspired parent selection in genetic algorithms. Ann. Oper. Res. 2020, 287, 161–183. [Google Scholar] [CrossRef]
- Fleurent, C.; Ferland, J.A. Genetic hybrids for the quadratic assignment problem. In Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science; Pardalos, P.M., Wolkowicz, H., Eds.; AMS: Providence, RI, USA, 1994; Volume 16, pp. 173–188. [Google Scholar]
- James, T.; Rego, C.; Glover, F. Sequential and parallel path-relinking algorithms for the quadratic assignment problem. IEEE Intell. Syst. 2005, 20, 58–65. [Google Scholar] [CrossRef]
- Lalla-Ruiz, E.; Expósito-Izquierdo, C.; Melián-Batista, B.; Moreno-Vega, M.J. A hybrid biased random key genetic algorithm for the quadratic assignment problem. Inf. Process. Lett. 2016, 116, 513–520. [Google Scholar] [CrossRef]
- Lim, W.L.; Wibowo, A.; Desa, M.I.; Haron, H. A biogeography-based optimization algorithm hybridized with tabu search for the quadratic assignment problem. Comput. Intell. Neurosc. 2016, 2016, 5803893. [Google Scholar] [CrossRef] [Green Version]
- Misevičius, A.; Rubliauskas, D. Testing of hybrid genetic algorithms for structured quadratic assignment problems. Informatica 2009, 20, 255–272. [Google Scholar] [CrossRef]
- Ng, K.M.; Tran, T.H. A parallel water flow algorithm with local search for solving the quadratic assignment problem. J. Ind. Manag. Optim. 2019, 15, 235–259. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.A.S.; Pardalos, P.M.; Resende, M.G.C. GRASP with path-relinking for the quadratic assignment problem. In Efficient and Experimental Algorithms, WEA 2004, Lecture Notes in Computer Science; Ribeiro, C.C., Martins, S.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3059, pp. 237–261. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.M.; Macphee, F.C.; Bonham, D.J.; Bhavsar, V.C. Solving the quadratic assignment and dynamic plant layout problems using a new hybrid meta-heuristic approach. In Proceedings of the 18th Annual International Symposium on High Performance Computing Systems and Applications (HPCS), Winnipeg, MB, Canada, 16–19 May 2004; Eskicioglu, M.R., Ed.; Curran Associates: Red Hook, NY, USA, 2004; pp. 9–16. [Google Scholar]
- Tseng, L.-Y.; Liang, S.-C. A hybrid metaheuristic for the quadratic assignment problem. Comput. Optim. Appl. 2006, 34, 85–113. [Google Scholar] [CrossRef]
- Vázquez, M.; Whitley, L.D. A hybrid genetic algorithm for the quadratic assignment problem. In Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, Las Vagas, NV, USA, 8–12 July 2000; pp. 135–142. [Google Scholar]
- Xu, Y.-L.; Lim, M.H.; Ong, Y.S.; Tang, J. A GA-ACO-local search hybrid algorithm for solving quadratic assignment problem. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 June 2006; Volume 1, pp. 599–605. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Zhou, Y.; Zhang, Z. A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic assignment problem. Inf. Sci. 2020, 539, 347–374. [Google Scholar] [CrossRef]
- Hafiz, F.; Abdennour, A. Particle swarm algorithm variants for the quadratic assignment problems—A probabilistic learning approach. Expert Syst. Appl. 2016, 44, 413–431. [Google Scholar] [CrossRef]
- Szwed, P.; Chmiel, W.; Kadłuczka, P. OpenCL implementation of PSO algorithm for the quadratic assignment problem. In Artificial Intelligence and Soft Computing, ICAISC 2015, Lecture Notes in Computer Science; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 9120, pp. 223–234. [Google Scholar] [CrossRef]
- Gambardella, L.M.; Taillard, E.D.; Dorigo, M. Ant colonies for the quadratic assignment problem. J. Oper. Res. Soc. 1999, 50, 167–176. [Google Scholar] [CrossRef]
- Dokeroglu, T.; Sevinc, E.; Cosar, A. Artificial bee colony optimization for the quadratic assignment problem. Appl. Soft Comput. 2019, 76, 595–606. [Google Scholar] [CrossRef]
- Samanta, S.; Philip, D.; Chakraborty, S. A quick convergent artificial bee colony algorithm for solving quadratic assignment problems. Comput. Ind. Eng. 2019, 137, 106070. [Google Scholar] [CrossRef]
- Abdel-Baset, M.; Wu, H.; Zhou, Y.; Abdel-Fatah, L. Elite opposition-flower pollination algorithm for quadratic assignment problem. J. Intell. Fuzzy Syst. 2017, 33, 901–911. [Google Scholar] [CrossRef]
- Dokeroglu, T. Hybrid teaching–learning-based optimization algorithms for the quadratic assignment problem. Comput. Ind. Eng. 2015, 85, 86–101. [Google Scholar] [CrossRef]
- Duman, E.; Uysal, M.; Alkaya, A.F. Migrating birds optimization: A new metaheuristic approach and its performance on quadratic assignment problem. Inf. Sci. 2012, 217, 65–77. [Google Scholar] [CrossRef]
- Ismail, M.M.; Hezam, I.M.; El-Sharkawy, E. Enhanced cuckoo search algorithm with SPV rule for quadratic assignment problem. Int. J. Comput. Appl. 2017, 158, 39–42. [Google Scholar] [CrossRef]
- Kiliç, H.; Yüzgeç, U. Tournament selection based antlion optimization algorithm for solving quadratic assignment problem. Eng. Sci. Technol. Int. J. 2019, 22, 673–691. [Google Scholar] [CrossRef]
- Mzili, I.; Riffi, M.E.; Benzekri, F. Penguins search optimization algorithm to solve quadratic assignment problem. In Proceedings of the 2nd International Conference on Big Data, Cloud and Applications, Tetouan, Morocco, 29–30 March 2017; ACM: New York, NY, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Qawqzeh, Y.K.; Jaradat, G.; Al-Yousef, A.; Abu-Hamdah, A.; Almarashdeh, I.; Alsmadi, M.; Tayfour, M.; Shaker, K.; Haddad, F. Applying the big bang-big crunch metaheuristic to large-sized operational problems. Int. J. Electr. Comput. Eng. 2020, 10, 2484–2502. [Google Scholar] [CrossRef]
- Riffi, M.E.; Saji, Y.; Barkatou, M. Incorporating a modified uniform crossover and 2-exchange neighborhood mechanism in a discrete bat algorithm to solve the quadratic assignment problem. Egypt. Inform. J. 2017, 18, 221–232. [Google Scholar] [CrossRef]
- Zamani, R.; Amirghasemi, M. A self-adaptive nature-inspired procedure for solving the quadratic assignment problem. In Frontier Applications of Nature Inspired Computation. Springer Tracts in Nature-Inspired Computing; Khosravy, M., Gupta, N., Patel, N., Senjyu, T., Eds.; Springer: Singapore, 2020; pp. 119–147. [Google Scholar] [CrossRef]
- Loiola, E.M.; De Abreu, N.M.M.; Boaventura-Netto, P.O.; Hahn, P.; Querido, T. A survey for the quadratic assignment problem. Eur. J. Oper. Res. 2007, 176, 657–690. [Google Scholar] [CrossRef]
- Frieze, A.M.; Yadegar, J.; El-Horbaty, S.; Parkinson, D. Algorithms for assignment problems on an array processor. Parallel Comput. 1989, 11, 151–162. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989. [Google Scholar]
- Drezner, Z. Compounded genetic algorithms for the quadratic assignment problem. Oper. Res. Lett. 2005, 33, 475–480. [Google Scholar] [CrossRef]
- Tate, D.M.; Smith, A.E. A genetic approach to the quadratic assignment problem. Comput. Oper. Res. 1995, 22, 73–83. [Google Scholar] [CrossRef]
- Misevičius, A.; Kuznecovaitė, D.; Platužienė, J. Some further experiments with crossover operators for genetic algorithms. Informatica 2018, 29, 499–516. [Google Scholar] [CrossRef] [Green Version]
- Pavai, G.; Geetha, T.V. A survey on crossover operators. ACM Comput. Surv. 2017, 49, 1–43. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Compl. Syst. 1995, 9, 115–148. [Google Scholar]
- Lourenco, H.R.; Martin, O.; Stützle, T. Iterated local search. In Handbook of Metaheuristics; Glover, F., Kochenberger, G., Eds.; Kluwer: Norwell, MA, USA, 2002; pp. 321–353. [Google Scholar] [CrossRef]
- Ahmed, A.K.M.F.; Sun, J.U. A novel approach to combine the hierarchical and iterative techniques for solving capacitated location-routing problem. Cogent Eng. 2018, 5, 1463596. [Google Scholar] [CrossRef]
- Battarra, M.; Benedettini, S.; Roli, A. Leveraging saving-based algorithms by master–slave genetic algorithms. Eng. Appl. Artif. Intell. 2011, 24, 555–566. [Google Scholar] [CrossRef]
- Garai, G.; Chaudhuri, B.B. A distributed hierarchical genetic algorithm for efficient optimization and pattern matching. Pattern Recognit. 2007, 40, 212–228. [Google Scholar] [CrossRef]
- Hauschild, M.; Bhatia, S.; Pelikan, M. Image segmentation using a genetic algorithm and hierarchical local search. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012; Soule, T., Ed.; ACM Press: New York, NY, USA, 2012; pp. 633–639. [Google Scholar] [CrossRef]
- Hussin, M.S.; Stützle, T. Hierarchical iterated local search for the quadratic assignment problem. In Hybrid Metaheuristics, HM 2009, Lecture Notes in Computer Science; Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5818, pp. 115–129. [Google Scholar] [CrossRef] [Green Version]
- Rokbani, N.; Kromer, P.; Twir, I.; Alimi, A.M. A hybrid hierarchical heuristic-ACO with local search applied to travelling salesman problem. Int. J. Syst. Dyn. Appl. 2020, 9, 58–73. [Google Scholar] [CrossRef]
- Schaefer, R.; Byrski, A.; Kołodziej, J.; Smołka, M. An agent-based model of hierarchic genetic search. Comput. Math. Appl. 2012, 64, 3763–3776. [Google Scholar] [CrossRef] [Green Version]
- Smyth, K.; Hoos, H.H.; Stützle, T. Iterated robust tabu search for MAX-SAT. In Advances in Artificial Intelligence, Proceedings of the 16th Conference of the Canadian Society for Computational Studies of Intelligence. Lecture Notes in Artificial Intelligence, Halifax, NS, Canada, 11–13 June 2003; Xiang, Y., Chaib-Draa, B., Eds.; Springer: Berlin, Germany, 2003; Volume 2671, pp. 129–144. [Google Scholar] [CrossRef] [Green Version]
- Glover, F.; Laguna, M. Tabu Search; Kluwer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Dell’amico, M.; Trubian, M. Solution of large weighted equicut problems. Eur. J. Oper. Res. 1998, 106, 500–521. [Google Scholar] [CrossRef]
- Lim, S.M.; Sultan, A.B.M.; Sulaiman, M.N.; Mustapha, A.; Leong, K.Y. Crossover and mutation operators of genetic algorithms. Int. J. Mach. Learn. Comput. 2017, 7, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Sivanandam, S.N.; Deepa, S.N. Introduction to Genetic Algorithms; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2008. [Google Scholar]
- Misevičius, A. Letter: New best known solution for the most difficult QAP instance “tai100a”. Memet. Comput. 2019, 11, 331–332. [Google Scholar] [CrossRef]
Parameter | Value | Remarks |
---|---|---|
Population size, | 10 | |
Number of generations, | 100 | |
Initial population variant, | 1 | |
Selection factor, | 1.5 | |
Distance threshold, | ||
Idle generations limit, | ||
Population replacement variant, | 1 |
Parameter | Value | Remarks |
---|---|---|
Number of hierarchical iterated tabu search iterations, | 256 | † |
Number of tabu search iterations, | ||
Idle iterations limit, | ||
Tabu tenure, | ||
Randomization coefficient for tabu search, | ||
Mutation rate, |
Instance | BKV | Time (s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1PX | 2PX | UX | SX | PMX | SPX1 | SPX2 | SPX3 | CX | COHX | MPX | UNIVX | |||
bl49 | 4548 | 0.730 | 0.765 | 0.712 | 0.756 | 0.756 | 0.812 | 0.792 | 0.730 | 0.765 | 0.712 | 0.853 | 0.688 | 63.9 |
bl64 | 5988 | 1.009 | 0.775 | 0.768 | 1.222 | 1.062 | 0.795 | 1.136 | 1.096 | 0.882 | 0.962 | 1.416 | 0.962 | 126.7 |
ci49 | 236355034 | 0.004 | 0.002 | 0.009 | 0.000 | 0.012 | 0.004 | 0.000 | 0.000 | 0.003 | 0.013 | 0.003 | 0.005 | 10.7 |
ci64 | 325671035 | 0.092 | 0.086 | 0.103 | 0.087 | 0.081 | 0.097 | 0.066 | 0.055 | 0.085 | 0.068 | 0.110 | 0.098 | 65.4 |
dre42 | 764 | 8.770 | 15.052 | 13.665 | 11.990 | 11.126 | 18.770 | 9.738 | 8.586 | 14.058 | 14.607 | 7.696 | 7.408 | 18.1 |
dre56 | 1086 | 28.785 | 28.674 | 36.206 | 37.661 | 35.470 | 39.282 | 38.122 | 38.471 | 29.963 | 24.199 | 46.335 | 26.298 | 59.6 |
lipa70a | 169755 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 23.3 |
lipa70b | 4603200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.8 |
sko56 | 34458 | 0.002 | 0.001 | 0.018 | 0.000 | 0.017 | 0.021 | 0.002 | 0.000 | 0.002 | 0.000 | 0.014 | 0.001 | 16.9 |
sko64 | 48498 | 0.006 | 0.000 | 0.022 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.015 | 0.006 | 8.4 |
tai35a | 2422002 | 0.355 | 0.416 | 0.332 | 0.263 | 0.233 | 0.506 | 0.313 | 0.239 | 0.386 | 0.252 | 0.215 | 0.484 | 16.0 |
tai35b | 283315445 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.019 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.5 |
tai40a | 3139370 | 0.483 | 0.417 | 0.556 | 0.477 | 0.482 | 0.686 | 0.464 | 0.462 | 0.513 | 0.622 | 0.534 | 0.601 | 39.1 |
tai40b | 637250948 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.0 |
tai45e1 | 6412 | 3.253 | 1.366 | 2.944 | 1.307 | 1.285 | 2.682 | 0.172 | 1.597 | 3.506 | 2.327 | 6.323 | 1.482 | 29.2 |
tai50a | 4938796 | 0.810 | 0.834 | 0.872 | 0.742 | 0.712 | 0.960 | 0.784 | 0.884 | 0.829 | 0.797 | 0.838 | 0.912 | 67.1 |
tai50b | 458821517 | 0.000 | 0.033 | 0.033 | 0.000 | 0.000 | 0.000 | 0.000 | 0.033 | 0.033 | 0.066 | 0.113 | 0.033 | 3.9 |
tai60a | 7205962 | 0.819 | 0.826 | 0.904 | 0.894 | 0.858 | 0.976 | 0.899 | 0.865 | 0.971 | 0.762 | 0.901 | 0.888 | 103.4 |
tai60b | 608215054 | 0.037 | 0.000 | 0.000 | 0.000 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.040 | 0.000 | 6.8 |
wil50 | 48816 | 0.002 | 0.003 | 0.013 | 0.007 | 0.007 | 0.011 | 0.008 | 0.000 | 0.005 | 0.007 | 0.007 | 0.011 | 6.2 |
Average: | 2.266 | 2.471 | 2.866 | 2.779 | 2.615 | 3.290 | 2.633 | 2.659 | 2.608 | 2.278 | 3.279 | 2.001 |
Instance | BKV | Time (s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 | |||
bl49 | 4548 | 0.730 | 0.800 | 0.994 | 0.712 | 0.739 | 0.642 | 1.099 | 0.976 | 1.020 | 1.082 | 0.624 | 0.792 | 63.8 |
bl64 | 5988 | 1.009 | 1.075 | 1.336 | 0.855 | 0.862 | 1.049 | 1.229 | 1.376 | 1.229 | 2.057 | 0.755 | 1.336 | 125.2 |
ci49 | 236355034 | 0.004 | 0.004 | 0.080 | 0.021 | 0.000 | 0.001 | 0.097 | 0.003 | 0.003 | 0.000 | 0.001 | 0.001 | 9.6 |
ci64 | 325671035 | 0.092 | 0.085 | 0.218 | 0.089 | 0.074 | 0.092 | 0.187 | 0.256 | 0.110 | 0.083 | 0.075 | 0.049 | 66.3 |
dre42 | 764 | 8.770 | 11.204 | 22.984 | 1.466 | 15.026 | 7.016 | 25.916 | 20.524 | 14.346 | 16.335 | 8.063 | 0.000 | 18.9 |
dre56 | 1086 | 28.785 | 32.431 | 40.829 | 26.538 | 29.705 | 37.459 | 41.197 | 39.576 | 34.494 | 56.814 | 26.206 | 16.777 | 58.1 |
lipa70a | 169755 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 0.165 | 24.0 |
lipa70b | 4603200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.1 |
sko56 | 34458 | 0.002 | 0.000 | 0.082 | 0.019 | 0.000 | 0.000 | 0.096 | 0.064 | 0.003 | 0.001 | 0.000 | 0.000 | 16.4 |
sko64 | 48498 | 0.006 | 0.000 | 0.002 | 0.006 | 0.000 | 0.000 | 0.007 | 0.026 | 0.001 | 0.000 | 0.006 | 0.000 | 8.3 |
tai35a | 2422002 | 0.355 | 0.386 | 0.707 | 0.377 | 0.240 | 0.365 | 0.672 | 0.520 | 0.513 | 0.000 | 0.197 | 0.034 | 17.2 |
tai35b | 283315445 | 0.000 | 0.000 | 0.000 | 0.084 | 0.000 | 0.000 | 0.000 | 0.000 | 0.037 | 0.000 | 0.000 | 0.028 | 1.3 |
tai40a | 3139370 | 0.483 | 0.501 | 0.797 | 0.508 | 0.487 | 0.520 | 0.771 | 0.652 | 0.699 | 0.337 | 0.448 | 0.289 | 40.1 |
tai40b | 637250948 | 0.000 | 0.201 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.201 | 0.402 | 0.000 | 0.000 | 0.603 | 2.2 |
tai45e1 | 6412 | 3.253 | 1.376 | 10.231 | 11.784 | 2.714 | 2.246 | 9.454 | 8.456 | 17.034 | 0.000 | 1.301 | 15.490 | 30.5 |
tai50a | 4938796 | 0.810 | 0.718 | 1.193 | 0.876 | 0.813 | 0.846 | 1.064 | 1.044 | 0.899 | 0.601 | 0.737 | 0.487 | 67.5 |
tai50b | 458821517 | 0.000 | 0.000 | 0.078 | 0.253 | 0.000 | 0.033 | 0.019 | 0.033 | 0.035 | 0.000 | 0.033 | 0.123 | 3.7 |
tai60a | 7205962 | 0.819 | 0.879 | 1.123 | 0.908 | 0.883 | 0.882 | 1.200 | 1.041 | 0.935 | 0.649 | 0.830 | 0.487 | 103.7 |
tai60b | 608215054 | 0.037 | 0.000 | 0.002 | 0.201 | 0.000 | 0.000 | 0.037 | 0.005 | 0.000 | 0.000 | 0.000 | 0.409 | 6.9 |
wil50 | 48816 | 0.002 | 0.005 | 0.017 | 0.018 | 0.003 | 0.003 | 0.025 | 0.011 | 0.014 | 0.000 | 0.007 | 0.000 | 6.6 |
Average: | 2.266 | 2.492 | 4.042 | 2.244 | 2.586 | 3.290 | 4.162 | 3.746 | 3.597 | 3.906 | 1.972 | 1.854 |
Instance | BKV | Time (s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |||
bl49 | 4548 | 0.607 | 0.589 | 0.554 | 0.607 | 0.668 | 0.598 | 0.589 | 0.624 | 0.616 | 0.598 | 0.519 | 0.493 | 115.2 |
bl64 | 5988 | 0.601 | 0.835 | 0.741 | 0.661 | 0.741 | 0.501 | 0.768 | 0.681 | 0.735 | 0.681 | 0.715 | 0.661 | 243.1 |
ci49 | 236355034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 16.3 |
ci64 | 325671035 | 0.055 | 0.019 | 0.029 | 0.000 | 0.051 | 0.060 | 0.028 | 0.000 | 0.008 | 0.007 | 0.000 | 0.000 | 81.6 |
dre42 | 764 | 4.267 | 3.272 | 6.466 | 0.000 | 6.309 | 4.869 | 4.293 | 0.000 | 1.335 | 0.000 | 0.000 | 0.000 | 16.7 |
dre56 | 1086 | 23.462 | 20.626 | 12.302 | 4.494 | 13.131 | 22.118 | 13.941 | 11.013 | 20.166 | 19.153 | 4.807 | 3.757 | 129.8 |
lipa70a | 169755 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 18.8 |
lipa70b | 4603200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 7.8 |
sko56 | 34458 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 9.9 |
sko64 | 48498 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 11.5 |
tai35a | 2422002 | 0.201 | 0.169 | 0.076 | 0.000 | 0.127 | 0.081 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 22.0 |
tai35b | 283315445 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 9.4 |
tai40a | 3139370 | 0.443 | 0.377 | 0.335 | 0.219 | 0.512 | 0.277 | 0.263 | 0.083 | 0.311 | 0.231 | 0.088 | 0.067 | 66.8 |
tai40b | 637250948 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.2 |
tai45e1 | 6412 | 0.730 | 0.730 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 36.6 |
tai50a | 4938796 | 0.647 | 0.715 | 0.628 | 0.450 | 0.620 | 0.610 | 0.560 | 0.352 | 0.577 | 0.488 | 0.372 | 0.191 | 120.4 |
tai50b | 458821517 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 4.7 |
tai60a | 7205962 | 0.721 | 0.672 | 0.643 | 0.519 | 0.667 | 0.660 | 0.549 | 0.463 | 0.633 | 0.506 | 0.460 | 0.353 | 194.9 |
tai60b | 608215054 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 60.1 |
wil50 | 48816 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 5.4 |
Average: | 1.591 | 1.403 | 1.091 | 0.350 | 1.144 | 1.491 | 1.052 | 0.664 | 1.222 | 1.086 | 0.351 | 0.279 |
Instance | BKV | Time (s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |||
bl49 | 4548 | 0.607 | 0.624 | 0.677 | 0.589 | 0.642 | 0.580 | 0.554 | 0.624 | 0.616 | 0.607 | 0.589 | 0.589 | 62.1 |
bl64 | 5988 | 0.601 | 0.635 | 0.715 | 0.835 | 0.715 | 0.688 | 0.741 | 0.695 | 0.768 | 0.661 | 0.635 | 0.755 | 123.0 |
ci49 | 236355034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 10.2 |
ci64 | 325671035 | 0.055 | 0.035 | 0.040 | 0.019 | 0.051 | 0.036 | 0.029 | 0.032 | 0.027 | 0.000 | 0.000 | 0.000 | 67.7 |
dre42 | 764 | 4.267 | 6.963 | 8.246 | 3.272 | 1.492 | 2.094 | 6.466 | 1.466 | 5.419 | 0.000 | 0.000 | 0.000 | 19.6 |
dre56 | 1086 | 23.462 | 15.488 | 9.687 | 20.626 | 11.326 | 18.250 | 12.302 | 8.122 | 10.055 | 4.494 | 5.783 | 7.035 | 57.0 |
lipa70a | 169755 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 24.3 |
lipa70b | 4603200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 3.1 |
sko56 | 34458 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 17.2 |
sko64 | 48498 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 7.7 |
tai35a | 2422002 | 0.201 | 0.222 | 0.142 | 0.169 | 0.130 | 0.165 | 0.076 | 0.076 | 0.032 | 0.000 | 0.000 | 0.000 | 17.8 |
tai35b | 283315445 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.1 |
tai40a | 3139370 | 0.443 | 0.410 | 0.444 | 0.377 | 0.415 | 0.438 | 0.335 | 0.326 | 0.296 | 0.219 | 0.219 | 0.222 | 38.5 |
tai40b | 637250948 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.9 |
tai45e1 | 6412 | 0.730 | 2.920 | 2.492 | 0.730 | 1.023 | 0.605 | 0.000 | 0.000 | 0.459 | 0.000 | 0.000 | 0.000 | 33.2 |
tai50a | 4938796 | 0.647 | 0.701 | 0.648 | 0.715 | 0.671 | 0.685 | 0.628 | 0.611 | 0.606 | 0.450 | 0.450 | 0.424 | 66.7 |
tai50b | 458821517 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.2 |
tai60a | 7205962 | 0.721 | 0.740 | 0.687 | 0.672 | 0.690 | 0.744 | 0.643 | 0.627 | 0.627 | 0.519 | 0.469 | 0.501 | 105.9 |
tai60b | 608215054 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 6.1 |
wil50 | 48816 | 0.003 | 0.002 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 6.7 |
Average: | 1.591 | 1.440 | 1.192 | 1.403 | 0.861 | 1.217 | 1.091 | 0.632 | 0.948 | 0.350 | 0.410 | 0.479 |
Instance | BKV | Time (s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1-a) | (1-b) | (1-c) | (2-a) | (2-b) | (2-c) | (3-a) | (3-b) | (3-c) | (4-a) | (4-b) | (4-c) | |||
bl49 | 4548 | 0.598 | 0.545 | 0.633 | 0.633 | 0.440 | 0.589 | 0.528 | 0.475 | 0.528 | 0.510 | 0.475 | 0.510 | 125.1 |
bl64 | 5988 | 0.735 | 0.675 | 0.788 | 0.935 | 0.721 | 0.715 | 0.661 | 0.808 | 0.695 | 0.681 | 0.675 | 0.755 | 350.5 |
ci49 | 236355034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 15.3 |
ci64 | 325671035 | 0.031 | 0.014 | 0.019 | 0.021 | 0.011 | 0.017 | 0.004 | 0.011 | 0.007 | 0.000 | 0.004 | 0.000 | 65.1 |
dre42 | 764 | 3.613 | 1.466 | 0.000 | 2.670 | 0.000 | 1.335 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 27.2 |
dre56 | 1086 | 8.692 | 13.297 | 14.512 | 16.133 | 17.017 | 19.227 | 13.223 | 7.974 | 9.816 | 5.506 | 6.851 | 5.672 | 180.7 |
lipa70a | 169755 | 0.052 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 23.4 |
lipa70b | 4603200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 18.4 |
sko56 | 34458 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 29.3 |
sko64 | 48498 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 28.4 |
tai35a | 2422002 | 0.108 | 0.136 | 0.000 | 0.000 | 0.077 | 0.020 | 0.063 | 0.078 | 0.000 | 0.000 | 0.067 | 0.000 | 37.0 |
tai35b | 283315445 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 19.8 |
tai40a | 3139370 | 0.342 | 0.337 | 0.350 | 0.277 | 0.362 | 0.264 | 0.315 | 0.275 | 0.322 | 0.263 | 0.267 | 0.201 | 132.7 |
tai40b | 637250948 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 11.9 |
tai45e1 | 6412 | 0.586 | 0.730 | 0.293 | 2.015 | 0.000 | 0.293 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 67.7 |
tai50a | 4938796 | 0.487 | 0.599 | 0.559 | 0.499 | 0.613 | 0.612 | 0.614 | 0.527 | 0.504 | 0.524 | 0.481 | 0.491 | 281.1 |
tai50b | 458821517 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 33.3 |
tai60a | 7205962 | 0.649 | 0.607 | 0.620 | 0.582 | 0.573 | 0.564 | 0.562 | 0.635 | 0.543 | 0.584 | 0.542 | 0.511 | 345.5 |
tai60b | 608215054 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 36.8 |
wil50 | 48816 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 8.9 |
Average: | 0.795 | 0.920 | 0.889 | 1.188 | 0.991 | 1.182 | 0.799 | 0.539 | 0.621 | 0.403 | 0.468 | 0.407 |
Instance | BKV | Time (s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |||
bl49 | 4548 | 0.440 | 0.466 | 0.466 | 0.396 | 0.475 | 0.484 | 0.396 | 0.440 | 0.484 | 0.396 | 0.484 | 0.466 | 230.5 |
bl64 | 5988 | 0.615 | 0.608 | 0.568 | 0.541 | 0.548 | 0.528 | 0.574 | 0.635 | 0.508 | 0.521 | 0.648 | 0.581 | 650.0 |
ci49 | 236355034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 17.3 |
ci64 | 325671035 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 66.8 |
dre42 | 764 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 28.4 |
dre56 | 1086 | 5.654 | 1.344 | 0.000 | 1.731 | 4.696 | 1.289 | 0.000 | 4.678 | 0.000 | 2.910 | 0.000 | 2.910 | 520.0 |
lipa70a | 169755 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 23.7 |
lipa70b | 4603200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 19.3 |
sko56 | 34458 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 29.8 |
sko64 | 48498 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 29.6 |
tai35a | 2422002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 40.2 |
tai35b | 283315445 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 19.3 |
tai40a | 3139370 | 0.015 | 0.030 | 0.037 | 0.037 | 0.022 | 0.037 | 0.030 | 0.037 | 0.037 | 0.037 | 0.022 | 0.022 | 199.5 |
tai40b | 637250948 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 12.9 |
tai45e1 | 6412 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 68.8 |
tai50a | 4938796 | 0.084 | 0.116 | 0.117 | 0.080 | 0.092 | 0.152 | 0.119 | 0.057 | 0.036 | 0.092 | 0.052 | 0.011 | 291.0 |
tai50b | 458821517 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 34.1 |
tai60a | 7205962 | 0.221 | 0.258 | 0.237 | 0.238 | 0.235 | 0.236 | 0.277 | 0.221 | 0.214 | 0.211 | 0.200 | 0.161 | 554.0 |
tai60b | 608215054 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 37.5 |
wil50 | 48816 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 10.1 |
Average: | 0.351 | 0.141 | 0.071 | 0.151 | 0.303 | 0.136 | 0.070 | 0.303 | 0.064 | 0.208 | 0.070 | 0.208 |
Instance | BKV | Time (s) | Instance | BKV | Time (s) | ||
---|---|---|---|---|---|---|---|
bl36 | 3296 | 0.000 | 9.491 | lipa90b | 12490441 | 0.000 | 0.803 |
chr25a | 3796 | 0.000 | 1.936 | nug30 | 6124 | 0.000 | 0.122 |
ci36 | 168611971 | 0.000 | 1.279 | rou20 | 725522 | 0.000 | 0.089 |
ci49 | 236355034 | 0.000 | 6.864 | scr20 | 110030 | 0.000 | 0.022 |
ci64 | 325671035 | 0.000 | 46.818 | sko42 | 15812 | 0.000 | 0.592 |
ci81 | 427447820 | 0.000 | 250.470 | sko49 | 23386 | 0.000 | 7.989 |
dre15 | 306 | 0.000 | 0.003 | sko56 | 34458 | 0.000 | 7.145 |
dre18 | 332 | 0.000 | 0.034 | sko64 | 48498 | 0.000 | 7.833 |
dre21 | 356 | 0.000 | 0.033 | ste36a | 9526 | 0.000 | 0.830 |
dre24 | 396 | 0.000 | 0.178 | ste36b | 15852 | 0.000 | 0.175 |
dre28 | 476 | 0.000 | 0.470 | ste36c | 8239110 | 0.000 | 0.513 |
dre30 | 508 | 0.000 | 0.875 | tai10a | 135028 | 0.000 | 0.005 |
dre42 | 764 | 0.000 | 9.809 | tai10b | 1183760 | 0.000 | 0.003 |
dre56 | 1086 | 0.000 | 86.024 | tai12a | 224416 | 0.000 | 0.003 |
dre72 | 1452 | 0.000 | 489.877 | tai12b | 39464925 | 0.000 | 0.003 |
els19 | 17212548 | 0.000 | 0.023 | tai15a | 388214 | 0.000 | 0.006 |
esc32a | 130 | 0.000 | 0.237 | tai15b | 51765268 | 0.000 | 0.005 |
esc32b | 168 | 0.000 | 0.022 | tai17a | 491812 | 0.000 | 0.009 |
esc32c | 642 | 0.000 | 0.005 | tai20a | 703482 | 0.000 | 0.122 |
esc32d | 200 | 0.000 | 0.008 | tai20b | 122455319 | 0.000 | 0.014 |
esc32e | 2 | 0.000 | 0.003 | tai25a | 1167256 | 0.000 | 0.262 |
esc32f | 2 | 0.000 | 0.005 | tai25b | 344355646 | 0.000 | 0.041 |
esc32g | 6 | 0.000 | 0.003 | tai27e1 | 2558 | 0.000 | 0.332 |
esc32h | 438 | 0.000 | 0.008 | tai27e2 | 2850 | 0.000 | 0.399 |
esc64a | 116 | 0.000 | 0.026 | tai27e3 | 3258 | 0.000 | 0.078 |
esc128 | 64 | 0.000 | 0.335 | tai30a | 1818146 | 0.000 | 0.392 |
had20 | 6922 | 0.000 | 0.013 | tai30b | 637117113 | 0.000 | 0.176 |
kra30a | 88900 | 0.000 | 0.304 | tai35a | 2422002 | 0.000 | 1.527 |
kra30b | 91420 | 0.000 | 0.643 | tai35b | 283315445 | 0.000 | 0.800 |
lipa20a | 3683 | 0.000 | 0.009 | tai40b | 637250948 | 0.000 | 0.900 |
lipa20b | 27076 | 0.000 | 0.002 | tai45e1 | 6412 | 0.000 | 1.346 |
lipa30a | 13178 | 0.000 | 0.038 | tai45e2 | 5734 | 0.000 | 5.713 |
lipa30b | 151426 | 0.000 | 0.008 | tai45e3 | 7438 | 0.000 | 2.471 |
lipa40a | 31538 | 0.000 | 0.190 | tai50b | 458821517 | 0.000 | 5.488 |
lipa40b | 476581 | 0.000 | 0.017 | tai60b | 608215054 | 0.000 | 5.036 |
lipa50a | 62093 | 0.000 | 0.473 | tai64c | 1855928 | 0.000 | 0.022 |
lipa50b | 1210244 | 0.000 | 0.062 | tai75e1 | 14488 | 0.000 | 52.287 |
lipa60a | 107218 | 0.000 | 4.446 | tai75e2 | 14444 | 0.000 | 25.134 |
lipa60b | 2520135 | 0.000 | 0.153 | tai75e3 | 14154 | 0.000 | 36.677 |
lipa70a | 169755 | 0.000 | 6.915 | tai80b | 818415043 | 0.000 | 29.161 |
lipa70b | 4603200 | 0.000 | 0.251 | tai100b | 1185996137 | 0.000 | 83.515 |
lipa80a | 253195 | 0.000 | 22.615 | tho30 | 149936 | 0.000 | 0.097 |
lipa80b | 7763962 | 0.000 | 0.579 | tho40 | 240516 | 0.000 | 3.928 |
lipa90a | 360630 | 0.000 | 81.371 | wil50 | 48816 | 0.000 | 3.133 |
Instance | BKV | GHA | MA | ||
---|---|---|---|---|---|
Time (s) | Time (s) | ||||
sko72 | 66256 | 0.000 | 29.380 | 0.000 | 240.000 |
sko81 | 90998 | 0.000 | 95.421 | 0.000 | 258.000 |
sko90 | 115534 | 0.000 | 229.456 | 0.000 | 918.000 |
sko100a | 152002 | 0.000 | 542.640 | 0.000 | 1338.000 |
sko100b | 153890 | 0.000 | 227.774 | 0.000 | 390.000 |
sko100c | 147862 | 0.000 | 400.697 | 0.000 | 720.000 |
sko100d | 149576 | 0.000 | 377.108 | 0.006 | 1254.000 |
sko100e | 149150 | 0.000 | 438.632 | 0.000 | 714.000 |
sko100f | 149036 | 0.000 | 790.550 | 0.000 | 1380.000 |
wil100 | 273038 | 0.000 | 600.566 | 0.000 | 870.000 |
Instance | BKV | GHA | MA | ||
---|---|---|---|---|---|
Time (s) | Time (s) | ||||
tai40a | 3139370 | 0.052(3) | 204.916 | 0.059(2) | 486.000 |
tai50a | 4938796 | 0.192(2) | 268.705 | 0.131(2) | 2520.000 |
tai60a | 7205962 | 0.215(1) | 713.455 | 0.144(2) | 4050.000 |
tai80a | 13499184 | 0.367(0) | 3040.000 | 0.426(0) | 3948.000 |
tai100a | 21043560 | 0.311(0) | 6200.000 | 0.447(0) | 2646.000 |
Instance | BKV | GHA | MA | ||
---|---|---|---|---|---|
Time (s) | Time (s) | ||||
tai50b | 458821517 | 0.000 | 5.488 | 0.000 | 72.000 |
tai60b | 608215054 | 0.000 | 5.036 | 0.000 | 312.000 |
tai80b | 818415043 | 0.000 | 29.161 | 0.000 | 1878.000 |
tai100b | 1185996137 | 0.000 | 83.515 | 0.000 | 816.000 |
Instance | BKV | GHA | HGA | ||
---|---|---|---|---|---|
Time (s) | Time (s) | ||||
dre30 | 508 | 0.000(10) | 0.875 | 0.000 | 143.400 |
dre42 | 764 | 0.000(10) | 9.809 | 1.340 | 547.800 |
dre56 | 1086 | 0.000(10) | 86.024 | 17.460 | 1810.800 |
dre72 | 1452 | 0.000(10) | 489.877 | 27.280 | 5591.400 |
dre90 | 1838 | 10.351(2) | 9999.978 | 33.880 | 11,557.800 |
Instance | BKV | GHA | HGA | ||
---|---|---|---|---|---|
Time (s) | Time (s) | ||||
tai27e1 | 2558 | 0.000 | 0.332 | 0.000 | ~60.000 |
tai27e2 | 2850 | 0.000 | 0.399 | 0.000 | ~60.000 |
tai27e3 | 3258 | 0.000 | 0.078 | 0.000 | ~60.000 |
tai45e1 | 6412 | 0.000 | 1.346 | 0.000 | ~300.000 |
tai45e2 | 5734 | 0.000 | 5.713 | 0.000 | ~300.000 |
tai45e3 | 7438 | 0.000 | 2.471 | 0.000 | ~300.000 |
tai75e1 | 14488 | 0.000 | 52.287 | 0.000 | ~2220.000 |
tai75e2 | 14444 | 0.000 | 25.134 | 0.339 | ~2220.000 |
tai75e3 | 14154 | 0.000 | 36.677 | 0.000 | ~2220.000 |
Instance | BKV | GHA | HGA-DI | ||
---|---|---|---|---|---|
Time (s) | Time (s) | ||||
bl36 | 3296 | 0.000(10) | 9.491 | 0.000(10) | 51.000 |
bl49 | 4548 | 0.229(2) | 217.540 | 0.334( 0) | 125.000 |
bl64 | 5988 | 0.294(1) | 550.060 | 0.227( 0) | 356.000 |
bl81 | 7532 | 0.490(0) | 1725.800 | 0.494( 0) | 937.000 |
bl100 | 9264 | 0.527(0) | 4070.800 | 0.548( 0) | 2306.000 |
Instance | BKV | GHA | HGA-DI | ||
---|---|---|---|---|---|
Time (s) | Time (s) | ||||
ci36 | 168611971 | 0.000(10) | 1.279 | 0.000(10) | 50.000 |
ci49 | 236355034 | 0.000(10) | 6.864 | 0.000(10) | 124.000 |
ci64 | 325671035 | 0.000(10) | 46.818 | 0.000(10) | 354.000 |
ci81 | 427447820 | 0.000(10) | 250.470 | 0.000(10) | 932.000 |
ci100 | 523146366 | 0.003(7) | 4270.300 | 0.007( 3) | 2285.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misevičius, A.; Verenė, D. A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem. Entropy 2021, 23, 108. https://doi.org/10.3390/e23010108
Misevičius A, Verenė D. A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem. Entropy. 2021; 23(1):108. https://doi.org/10.3390/e23010108
Chicago/Turabian StyleMisevičius, Alfonsas, and Dovilė Verenė. 2021. "A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem" Entropy 23, no. 1: 108. https://doi.org/10.3390/e23010108
APA StyleMisevičius, A., & Verenė, D. (2021). A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem. Entropy, 23(1), 108. https://doi.org/10.3390/e23010108