New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study
<p>Thermoelectric generator.</p> "> Figure 2
<p>Schematic of the thermoelectric generator (TEG).</p> "> Figure 3
<p>Schematic of the operational mode of all-air heating, ventilating, and air-conditioning (HVAC) system.</p> "> Figure 4
<p>(<b>a</b>) Configuration 1; (<b>b</b>) configuration 2; (<b>c</b>) configuration 3; and (<b>d</b>) configuration 4.</p> "> Figure 5
<p>Variation of temperature difference as function of relevant parameters:(<b>a</b>) Configuration 1; (<b>b</b>) configuration 2 and 3; and (<b>c</b>) configuration 4.</p> "> Figure 6
<p>Schematic of the suggested concept of power generation.</p> "> Figure 7
<p>Variation of (<b>a</b>) temperature difference across each TEG module; (<b>b</b>) power generated by the assembly of TEG modules in the function of the cooling load.</p> "> Figure 8
<p>Electric energy saved by TEGs.</p> "> Figure 9
<p>Money saved by the system.</p> "> Figure 10
<p>Payback period of the recovery system.</p> "> Figure 11
<p>Amount of CO<sub>2</sub> gases reduced per year.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Thermoelectric Power Generation
2.2. Heating, Ventilating, and Air Conditioning
3. Parametric Analysis and Recommendations
4. Innovative Concept and Calculations
- : conditioned space cooling load.
- : Specific enthalpy of air inside the room.
- : Specific enthalpy of supplied air.
Flow Nature | Correlation |
---|---|
Laminar flow | |
Mixed flow |
- represents the rate of energy “in” to the oil
- The rate of energy out from oil
- is the rate of energy that could be generated from the oil
- is the rate of storage energy.
5. Economic and Environmental Concerns
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Du, W.J.; Yin, Q.; Cheng, L. Experiments on novel heat recovery systems on rotary kilns. Appl. Ther. Eng. 2018, 139, 535–541. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, L.; Meng, F.; Sun, F. Influences of the Thomson Effect on the Performance of a Thermoelectric Generator-Driven Thermoelectric Heat Pump Combined Device. Entropy 2018, 20, 29. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Kuang, G.; Zhu, L.; Wang, S.; Zhao, J. Experimental Investigation of a 300 kW Organic Rankine Cycle Unit with Radial Turbine for Low-Grade Waste Heat Recovery. Entropy 2019, 21, 619. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fu, Z. Thermodynamic Investigation of an Integrated Solar Combined Cycle with an ORC System. Entropy 2019, 21, 428. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, X.; Xue, X.; Wang, G.; Mei, S. Thermodynamic Analysis of a Hybrid Power System Combining Kalina Cycle with Liquid Air Energy Storage. Entropy 2019, 21, 220. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.V.; Robles, M.A.O.; Medina, P.C. Thermoelectric System in Different Thermal and Electrical Configurations: Its Impact in the Figure of Merit. Entropy 2013, 15, 2162–2180. [Google Scholar] [CrossRef] [Green Version]
- Medina, P.C.; Robles, M.A.O.; Almeida, A.V.; Ordaz, F.S. Maximum Power of Thermally and Electrically Coupled Thermoelectric Generators. Entropy 2014, 16, 2890–2903. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, C.A.B.; Robles, M.A.O.; Perez, J.J.C. Design of Nano-Structured Micro-Thermoelectric Generator: Load Resistance and Inflections in the Efficiency. Entropy 2019, 21, 224. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Li, C.; Tan, T.; Fu, P.; Wang, L.; Yang, Y. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle. Entropy 2018, 20, 89. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Shu, G.; Tian, H.; Wang, X. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery. Entropy 2018, 20, 137. [Google Scholar]
- Ganjehkaviri, A.; Jaafar, M.N.M. Energy Analysis and Multi-Objective Optimization of an Internal Combustion Engine-Based CHP System for Heat Recovery. Entropy 2014, 16, 5633–5653. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Wang, S.; Zhang, X.; Li, Y.; Lu, C. Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat. Energy 2015, 91, 1–9. [Google Scholar] [CrossRef]
- Champier, D.; Bédécarrats, J.; Kousksou, T.; Rivaletto, M.; Strub, F.; Pignolet, P. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy 2011, 36, 1518–1526. [Google Scholar] [CrossRef] [Green Version]
- Montecucco, A.; Siviter, J.; Knox, A.R. Combined heat and power system for stoves with thermoelectric generators. Appl. Energy 2017, 185, 1336–1342. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.B.; Huang, G.H.; Li, H.J.; Qu, Z.G.; Zhang, Y.J. Development of stove-powered thermoelectric generators: A review. Appl. Ther. Eng. 2016, 96, 297–310. [Google Scholar] [CrossRef]
- Durand, T.; Dimopoulos, P.; Tang, Y.; Liao, Y.; Landmann, D. Potential of energy recuperation in the exhaust gas of state of the art light duty vehicles with thermoelectric elements. Fuel 2018, 224, 271–279. [Google Scholar] [CrossRef]
- Chinguwa, S.; Musora, C.; Mushiri, T. The design of portable refrigerator powered by exhaust heat using thermoelectric. Procedia Manuf. 2018, 21, 741–748. [Google Scholar] [CrossRef]
- He, W.; Wang, S.; Yue, L. High net power output analysis with changes in exhaust temperature in a thermoelectric generator system. Appl. Energy 2017, 196, 259–267. [Google Scholar] [CrossRef]
- Li, B.; Huang, K.; Yan, Y.; Li, Y.; Twaha, S.; Zhu, J. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles. Appl. Energy 2017, 205, 868–879. [Google Scholar] [CrossRef]
- Valencia, G.; Núñez, J.; Duarte, J. Multiobjective Optimization of a Plate Heat Exchanger in a Waste Heat Recovery Organic Rankine Cycle System for Natural Gas Engines. Entropy 2019, 21, 655. [Google Scholar] [CrossRef] [Green Version]
- Jaber, H.; Ramadan, M.; Lemenand, T.; Khaled, M. Domestic thermoelectric cogeneration system optimization analysis, energy consumption and CO2 emissions reduction. Appl. Ther. Eng. 2018, 130, 279–295. [Google Scholar] [CrossRef]
- Jaber, H.; Khaled, M.; Lemenand, T.; Faraj, J.; Bazzi, H.; Ramadan, M. Effect of Exhaust Gases Temperature on the Performance of a Hybrid Heat Recovery System. Energy Procedia 2017, 119, 775–782. [Google Scholar] [CrossRef]
- Kul, B.S.; Kahraman, A. Energy and Exergy Analyses of a Diesel Engine Fuelled with Biodiesel-Diesel Blends Containing 5% Bioethanol. Entropy 2016, 18, 387. [Google Scholar]
- Kim, T.Y.; Negash, A.A.; Cho, G. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Convers. Manag. 2016, 124, 280–286. [Google Scholar] [CrossRef]
- In, B.; Kim, H.; Son, J.; Lee, K. The study of a thermoelectric generator with various thermal conditions of exhaust gas from a diesel engine. Int. J. Heat Mass Transf. 2015, 86, 667–680. [Google Scholar] [CrossRef]
- Shu, G.; Zhao, J.; Tian, H.; Liang, X.; Wei, H. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy 2012, 45, 806–816. [Google Scholar] [CrossRef]
- Gao, X.; Andreasen, S.; Chen, M.; Kaer, S. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery. Int. J. Hydrogen Energy 2012, 37, 8490–8498. [Google Scholar] [CrossRef]
- Orr, B.; Akbarzadeh, A.; Mochizuki, M.; Singh, R. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl. Therm. Eng. 2015, 101, 490–495. [Google Scholar] [CrossRef]
- Rahman, A.; Razzak, F.; Afroz, R.; Mohiuddin, A.; Hawlader, M. Power generation from waste of IC engines. Renew. Sustain. Energy Rev. 2015, 51, 382–395. [Google Scholar] [CrossRef]
- McQuiston, F.C.; Parker, J.D.; Spitler, J.D. Heating, Ventilating and Air Conditioning: Analysis and Design, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- LeBlanc, S. Thermoelectric generators: Linking material properties and system engineering for waste heat recovery applications. Sustain. Mater. Technol. 2014, 1, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Kanno, T.; Takahashi, K.; Sakai, A.; Tamaki, H.; Kusada, H.; Yamada, Y. Detection of thermal radiation, sensing of heat flux, and recovery of waste heat by the transverse thermoelectric effect. J. Electron. Mater. 2014, 43, 2072–2080. [Google Scholar] [CrossRef]
- Incorpera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Jaber, H.; Khaled, M.; Lemenand, T.; Murr, R.; Faraj, J.; Ramadan, M. Domestic thermoelectric cogeneration drying system: Thermal modeling and case study. Energy 2019, 170, 1036–1050. [Google Scholar] [CrossRef]
- Spices, P.; Pollak, M.; Mateu, L. Handbook of Energy Harvesting Power Supplies and Applications; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Synder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
Configuration | Details | Recommendations | Parameters Range |
---|---|---|---|
1 | High convective heat transfer coefficient and high thickness “t” Low thermal conductivity and temperature at the cold side of the TEG module. | ||
2 | High thickness and heat flux at the hot surface of TEG. Low thermal conductivity of TEG. | ||
3 | High thickness and high heat flux at the hot surface of TEG Low thermal conductivity of TEG module | ||
4 | High thickness, high temperature of the hot fluid, high connective coefficient of the hot and cold side of TEG module Low thermal conductivity and low temperature of the cold fluid |
Variables | Value | Unit |
---|---|---|
Room temperature | 24 | °C |
Fraction of exhausted air “E” | 0.4 | - |
Height of the exhaust duct “H1” | 0.1 | m |
The height of oil tank | 0.1 | m |
The length of bottom plate composed of TEG | 0.4 | m |
The width of bottom plate composed of TEG | 0.4 | m |
Heat transfer coefficient , [33] | 200 | W/m2 K |
The overall heat transfer coefficient of insulation , [33] | 8.4 | W/m2 K |
Ambient temperature | 30 | °C |
Thickness of TEG, [35,36] | 0.12 | m |
Thermal conductivity of TEG, [35,36] | 0.3 | W/m·K |
Electric Rates in One Month | Cost ($/kWh) |
---|---|
0–99 kWh/month | 0.023 |
100–299 kWh/month | 0.037 |
300–399 kWh/month | 0.053 |
400–499 kWh/month | 0.08 |
>500 kWh/month | 0.133 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraj, A.; Jaber, H.; Chahine, K.; Faraj, J.; Ramadan, M.; El Hage, H.; Khaled, M. New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study. Entropy 2020, 22, 503. https://doi.org/10.3390/e22050503
Faraj A, Jaber H, Chahine K, Faraj J, Ramadan M, El Hage H, Khaled M. New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study. Entropy. 2020; 22(5):503. https://doi.org/10.3390/e22050503
Chicago/Turabian StyleFaraj, Ahmad, Hassan Jaber, Khaled Chahine, Jalal Faraj, Mohamad Ramadan, Hicham El Hage, and Mahmoud Khaled. 2020. "New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study" Entropy 22, no. 5: 503. https://doi.org/10.3390/e22050503
APA StyleFaraj, A., Jaber, H., Chahine, K., Faraj, J., Ramadan, M., El Hage, H., & Khaled, M. (2020). New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study. Entropy, 22(5), 503. https://doi.org/10.3390/e22050503