Visual Analysis of Dynamics Behaviour of an Iterative Method Depending on Selected Parameters and Modifications
<p>Colour map used in the experiments.</p> "> Figure 2
<p>Polynomiographs of the Picard iteration for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>η</mi> </semantics></math>.</p> "> Figure 3
<p>Polynomiographs of the Picard iteration for <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>ω</mi> </semantics></math>.</p> "> Figure 4
<p>Polynomiographs of the Picard iteration for <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>ω</mi> </semantics></math>.</p> "> Figure 5
<p>Polynomiographs of the Picard iteration for <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>ω</mi> </semantics></math>.</p> "> Figure 6
<p>Polynomiographs of the Picard iteration for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>η</mi> </semantics></math>.</p> "> Figure 7
<p>Magnification of the central part of selected polynomiographs of the Picard iteration.</p> "> Figure 8
<p>Polynomiographs of the Mann iteration with the fixed reference point for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. The positions of the reference point: (<b>a</b>) <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mo>[</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>]</mo> </mrow> </semantics></math> (one of the roots), (<b>d</b>) the starting point.</p> "> Figure 9
<p>Polynomiographs of the Mann iteration for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math> varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 10
<p>Polynomiographs of the Mann iteration for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 11
<p>Polynomiographs of the Mann iteration for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 12
<p>Polynomiographs of the Mann iteration for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 13
<p>Polynomiographs of the Mann iteration for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 14
<p>Polynomiographs of the Mann iteration for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 15
<p>Polynomiographs of the Mann iteration for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 16
<p>Polynomiographs of the Mann iteration for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 17
<p>Magnification of the central part of selected polynomiographs of the Mann iteration.</p> "> Figure 18
<p>Polynomiographs of the Ishikawa iteration for <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 19
<p>Polynomiographs of the Ishikawa iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>β</mi> </semantics></math>.</p> "> Figure 20
<p>Polynomiographs of the Das–Debata iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>1</mn> </msub> </semantics></math>.</p> "> Figure 21
<p>Polynomiographs of the Das–Debata iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <msub> <mi>η</mi> <mn>1</mn> </msub> </semantics></math>.</p> "> Figure 22
<p>Polynomiographs of the Das–Debata iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 23
<p>Polynomiographs of the Das–Debata iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <msub> <mi>η</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 24
<p>Magnification of the central part of selected polynomiographs of Ishikawa and Das–Debata iterations.</p> "> Figure 25
<p>Polynomiographs of the Agarwal iteration for <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 26
<p>Polynomiographs of the Agarwal iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <mi>β</mi> </semantics></math>.</p> "> Figure 27
<p>Polynomiographs of the generalised Agarwal iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>.</p> "> Figure 28
<p>Polynomiographs of the generalised Agarwal iteration for <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p> "> Figure 29
<p>Polynomiographs of the generalised Agarwal iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>T</mi> <mn>3</mn> </msub> </mrow> </semantics></math>) and varying <math display="inline"><semantics> <msub> <mi>η</mi> <mn>1</mn> </msub> </semantics></math>.</p> "> Figure 30
<p>Polynomiographs of the Khan–Cho–Abbas iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 31
<p>Polynomiographs of the generalised Agarwal iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>T</mi> <mn>3</mn> </msub> </mrow> </semantics></math>) and varying <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>1</mn> </msub> </semantics></math>.</p> "> Figure 32
<p>Polynomiographs of the Khan–Cho–Abbas iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <msub> <mi>η</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 33
<p>Polynomiographs of the generalised Agarwal iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <msub> <mi>η</mi> <mn>3</mn> </msub> </semantics></math>.</p> "> Figure 34
<p>Polynomiographs of the generalised Agarwal iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>3</mn> </msub> </semantics></math>.</p> "> Figure 35
<p>Magnification of the central part of selected polynomiographs of Agarwal and Khan–Cho–Abbas iterations.</p> "> Figure 36
<p>Polynomiographs of the Picard iteration for the polynomiograph settings from the <a href="#entropy-22-00734-f004" class="html-fig">Figure 4</a>d.</p> "> Figure 37
<p>Polynomiographs of the Mann iteration for the polynomiograph settings from the <a href="#entropy-22-00734-f015" class="html-fig">Figure 15</a>b.</p> "> Figure 38
<p>Polynomiographs of the Ishikawa iteration for the polynomiograph settings from the <a href="#entropy-22-00734-f018" class="html-fig">Figure 18</a>b.</p> "> Figure 38 Cont.
<p>Polynomiographs of the Ishikawa iteration for the polynomiograph settings from the <a href="#entropy-22-00734-f018" class="html-fig">Figure 18</a>b.</p> "> Figure 39
<p>Polynomiographs of the Das–Debata iteration for the polynomiograph settings from the <a href="#entropy-22-00734-f021" class="html-fig">Figure 21</a>a.</p> "> Figure 39 Cont.
<p>Polynomiographs of the Das–Debata iteration for the polynomiograph settings from the <a href="#entropy-22-00734-f021" class="html-fig">Figure 21</a>a.</p> "> Figure 40
<p>Polynomiographs of the Agarwal iteration for the polynomiograph settings from the <a href="#entropy-22-00734-f026" class="html-fig">Figure 26</a>a.</p> "> Figure 41
<p>Polynomiographs of the generalised Agarwal iteration for the polynomiograph settings from the <a href="#entropy-22-00734-f029" class="html-fig">Figure 29</a>a.</p> "> Figure 42
<p>Polynomiographs of the Khan–Cho–Abbas iteration for the polynomiograph settings from the <a href="#entropy-22-00734-f030" class="html-fig">Figure 30</a>a.</p> "> Figure 42 Cont.
<p>Polynomiographs of the Khan–Cho–Abbas iteration for the polynomiograph settings from the <a href="#entropy-22-00734-f030" class="html-fig">Figure 30</a>a.</p> ">
Abstract
:1. Introduction
2. The Algorithm
3. Iteration Processes
- The Mann iteration [38]:
- The Ishikawa iteration [39]:
- The Agarwal iteration [40] (S-iteration):
- The modified Mann iteration
- The modified Ishikawa iteration
- The modified Agarwal iteration
- The Das–Debata iteration [42]:
- The Khan–Cho–Abbas iteration [43]:
- The generalised Agarwal’s iteration [43]:
- The modified Das–Debata iteration
- The modified Khan–Cho–Abbas iteration
- The modified generalised Agarwal iteration
Algorithm 1: Visualisation of the dynamics—the base Algorithm |
Algorithm 2: Visualisation of the dynamics with the best reference point |
Algorithm 3: Visualisation of the dynamics with the best particle |
Algorithm 4: Visualisation of the dynamics with both the best reference point and particle |
4. Visualisation of the Dynamics
Algorithm 5: Visualisation of the dynamics with the best particle for the Mann iteration |
5. Discussion on the Research Results
5.1. The Picard Iteration
5.2. The Mann Iteration
5.3. The Ishikawa and the Das–Debata Iterations
5.4. The Agarwal and the Khan–Cho–Abbas Iterations
5.5. Algorithms Operation in the Selected Test Environments
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Polak, E. Optimization Algorithms and Consistent Approximations; Springer: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Gosciniak, I. Discussion on semi-immune algorithm behaviour based on fractal analysis. Soft Comput. 2017, 21, 3945–3956. [Google Scholar] [CrossRef] [Green Version]
- Weise, T. Global Optimization Algorithms—Theory and Application, 2nd ed. Self-Published. 2009. Available online: http://www.it-weise.de/projects/book.pdf (accessed on 1 May 2020).
- Zhang, W.; Ma, D.; Wei, J.; Liang, H. A Parameter Selection Strategy for Particle Swarm Optimization Based on Particle Positions. Expert Syst. Appl. 2014, 41, 3576–3584. [Google Scholar] [CrossRef]
- Van den Bergh, F.; Engelbrecht, A.P. A Convergence Proof for the Particle Swarm Optimiser. Fundam. Inf. 2010, 105, 341–374. [Google Scholar] [CrossRef] [Green Version]
- Freitas, D.; Lopes, L.; Morgado-Dias, F. Particle Swarm Optimisation: A Historical Review Up to the Current Developments. Entropy 2020, 22, 362. [Google Scholar] [CrossRef] [Green Version]
- Cheney, W.; Kincaid, D. Numerical Mathematics and Computing, 6th ed.; Brooks/Cole: Pacific Groove, CA, USA, 2007. [Google Scholar]
- Goh, B.; Leong, W.; Siri, Z. Partial Newton Methods for a System of Equations. Numer. Algebr. Control Optim. 2013, 3, 463–469. [Google Scholar] [CrossRef]
- Saheya, B.; Chen, G.Q.; Sui, Y.K.; Wu, C.Y. A New Newton-like Method for Solving Nonlinear Equations. SpringerPlus 2016, 5, 1269. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.; Sharma, R.; Bahl, A. An Improved Newton-Traub Composition for Solving Systems of Nonlinear Equations. Appl. Math. Comput. 2016, 290, 98–110. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Bakhtiari, P.; Cordero, A.; Torregrosa, J.; Lotfi, T. New Efficient Methods for Solving Nonlinear Systems of Equations with Arbitrary Even Order. Appl. Math. Comput. 2016, 287–288, 94–103. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Yin, H.W. Accelerating the Convergence Speed of Iterative Methods for Solving Nonlinear Systems. Appl. Math. Comput. 2018, 333, 8–19. [Google Scholar] [CrossRef]
- Alqahtani, H.; Behl, R.; Kansal, M. Higher-Order Iteration Schemes for Solving Nonlinear Systems of Equations. Mathematics 2019, 7, 937. [Google Scholar] [CrossRef] [Green Version]
- Awwal, A.; Wang, L.; Kumam, P.; Mohammad, H. A Two-Step Spectral Gradient Projection Method for System of Nonlinear Monotone Equations and Image Deblurring Problems. Symmetry 2020, 12, 874. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, J.; Jie, J. Modified Particle Swarm Optimization for Solving Systems of Equations. In Advanced Intelligent Computing Theories and Applications; Volume 2: Communications in Computer and Information Science; Huang, D., Heutte, L., Loog, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 361–369._41. [Google Scholar] [CrossRef]
- Ouyang, A.; Zhou, Y.; Luo, Q. Hybrid Particle Swarm Optimization Algorithm for Solving Systems of Nonlinear Equations. In Proceedings of the 2009 IEEE International Conference on Granular Computing, Nanchang, China, 17–19 August 2009; pp. 460–465. [Google Scholar] [CrossRef]
- Jaberipour, M.; Khorram, E.; Karimi, B. Particle Swarm Algorithm for Solving Systems of Nonlinear Equations. Comput. Math. Appl. 2011, 62, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wei, Y.; Chu, Y. Research on Solving Systems of Nonlinear Equations Based on Improved PSO. Math. Probl. Eng. 2015, 2015, 727218. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Tawhid, M. A Hybridization of Cuckoo Search and Particle Swarm Optimization for Solving Nonlinear Systems. Evol. Intell. 2019, 12, 541–561. [Google Scholar] [CrossRef]
- Ibrahim, A.; Tawhid, M. A hybridization of Differential Evolution and Monarch Butterfly Optimization for Solving Systems of Nonlinear Equations. J. Comput. Des. Eng. 2019, 6, 354–367. [Google Scholar] [CrossRef]
- Liao, Z.; Gong, W.; Wang, L.; Yan, X.; Hu, C. A Decomposition-based Differential Evolution with Reinitialization for Nonlinear Equations Systems. Knowl. Based Syst. 2020, 191, 105312. [Google Scholar] [CrossRef]
- Kamsyakawuni, A.; Sari, M.; Riski, A.; Santoso, K. Metaheuristic Algorithm Approach to Solve Non-linear Equations System with Complex Roots. J. Phys. Conf. Ser. 2020, 1494, 012001. [Google Scholar] [CrossRef]
- Broer, H.; Takens, F. Dynamical Systems and Chaos; Springer: New York, NY, USA, 2011. [Google Scholar]
- Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems 2016, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, B. Polynomial Root-Finding and Polynomiography; World Scientific: Singapore, 2009. [Google Scholar] [CrossRef]
- Gościniak, I.; Gdawiec, K. Control of Dynamics of the Modified Newton-Raphson Algorithm. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 76–99. [Google Scholar] [CrossRef]
- Ardelean, G. A Comparison Between Iterative Methods by Using the Basins of Attraction. Appl. Math. Comput. 2011, 218, 88–95. [Google Scholar] [CrossRef]
- Petković, I.; Rančić, L. Computational Geometry as a Tool for Studying Root-finding Methods. Filomat 2019, 33, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Chun, C.; Neta, B. Comparison of Several Families of Optimal Eighth Order Methods. Appl. Math. Comput. 2016, 274, 762–773. [Google Scholar] [CrossRef] [Green Version]
- Chun, C.; Neta, B. Comparative Study of Methods of Various Orders for Finding Repeated Roots of Nonlinear Equations. J. Comput. Appl. Math. 2018, 340, 11–42. [Google Scholar] [CrossRef]
- Kalantari, B. Polynomiography: From the Fundamental Theorem of Algebra to Art. Leonardo 2005, 38, 233–238. [Google Scholar] [CrossRef]
- Gościniak, I.; Gdawiec, K. One More Look on Visualization of Operation of a Root-finding Algorithm. Soft Comput. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Nammanee, K.; Noor, M.; Suantai, S. Convergence Criteria of Modified Noor Iterations with Errors for Asymptotically Nonexpansive Mappings. J. Math. Anal. Appl. 2006, 314, 320–334. [Google Scholar] [CrossRef]
- Gilbert, W. Generalizations of Newton’s Method. Fractals 2001, 9, 251–262. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J. Variants of Newton’s Method using Fifth-order Quadrature Formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Magreñán, A.; Argyros, I. A Contemporary Study of Iterative Methods: Convergence, Dynamics and Applications; Academic Press: San Diego, CA, USA, 2018. [Google Scholar]
- Picard, E. Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives. J. De Mathématiques Pures Et Appliquées 1890, 6, 145–210. [Google Scholar]
- Mann, W. Mean Value Methods in Iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed Points by a New Iteration Method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D.; Sahu, D. Iterative Construction of Fixed Points of Nearly Asymptotically Nonexpansive Mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Gdawiec, K.; Kotarski, W. Polynomiography for the Polynomial Infinity Norm via Kalantari’s Formula and Nonstandard Iterations. Appl. Math. Comput. 2017, 307, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Das, G.; Debata, J. Fixed Points of Quasinonexpansive Mappings. Indian J. Pure Appl. Math. 1986, 17, 1263–1269. [Google Scholar]
- Khan, S.; Cho, Y.; Abbas, M. Convergence to Common Fixed Points by a Modified Iteration Process. J. Appl. Math. Comput. 2011, 35, 607–616. [Google Scholar] [CrossRef]
- Gdawiec, K. Fractal Patterns from the Dynamics of Combined Polynomial Root Finding Methods. Nonlinear Dyn. 2017, 90, 2457–2479. [Google Scholar] [CrossRef]
- Su, Y.; Qin, X. Strong Convergence of Modified Noor Iterations. Int. J. Math. Math. Sci. 2006, 2006, 21073. [Google Scholar] [CrossRef] [Green Version]
Parameters | |||
---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gościniak, I.; Gdawiec, K. Visual Analysis of Dynamics Behaviour of an Iterative Method Depending on Selected Parameters and Modifications. Entropy 2020, 22, 734. https://doi.org/10.3390/e22070734
Gościniak I, Gdawiec K. Visual Analysis of Dynamics Behaviour of an Iterative Method Depending on Selected Parameters and Modifications. Entropy. 2020; 22(7):734. https://doi.org/10.3390/e22070734
Chicago/Turabian StyleGościniak, Ireneusz, and Krzysztof Gdawiec. 2020. "Visual Analysis of Dynamics Behaviour of an Iterative Method Depending on Selected Parameters and Modifications" Entropy 22, no. 7: 734. https://doi.org/10.3390/e22070734
APA StyleGościniak, I., & Gdawiec, K. (2020). Visual Analysis of Dynamics Behaviour of an Iterative Method Depending on Selected Parameters and Modifications. Entropy, 22(7), 734. https://doi.org/10.3390/e22070734