Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization
<p>Left: The deviation problem exhibited when training VGAECD. The NMI drops approximately after 80 epochs and gradually begins its re-ascent. In most cases, it deteriorates in favor of its secondary objective of minimizing the reconstruction loss. Right: The performance of loss continues to drop regardless of its NMI performance.</p> "> Figure 2
<p>The probabilistic graphical model of VGAECD-OPT. The variable <math display="inline"><semantics> <mi mathvariant="bold">z</mi> </semantics></math> is acquired from sampling of the variational distribution <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>(</mo> <mi mathvariant="bold">z</mi> <mo>∣</mo> <mi>c</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mi>π</mi> </semantics></math> is the non-informative prior initialized uniformly. <math display="inline"><semantics> <msub> <mi>f</mi> <mi>ϕ</mi> </msub> </semantics></math> is the decoding function to obtain logits <math display="inline"><semantics> <mi>ψ</mi> </semantics></math>. <span class="html-italic">K</span> is the number of clusters and <span class="html-italic">D</span> is the total number of data samples (i.e., <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="script">V</mi> <mo>|</mo> </mrow> </semantics></math>).</p> "> Figure 3
<p>VGAECD optimized under Neural Expectation-Maximization algorithm (NEM). In the first iteration, the community assignment probability <span class="html-italic">c</span> is first computed (Expectation) followed by the Maximization step. We obtain probability <math display="inline"><semantics> <mi>ψ</mi> </semantics></math> from the decoding function <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>ϕ</mi> </msub> <mrow> <mo>(</mo> <mo>·</mo> <mo>)</mo> </mrow> </mrow> </semantics></math> with embeddings <math display="inline"><semantics> <mi mathvariant="bold">z</mi> </semantics></math>.</p> "> Figure 4
<p>The proposed algorithm, VGAECD-OPT with Dual Optimization. In contrast to VGAECD, performance deviation is alleviated.</p> "> Figure 5
<p>Comparative performance of VGAECD-OPT against VGAECD on Synthetic Networks.</p> "> Figure 6
<p>Runtime of VGAECD-OPT & baseline methods on LFR benchmark graphs.</p> ">
Abstract
:1. Introduction
- Propose a dual optimization approach to alleviate the deviation of objective functions (community detection vs. network reconstruction)
2. Related Work
2.1. Discriminative Models
2.2. Generative Models
3. Problem Definition
4. Model Description
4.1. Variational Graph Autoencoder for Community Detection
4.2. Linearization of the Encoder
4.3. Dual Optimization
Algorithm 1 VGAECD-OPT |
Input: Features , Adjacency Matrix , no. of comm. K, filter size , number of epochs L, NEM steps R. Output: Community Assignment Probability and Reconstructed Adjacency matrix
|
5. Experiments
5.1. Synthetic Datasets
5.2. Real-World Datasets
- Karate: A social network that represents friendship among 34 members of a karate club at a US University observed by Zachary [1]. Community assignment corresponds to the clubs that members went to after the club split.
- PubMed: A network consisting of 19,717 scientific publications from PubMed database pertaining to diabetes classified into one of three classes (“Diabetes Mellitus, Experimental”, “Diabetes Mellitus Type 1”, “Diabetes Mellitus Type 2”). The citation network consists of 44,338 links. Each publication in the dataset is described by a TF-IDF weighted word vector from a dictionary, which consists of 500 unique words.
5.3. Experimental Settings
5.4. Evaluation Metric
- Accuracy measures the number of correctly classified clusters given the ground-truth. Formally, given two sets of community labels, i.e., C is the ground-truth and is the detected community labels, the accuracy can be calculated by,, where denotes the Kronecker delta, when both labels matches and denotes the cardinality of a set. For clustering tasks, accuracy is usually not emphasized as labels are known to oscillate between clusters.
- NMI and VI are based on information theory. NMI measures the ‘similarity’ between two community covers, while VI measures their ‘dissimilarity’ in terms of uncertainty. Correspondingly, a higher NMI indicates a better match between both covers while VI indicates the opposite. Formally [72],
- Modularity (Q) [73] measures the quality of a particular community structure when compared to a null (random) model. Intuitively, intra-community links are expected to be stronger than inter-community links. Specifically,
- Conductance (CON) [37,71] measures the separability of a community across the fraction of outgoing local volume of links in the community, which is defined as,
- Triangle Participation Ratio (TPR) [71] measures the fraction of triads within the community C.
6. Results and Discussion
6.1. Stability Performance
6.2. Performance on Synthetic Datasets
6.3. Performance on Real-World Datasets
6.4. Time Complexity Analysis
6.5. Limitations of VGAE Framework
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zachary, W.W. An Information Flow Model for Conflict and Fission in Small Groups. J. Anthropol. Res. 1977, 33, 452–473. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E. The Structure of Scientific Collaboration Networks. Proc. Natl. Acad. Sci. USA 2001, 98, 404–409. [Google Scholar] [CrossRef]
- Harper, F.M.; Konstan, J.A. The Movielens Datasets: History and Context. ACM Trans. Interact. Intell. Syst. (TiiS) 2016, 5, 19. [Google Scholar] [CrossRef]
- Su, X.; Sperlì, G.; Moscato, V.; Picariello, A.; Esposito, C.; Choi, C. An Edge Intelligence Empowered Recommender System Enabling Cultural Heritage Applications. IEEE Trans. Ind. Inform. 2019, 15, 4266–4275. [Google Scholar] [CrossRef]
- Council, N.R. Network Science; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Barabási, A.L. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Fortunato, S. Community Detection in Graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. Modularity and Community Structure in Networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef]
- Yang, Z.; Cohen, W.W.; Salakhutdinov, R. Revisiting Semi-Supervised Learning with Graph Embeddings. In Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; Volume 48, pp. 40–48. [Google Scholar]
- Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Volume 2016, pp. 855–864. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-Scale Information Network Embedding. In Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Pearl, J. Causal Inference in Statistics: An Overview. Stat. Surv. 2009, 3, 96–146. [Google Scholar] [CrossRef]
- Gal, Y. Uncertainty in Deep Learning; University of Cambridge: Cambridge, UK, 2016; Volume 1, p. 3. [Google Scholar]
- Kendall, A.; Gal, Y. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 5580–5590. [Google Scholar]
- Snijders, T.A.B.; Nowicki, K. Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure. J. Classif. 1997, 14, 75–100. [Google Scholar] [CrossRef]
- Karrer, B.; Newman, M.E.J. Stochastic Blockmodels and Community Structure in Networks. Phys. Rev. E 2011, 83, 016107. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the 2nd International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. In Proceedings of the Bayesian Deep Learning Workshop, 30th Conference on Neural Information Processing Systems (NeurIPS), Centre Convencions Internacional Barcelona, Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Choong, J.J.; Liu, X.; Murata, T. Learning Community Structure with Variational Autoencoder. In Proceedings of the IEEE International Conference on Data Mining, Singapore, 17–20 November 2018; pp. 69–78. [Google Scholar]
- Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; Zhang, C. Adversarially Regularized Graph Autoencoder for Graph Embedding. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 2609–2615. [Google Scholar]
- Razavi, A.; van den Oord, A.; Poole, B.; Vinyals, O. Preventing Posterior Collapse with Delta-Vaes. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th International Conference on Machine Learning, International Convention Centre, Sydney, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
- Metz, L.; Maheswaranathan, N.; Cheung, B.; Sohl-Dickstein, J. Meta-Learning Update Rules for Unsupervised Representation Learning. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Dai, B.; Dai, H.; He, N.; Liu, W.; Liu, Z.; Chen, J.; Xiao, L.; Song, L. Coupled Variational Bayes via Optimization Embedding. In Advances in Neural Information Processing Systems 31; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2018; pp. 9690–9700. [Google Scholar]
- Greff, K.; van Steenkiste, S.; Schmidhuber, J. Neural Expectation Maximization. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 6691–6701. [Google Scholar]
- Jordan, M.I.; Ghahramani, Z.; Jaakkola, T.S.; Saul, L.K. An Introduction to Variational Methods for Graphical Models. Mach. Learn. 1999, 37, 183–233. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, T.; de Souza, A.H., Jr.; Fifty, C.; Yu, T.; Weinberger, K.Q. Simplifying Graph Convolutional Networks. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Salha, G.; Hennequin, R.; Vazirgiannis, M. Keep It Simple: Graph Autoencoders Without Graph Convolutional Networks. In Proceedings of the Workshop on Graph Representation Learning, 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver Convention Center, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Murphy, R.C.; Wheeler, K.B.; Barrett, B.W.; Ang, J.A. Introducing the Graph 500. Cray Users Group (CUG) 2010, 19, 45–74. [Google Scholar]
- Ueno, K.; Suzumura, T. Highly Scalable Graph Search for the Graph500 Benchmark. In Proceedings of the 21st International Symposium on High-Performance Parallel and Distributed Computing, Delft, The Netherlands, 18–22 June 2012; pp. 149–160. [Google Scholar]
- Hay, M.; Miklau, G.; Jensen, D.; Weis, P.; Srivastava, S. Anonymizing Social Networks. In Computer Science Department Faculty Publication Series; University of Massachusetts Amherst: Amherst, MA, USA, 2007; p. 180. [Google Scholar]
- Girvan, M.; Newman, M.E.J. Community Structure in Social and Biological Networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [Green Version]
- Pizzuti, C. Ga-Net: A Genetic Algorithm for Community Detection in Social Networks. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Dortmund, Germany, 13–17 September 2008; pp. 1081–1090. [Google Scholar]
- Kannan, R.; Vempala, S.; Vetta, A. On Clusterings: Good, Bad and Spectral. J. ACM 2004, 51, 497–515. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, S.; Barthélemy, M. Resolution Limit in Community Detection. Proc. Natl. Acad. Sci. USA 2007, 104, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Good, B.H.; de Montjoye, Y.A.; Clauset, A. The Performance of Modularity Maximization in Practical Contexts. Phys. Rev. E 2010, 81, 046106. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, U.N.; Albert, R.; Kumara, S. Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks. Phys. Rev. E 2007, 76, 036106. [Google Scholar] [CrossRef] [Green Version]
- Pons, P.; Latapy, M. Computing Communities in Large Networks Using Random Walks. In Proceedings of the International Symposium on Computer and Information Sciences, Istanbul, Turkey, 26–28 October 2005; pp. 284–293. [Google Scholar]
- Rosvall, M.; Bergstrom, C.T. Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems. PLoS ONE 2011, 6, e18209. [Google Scholar] [CrossRef] [Green Version]
- Agreste, S.; Meo, P.D.; Fiumara, G.; Piccione, G.; Piccolo, S.; Rosaci, D.; Sarné, G.M.L.; Vasilakos, A.V. An Empirical Comparison of Algorithms to Find Communities in Directed Graphs and Their Application in Web Data Analytics. IEEE Trans. Big Data 2017, 3, 289–306. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Lu, W.; Xu, Q. GraRep: Learning Graph Representations with Global Structural Information. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 19–23 October 2015; pp. 891–900. [Google Scholar]
- Guo, T.; Pan, S.; Zhu, X.; Zhang, C. CFOND: Consensus Factorization for Co-Clustering Networked Data. IEEE Trans. Knowl. Data Eng. 2018, 31, 706–719. [Google Scholar] [CrossRef]
- Moscato, V.; Picariello, A.; Sperlí, G. Community Detection Based on Game Theory. Eng. Appl. Artif. Intell. 2019, 85, 773–782. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality. In Advances in Neural Information Processing Systems 26; Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2013; pp. 3111–3119. [Google Scholar]
- Tian, F.; Gao, B.; Cui, Q.; Chen, E.; Liu, T.Y. Learning Deep Representations for Graph Clustering. In Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; pp. 1293–1299. [Google Scholar]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In Advances in Neural Information Processing Systems 29; Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; pp. 3844–3852. [Google Scholar]
- Qiu, J.; Dong, Y.; Ma, H.; Li, J.; Wang, K.; Tang, J. Network Embedding As Matrix Factorization: Unifying DeepWalk, LINE, PTE, and Node2Vec. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, Los Angeles, CA, USA, 5–9 February 2018; pp. 459–467. [Google Scholar]
- Liu, X.; Murata, T.; Kim, K.S.; Kotarasu, C.; Zhuang, C. A General View for Network Embedding as Matrix Factorization. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne, Australia, 11–15 February 2019; pp. 375–383. [Google Scholar]
- Leskovec, J.; Chakrabarti, D.; Kleinberg, J.; Faloutsos, C.; Ghahramani, Z. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Res. 2010, 11, 985–1042. [Google Scholar]
- Seshadhri, C.; Kolda, T.G.; Pinar, A. Community Structure and Scale-Free Collections of Erdos-Rényi Graphs. Phys. Rev. E 2012, 85, 056109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancichinetti, A.; Fortunato, S.; Radicchi, F. Benchmark Graphs for Testing Community Detection Algorithms. Phys. Rev. E 2008, 78, 046110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bródka, P. A Method for Group Extraction and Analysis in Multilayer Social Networks. arXiv 2016, arXiv:1612.02377. [Google Scholar]
- Airoldi, E.M.; Blei, D.M.; Fienberg, S.E.; Xing, E.P. Mixed Membership Stochastic Blockmodels. J. Mach. Learn. Res. 2008, 9, 1981–2014. [Google Scholar]
- Larremore, D.B.; Clauset, A.; Jacobs, A.Z. Efficiently Inferring Community Structure in Bipartite Networks. Phys. Rev. E 2014, 90, 012805. [Google Scholar] [CrossRef] [Green Version]
- Abbe, E.; Sandon, C. Community Detection in General Stochastic Block Models: Fundamental Limits and Efficient Algorithms for Recovery. In Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), Berkeley, CA, USA, 18–20 October 2015; pp. 670–688. [Google Scholar]
- Abbe, E.; Bandeira, A.S.; Hall, G. Exact Recovery in the Stochastic Block Model. IEEE Trans. Inf. Theory 2016, 62, 471–487. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, S.; Hric, D. Community Detection in Networks: A User Guide. Phys. Rep. 2016, 659, 1–44. [Google Scholar] [CrossRef] [Green Version]
- NT, H.; Maehara, T. Revisiting Graph Neural Networks: All We Have Is Low-Pass Filters. arXiv 2019, arXiv:1905.09550. [Google Scholar]
- Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. ICLR 2017, 2, 6. [Google Scholar]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 1–22. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Hinton, G.E.; van Camp, D. Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights. In Proceedings of the Sixth Annual Conference on Computational Learning Theory, Santa Cruz, CA, USA, 26–28 July 1993; pp. 5–13. [Google Scholar]
- Adamic, L.A.; Glance, N. The Political Blogosphere and the 2004 US Election: Divided They Blog. In Proceedings of the 3rd International Workshop on Link Discovery, Chicago, IL, USA, 21–24 August 2005; pp. 36–43. [Google Scholar]
- Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective Classification in Network Data. AI Mag. 2008, 29, 93. [Google Scholar] [CrossRef] [Green Version]
- McCallum, A.K.; Nigam, K.; Rennie, J.; Seymore, K. Automating the Construction of Internet Portals with Machine Learning. Inf. Retr. 2000, 3, 127–163. [Google Scholar] [CrossRef]
- Yang, J.; Leskovec, J. Defining and Evaluating Network Communities Based on Ground-Truth. Knowl. Inf. Syst. 2015, 42, 181–213. [Google Scholar] [CrossRef] [Green Version]
- Danon, L.; Díaz-Guilera, A.; Duch, J.; Arenas, A. Comparing Community Structure Identification. J. Stat. Mech. Theory Exp. 2005, 2005, P09008. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Girvan, M. Finding and Evaluating Community Structure in Networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [Green Version]
Dataset | Type | Nodes | Edges | Communities (K) | Features |
---|---|---|---|---|---|
Karate | Social | 34 | 78 | 2 | N/A |
PolBlogs | Blogs | 1222 | 16,717 | 2 | N/A |
Cora | Citation | 2708 | 5429 | 7 | 1433 |
PubMed | Citation | 19,717 | 44,338 | 3 | 500 |
NMI (↑) | VI (↓) | ACC (↑) | Q (↑) | CON (↓) | TPR (↑) | |
---|---|---|---|---|---|---|
Spectral Clustering | 0.7323 | 0.8742 | 0.6765 | 0.3599 | 0.1313 | 0.9403 |
Louvain | 0.4900 | 1.5205 | 0.3235 | 0.4188 | 0.2879 | 0.7333 |
DeepWalk | 0.7198 | 0.8812 | 0.9353 | 0.3582 | 0.1337 | 0.9353 |
node2vec | 0.8372 | 0.8050 | 0.9706 | 0.1639 | 0.4239 | 0.4549 |
Stochastic Blockmodel | 0.0105 | 1.1032 | 0.4412 | −0.2084 | 0.7154 | 0.4034 |
Stochastic Blockmodel (D.C) | 0.8372 | 0.8050 | 0.9706 | 0.3718 | 0.1282 | 0.9412 |
VGAE* + k-means | 0.6486 | 0.8189 | 0.9647 | 0.3669 | 0.1295 | 0.9407 |
VGAECD* | 1.0000 | 0.6931 | 1.0000 | 0.3582 | 0.1412 | 0.9412 |
VGAECD-SGC* | 0.8372 | 0.8050 | 0.9706 | 0.3714 | 0.1282 | 0.9409 |
VGAECD-OPT* | 0.8372 | 0.8050 | 0.9706 | 0.3742 | 0.1282 | 0.9409 |
NMI (↑) | VI (↓) | ACC (↑) | Q (↑) | CON (↓) | TPR (↑) | |
---|---|---|---|---|---|---|
Spectral Clustering | 0.0014 | 1.1152 | 0.4828 | −0.0578 | 0.5585 | 0.7221 |
Louvain | 0.6446 | 1.0839 | 0.9149 | 0.2987 | 0.8130 | 0.1922 |
DeepWalk | 0.7367 | 1.0839 | 0.9543 | 0.0980 | 0.3873 | 0.6870 |
node2vec | 0.7545 | 0.8613 | 0.9586 | 0.1011 | 0.3827 | 0.6863 |
Stochastic Blockmodel | 0.0002 | 1.2957 | 0.4905 | −0.0235 | 0.5329 | 0.5657 |
Stochastic Blockmodel (D.C) | 0.7145 | 0.8890 | 0.9496 | 0.4256 | 0.0730 | 0.8101 |
VGAE* + k-means | 0.7361 | 0.8750 | 0.9552 | 0.4238 | 0.0752 | 0.8089 |
VGAECD* | 0.7583 | 0.8583 | 0.9601 | 0.4112 | 0.0880 | 0.7913 |
VGAECD-SGC* | 0.7235 | 0.8808 | 0.9492 | 0.4248 | 0.0735 | 0.8142 |
VGAECD-OPT* | 0.7620 | 0.8558 | 0.9601 | 0.4252 | 0.0734 | 0.8086 |
NMI (↑) | VI (↓) | ACC (↑) | Q (↑) | CON (↓) | TPR (↑) | |
---|---|---|---|---|---|---|
Spectral Clustering | 0.2623 | 2.4183 | 0.1770 | 0.0011 | 0.8527 | 0.0577 |
Louvain | 0.4336 | 4.0978 | 0.0081 | 0.8142 | 0.0326 | 0.2821 |
DeepWalk | 0.3796 | 2.7300 | 0.1626 | 0.6595 | 0.0396 | 0.4949 |
node2vec | 0.3533 | 2.9947 | 0.1359 | 0.6813 | 0.1078 | 0.4902 |
Stochastic Blockmodel | 0.0917 | 3.5108 | 0.1639 | 0.4068 | 0.4280 | 0.3376 |
Stochastic Blockmodel (D.C.) | 0.1679 | 3.4547 | 0.1176 | 0.6809 | 0.1736 | 0.5112 |
VGAE* + k-means | 0.2384 | 3.3151 | 0.1033 | 0.6911 | 0.1615 | 0.4906 |
VGAE + k-means | 0.3173 | 3.1277 | 0.1589 | 0.6981 | 0.1517 | 0.5031 |
VGAECD* | 0.2822 | 3.1606 | 0.1532 | 0.6674 | 0.1808 | 0.5076 |
VGAECD | 0.5072 | 2.7787 | 0.1101 | 0.7029 | 0.1371 | 0.4987 |
VGAECD-SGC* | 0.3003 | 3.1734 | 0.1418 | 0.6116 | 0.2125 | 0.4479 |
VGAECD-SGC | 0.5170 | 2.7707 | 0.2610 | 0.7138 | 0.1345 | 0.5053 |
VGAECD-OPT* | 0.3735 | 2.4200 | 0.2717 | 0.4930 | 0.1792 | 0.4921 |
VGAECD-OPT | 0.5437 | 2.6877 | 0.3190 | 0.7213 | 0.1227 | 0.5324 |
NMI (↑) | VI (↓) | ACC (↑) | Q (↑) | CON (↓) | TPR (↑) | |
---|---|---|---|---|---|---|
Spectral Clustering | 0.1829 | 1.4802 | 0.3405 | 0.4327 | 0.0249 | 0.1850 |
Louvain | 0.1983 | 3.6667 | 0.0954 | 0.7726 | 0.1388 | 0.1592 |
DeepWalk | 0.2946 | 1.7865 | 0.3101 | 0.5766 | 0.0499 | 0.2461 |
node2vec | 0.1197 | 1.9849 | 0.2228 | 0.3501 | 0.3170 | 0.2269 |
Stochastic Blockmodel | 0.0004 | 1.9340 | 0.3080 | −0.1620 | 0.1038 | 0.1965 |
Stochastic Blockmodel (D.C.) | 0.1325 | 2.0035 | 0.3118 | 0.5622 | 0.8121 | 0.2441 |
VGAE* + k-means | 0.2041 | 1.8096 | 0.3724 | 0.5273 | 0.1320 | 0.2898 |
VGAE + k-means | 0.1981 | 1.8114 | 0.2751 | 0.5297 | 0.1283 | 0.2900 |
VGAECD* | 0.1642 | 1.8320 | 0.1956 | 0.4966 | 0.1252 | 0.2692 |
VGAECD | 0.3252 | 1.7056 | 0.4216 | 0.6878 | 0.1636 | 0.4827 |
VGAECD-SGC* | 0.2350 | 1.8630 | 0.4155 | 0.5501 | 0.1163 | 0.2524 |
VGAECD-SGC | 0.2948 | 1.7960 | 0.2396 | 0.5413 | 0.1044 | 0.2463 |
VGAECD-OPT* | 0.2505 | 1.8517 | 0.3223 | 0.5853 | 0.0800 | 0.2519 |
VGAECD-OPT | 0.3552 | 1.7082 | 0.3223 | 0.5378 | 0.0830 | 0.2446 |
Karate | PolBlogs | Cora | PubMed | |
---|---|---|---|---|
VGAECD | 3.3297 ± 0.0336 | 8.6538 ± 0.2808 | 6.6419 ± 0.1886 | 82.2131 ± 0.1321 |
VGAECD-SGC | 2.8960 ± 0.0320 | 4.7735 ± 0.0372 | 3.9832 ± 0.0209 | 68.2313 ± 0.0332 |
VGAECD-OPT | 2.1015 ± 0.0100 | 5.0768 ± 0.0120 | 3.6996 ± 0.0275 | 67.8840 ± 0.0313 |
Karate | PolBlogs | Cora | Pubmed | |
---|---|---|---|---|
Spectral Clustering | 0.0111 ± 0.0004 | 0.0981 ± 0.0129 | 0.1932 ± 0.0247 | 14.835 ± 0.1107 |
Louvain | 0.0020 ± 0.0003 | 0.2765 ± 0.0204 | 0.2571 ± 0.0201 | 3.1068 ± 0.0021 |
DeepWalk | 0.2805 ± 0.0204 | 29.3969 ± 1.7295 | 60.2633 ± 3.3005 | 446.1594 ± 1.5393 |
node2vec | 4.1691 ± 0.0071 | 73.8038 ± 0.2477 | 59.8279 ± 0.0681 | 451.6884 ± 0.1085 |
Stochastic Blockmodel | 0.2126 ± 0.0030 | 0.2831 ± 0.0078 | 7.4576 ± 4.7685 | 6.3896 ± 3.9298 |
Stochastic Blockmodel (D.C.) | 0.1452 ± 0.0336 | 0.2344 ± 0.0796 | 3.2463 ± 1.7783 | 3.3545 ± 2.7707 |
VGAE* + k-means | 3.2319 ± 0.1204 | 18.6163 ± 0.3803 | 6.5510 ± 0.2043 | 93.4253 ± 0.2476 |
VGAECD* | 3.3363 ± 0.0539 | 21.3191 ± 0.2571 | 7.4428 ± 0.1177 | 93.5190 ± 0.3785 |
VGAECD-SGC* | 3.3503 ± 0.0418 | 19.0820 ± 0.0386 | 4.7377 ± 0.1175 | 89.8966 ± 0.0844 |
VGAECD-OPT* | 2.4467 ± 0.0238 | 20.2052 ± 0.0649 | 7.4037 ± 0.0342 | 92.1212 ± 0.1192 |
Method | Complexity |
---|---|
Spectral Clustering | |
Louvain | |
DeepWalk | |
node2vec | |
Stochastic Blockmodel | |
Stochastic Blockmodel (D.C.) | |
VGAE + k-means | |
VGAECD | |
VGAECD-SGC | |
VGAECD-OPT |
Number of Nodes | Edges | Communities |
---|---|---|
5000 | 74,278 | 5 |
10,000 | 148,427 | 10 |
20,000 | 295,857 | 20 |
40,000 | 599,396 | 40 |
80,000 | 1,189,991 | 80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choong, J.J.; Liu, X.; Murata, T. Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization. Entropy 2020, 22, 197. https://doi.org/10.3390/e22020197
Choong JJ, Liu X, Murata T. Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization. Entropy. 2020; 22(2):197. https://doi.org/10.3390/e22020197
Chicago/Turabian StyleChoong, Jun Jin, Xin Liu, and Tsuyoshi Murata. 2020. "Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization" Entropy 22, no. 2: 197. https://doi.org/10.3390/e22020197
APA StyleChoong, J. J., Liu, X., & Murata, T. (2020). Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization. Entropy, 22(2), 197. https://doi.org/10.3390/e22020197