Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements
<p>Schematic of a Solar Wind Analyser’s Electron Analyser System (SWA-EAS) top-hat analyser head and its angular field of view. (<b>Left</b>) The elevation angle is defined as the complement of the angle between the particle velocity vector and the <span class="html-italic">z</span>-axis, perpendicular to the top-hat plane. The elevation angle of the electrons is resolved in 16 electrostatic uniform steps. (<b>Right</b>) The azimuth angle is the angle within the projection of the velocity vector on the top-hat plane and the <span class="html-italic">x</span>-axis. Both SWA-EAS analyser heads resolve the azimuth direction on MCP detectors using 32 sectors.</p> "> Figure 2
<p>Modelled counts as a function energy and azimuth direction on the analyser’s head frame for (<b>left</b>) plasma density <span class="html-italic">n</span> = 5 cm<sup>−3</sup> and (<b>right</b>) <span class="html-italic">n</span> = 50 cm<sup>−3</sup>. For both examples, the magnetic field vector (magenta) is in the top-hat plane (<span class="html-italic">Θ</span> = <span class="html-italic">θ</span><sub>B</sub> = 0°) in azimuth direction <span class="html-italic">Φ</span> = 45°. The bulk flow of the electrons <span class="html-italic">u</span><sub>0</sub> = 500 kms<sup>−1</sup> along the <span class="html-italic">x</span>-axis (<span class="html-italic">Θ</span> = <span class="html-italic">Φ</span> = 0°). The parallel temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> = 10 eV, the perpendicular temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math> = 20 eV, and the kappa index <span class="html-italic">κ</span> = 3.</p> "> Figure 3
<p>(<b>Left</b>) Modelled counts as a function of energy and azimuth direction (instrument frame), using <span class="html-italic">n</span> = 20 cm<sup>−3</sup>, <span class="html-italic">u</span><sub>0</sub> = 500 kms<sup>−1</sup> towards the <span class="html-italic">x</span>-axis (<span class="html-italic">Θ</span> = <span class="html-italic">Φ</span> = 0°), <span class="html-italic">κ</span> = 3, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> = 10 eV, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math> = 20 eV, and a magnetic-field direction (magenta) in the top-hat plane (<span class="html-italic">Θ</span> = 0° and <span class="html-italic">Φ</span> = 45°). (<b>Right</b>) Result of our fit to the modelled observations. The model finds the optimal combination of <span class="html-italic">n</span>, <span class="html-italic">κ</span>, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math> that minimizes the <span class="html-italic">χ</span><sup>2</sup> value (see text for more).</p> "> Figure 4
<p>Histograms of (<b>top left</b>) density <span class="html-italic">n</span><sub>out</sub>, (<b>top right</b>) kappa index <span class="html-italic">κ</span><sub>out</sub>, (<b>bottom left</b>) parallel temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>∥</mo> <mo>,</mo> <mi>out</mi> </mrow> </msub> </mrow> </semantics></math> and (<b>bottom right</b>) perpendicular temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>⊥</mo> <mo>,</mo> <mi>out</mi> </mrow> </msub> </mrow> </semantics></math>, as determined from the analysis of 200 measurement samples of plasma with <span class="html-italic">n</span> = 7 cm<sup>−3</sup>, <span class="html-italic">u</span><sub>0</sub> = 500 kms<sup>−1</sup> pointing along the <span class="html-italic">x</span>-axis, <span class="html-italic">κ</span> = 3, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> = 10 eV and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math> = 20 eV. The blue histograms correspond to values derived by a fit that includes points with <span class="html-italic">C<sub>i</sub></span> = 0, while the red histograms represent values derived by a fit that excludes points with <span class="html-italic">C<sub>i</sub></span> = 0.</p> "> Figure 5
<p>(<b>From top to bottom</b>) The derived electron density over input density, kappa index, parallel and perpendicular temperature as functions of the input plasma density. The red points represent the mean values (over 200 samples) of the parameters derived by fitting only the measurements with <span class="html-italic">C<sub>i</sub></span> ≥ 1. The blue points represent the mean values of the parameters derived by fitting to all measurements including those with <span class="html-italic">C<sub>i</sub></span> = 0. The shadowed regions represent the standard deviations of the derived parameters.</p> "> Figure 6
<p>2D histograms of the <span class="html-italic">χ</span><sup>2</sup> value as a function of (<b>top</b>) the modelled <span class="html-italic">κ</span> and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> and (<b>bottom</b>) the modelled <span class="html-italic">κ</span> and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math>, as derived for plasma with two different input densities; (<b>left</b>) <span class="html-italic">n</span> = 10 cm<sup>−3</sup>, and (<b>right</b>) <span class="html-italic">n</span> = 50 cm<sup>−3</sup>. In both examples, we use <span class="html-italic">u</span><sub>0</sub> = 500 kms<sup>−1</sup> pointing along the x-axis, <span class="html-italic">κ</span> = 3, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> = 10 eV, and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math> = 20 eV as input parameters.</p> "> Figure 7
<p>Number of counts as a function of energy for the pitch-angle with the maximum flux assuming a plasma with <span class="html-italic">n</span> = 5 cm<sup>−3</sup>, <span class="html-italic">κ</span> = 3, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> = 10 eV and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math>= 20 eV. The blue line is the fitted model to the observations by (<b>left</b>) excluding points with <span class="html-italic">C<sub>i</sub></span> = 0 which are shown with red colour, and (<b>right</b>) including points with <span class="html-italic">C<sub>i</sub></span> = 0. The magenta line is the expected counts <span class="html-italic">C</span><sub>exp</sub>, given by Equation (2). The labels in each panel show the parameters as derived by the corresponding fit.</p> "> Figure 8
<p>Poisson distribution with average value (<b>top</b>) <span class="html-italic">C</span><sub>exp</sub> = 1, (<b>middle</b>) <span class="html-italic">C</span><sub>exp</sub> = 3, and (<b>bottom</b>) <span class="html-italic">C</span><sub>exp</sub> = 5. The vertical lines indicate the two modes of the distribution, <span class="html-italic">C</span><sub>exp</sub> (blue) and <span class="html-italic">C</span><sub>exp</sub> − 1 (orange) respectively. For small average values, the Poisson distribution is asymmetric, and the probability to measure number of counts lower than the average value is significant. This can bias the results to lower densities.</p> "> Figure 9
<p>Number of the expected average counts <span class="html-italic">C</span><sub>exp</sub> as a function of energy in the pitch-angle bin with the maximum particle flux, considering the same plasma conditions as in the example shown in <a href="#entropy-22-00103-f007" class="html-fig">Figure 7</a>. The blue curve is the model fitted to the observations by (<b>left</b>) excluding points with <span class="html-italic">C<sub>i</sub></span> = 0 which are shown with red colour, and (<b>right</b>) including points with <span class="html-italic">C<sub>i</sub></span> =0. The orange curve is the mode <span class="html-italic">C</span><sub>exp</sub> − 1. In each panel, we show the parameters as derived by the corresponding fit. In the absence of statistical fluctuations, both fitting strategies derive identical bulk parameters.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Instrument Model
2.2. Synthetic Dataset
3. Results
4. Discussion
5. Conclusions
- The fit analysis of plasma measurements with relatively high flux (Cmax > 30) estimates the plasma temperature and kappa index more accurately if it excludes measurement points with Ci = 0. The corresponding analysis of measurements with low particle flux (Cmax < 30) estimates the temperature and kappa index more accurately if it includes measurement points with Ci = 0. Although Ci = 0 is a measurement with a large uncertainty, it contains information that becomes useful when the overall signal is weak.
- Examination of the fit convergence indicates that the determination of the plasma temperature and the determination of the kappa index are interdependent. As expected, the uncertainty of the derived parameters decreases with increasing particle flux.
- The plasma density is underestimated when the particle flux is low (Cmax < 100). We show that the misestimation is due to the asymmetry of the Poisson distribution and the assigned uncertainties to the data points.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shizgal, B.D. Suprathermal particle distributions in space physics: Kappa distributions and entropy. Astrophys. Space Sci. 2007, 312, 227–237. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Beyond kappa distributions: Exploiting Tsalis statistical mechanics in space plasmas. J. Geophys. Res. 2009, 114, A11105. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Understanding kappa distributions: A toolbox for space science and astrophysics. Space Sci. Rev. 2013, 175, 183–214. [Google Scholar] [CrossRef] [Green Version]
- Pierrard, V.; Lazar, M. Kappa distributions: Theory and applications in space plasmas. Sol. Phys. 2010, 267, 153–174. [Google Scholar] [CrossRef] [Green Version]
- Livadiotis, G. Introduction to special section on origins and properties of kappa distributions: Statistical Background and properties of kappa distributions in space plasmas. J. Geophys. Res. 2015, 120, 1607–1619. [Google Scholar] [CrossRef]
- Livadiotis, G. Kappa Distributions: Theory and Applications in Plasmas; Elsavier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Tsallis, C.; Mendes, R.S.; Plastino, A.R. The role of constraints within generalized nonextensive statistics. Physica A 1998, 261, 534–554. [Google Scholar] [CrossRef]
- Maksimovic, M.; Pierrard, V.; Riley, P. Ulysses electron distributions fitted with kappa functions. Geophys. Res. Lett. 1997, 24, 1151–1154. [Google Scholar] [CrossRef]
- Maksimovic, M.; Zouganelis, I.; Chaufray, J.Y.; Issautier, K.; Scime, E.E.; Littleton, J.E.; Marsch, E.; McComas, D.J.; Salem, C.; Lin, R.P.; et al. Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 2005, 110, A09104. [Google Scholar] [CrossRef] [Green Version]
- Pierrard, V.; Maksimovic, M.; Lemaire, J. Electron velocity distribution functions from the solar wind to the corona. J. Geophys. Res. 1999, 104, 17021–17032. [Google Scholar] [CrossRef]
- Zouganelis, I.; Maksimovic, M.; Meyer-Vernet, N.; Lamy, H.; Issautier, K. A transonic collisionless model of the solar wind. Astrophys. J. 2004, 606, 542–554. [Google Scholar] [CrossRef]
- Livadiotis, G. Using kappa distributions to identify the potential energy. J. Geophys. Res. 2018, 123, 1050–1060. [Google Scholar] [CrossRef]
- Nicolaou, G.; Livadiotis, G. Long-term correlations of polytropic indices with kappa distributions in solar wind plasma near 1 au. Astrophys. J. 2019, 884, 52. [Google Scholar] [CrossRef]
- Mauk, B.H.; Mitchell, D.G.; McEntire, R.W.; Paranicas, C.P.; Roelof, E.C.; Williams, D.J.; Krimigis, S.M.; Lagg, A. Energetic ion characteristics and neutral gas interactions in Jupiter’s magnetosphere. J. Geophys. Res. 2004, 109, A09S12. [Google Scholar] [CrossRef]
- Dialynas, K.; Krimigis, S.M.; Mitchell, D.G.; Hamilton, D.C.; Krupp, N.; Brandt, P.C. Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements. J. Geophys. Res. 2009, 114, A01212. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, K.; Angelopoulos, V.; Dayeh, M.A.; Fuselier, S.A.; Livadiotis, G.; McComas, D.J.; McFadden, J.P. Characterizing the dayside magnetosheath using energetic neutral atoms: IBEX and THEMIS observations. J. Geophys. Res. 2013, 118, 3126–3137. [Google Scholar] [CrossRef]
- Broiles, T.W.; Livadiotis, G.; Burch, J.L.; Chae, K.; Clark, G.; Cravens, T.E.; Davidson, R.; Frahm, R.A.; Fuselier, S.A.; Goldstein, R.; et al. Characterizing cometary electrons with kappa distributions. J. Geophys. Res. 2016, 121, 7407–7422. [Google Scholar] [CrossRef] [Green Version]
- Decker, R.B.; Krimigis, S.M. Voyager observations of low-energy ions during solar cycle 23. Adv. Space Res. 2003, 32, 597–602. [Google Scholar] [CrossRef]
- Zank, G.P.; Heerikhuisen, J.; Pogorelov, N.V.; Burrows, R.; McComas, D. Microstructure of the heliospheric termination shock: Implications for energetic neutral atom observations. Astrophys. J. 2010, 708, 1092–1106. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J.; Dayeh, M.A.; Funsten, H.O.; Schwadron, N.A. First Sky map of the inner heliosheath temperature using IBEX spectra. Astrophys. J. 2011, 734, 1. [Google Scholar] [CrossRef] [Green Version]
- Livadiotis, G.; McComas, D.J.; Randol, B.M.; Funsten, H.O.; Möbius, E.S.; Schwadron, N.A.; Dayeh, M.A.; Zank, G.P.; Frisch, P.C. Pick-up ion distributions and their influence on energetic neutral atom spectral curvature. Astrophys. J. 2012, 751, 64. [Google Scholar] [CrossRef] [Green Version]
- Livadiotis, G.; McComas, D.J.; Schwadron, N.A.; Funsten, H.O.; Fuselier, S.A. Pressure of the proton plasma in the inner heliosheath. Astrophys. J. 2013, 762, 134. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. The influence of pick-up ions on space plasma distributions. Astrophys. J. 2011, 738, 64. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Non-equilibrium thermodynamic processes: Space plasmas and the inner heliosheath. Astrophys. J. 2012, 749, 11. [Google Scholar] [CrossRef]
- Nicolaou, G.; Livadiotis, G. Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions. Astrophys. Space Sci. 2016, 361, 359. [Google Scholar] [CrossRef]
- Johnstone, A.D.; Alsop, C.; Burge, S.; Carter, P.J.; Coates, A.J.; Coker, A.J.; Fazakerley, A.N.; Grande, M.; Gowen, R.A.; Gurgiolo, C.; et al. PEACE: A plasma electron and current experiment. Space Sci. Rev. 1997, 79, 351–398. [Google Scholar] [CrossRef]
- Owen, C.J.; Bruno, R.; Livi, S.; Louarn, P.; Al Janabi, K.; Allegrini, F.; Amoros, C.; Baruah, R.; Barthe, A.; Berthomier, M.; et al. The Solar Orbiter Analyser (SWA) Suite. Astron. Astrophys. 2020. submitted. [Google Scholar]
- Horbury, T.S.; O’Brien, H.; Carrasco Blazquez, I.; Bendyk, M.; Brown, P.; Hudson, R.; Evans, V.; Carr, C.M.; Beek, T.J.; Bhattacharya, S.; et al. The Solar Orbiter Magnetometer. Astron. Astrophys. 2020. submitted. [Google Scholar]
- Vaivads, A.; Retinò, A.; Soucek, J.; Khotyaintsev, Y.V.; Valentini, F.; Escoubet, C.P.; Alexandrova, O.; André, M.; Bale, S.D.; Balikhin, M.; et al. Turbulence heating ObserveR-satellite mission proposal. J. Plasma Phys. 2016, 82, 905820501. [Google Scholar] [CrossRef] [Green Version]
- Cara, A.; Lavraud, B.; Fedorov, A.; De Keyser, J.; DeMarco, R.; Federica Marucci, M.; Valentini, F.; Servidio, S.; Bruno, R. Electrostatic analyzer design for solar wind proton measurements with high temporal, energy, and angular resolutions. J. Geophys. Res. 2017, 122, 1439–1450. [Google Scholar] [CrossRef]
- Nicolaou, G.; McComas, D.J.; Bagenal, F.; Elliott, H.A. Properties of plasma ions in the distant Jovian magnetosheath using Solar Wind Around Pluto data on New Horizons. J. Geophys. Res. 2014, 119, 3463–3479. [Google Scholar] [CrossRef]
- Nicolaou, G.; McComas, D.J.; Bagenal, F.; Elliott, H.A.; Ebert, R.W. Jupiter’s deep magnetotail boundary layer. Planet. Space Sci. 2015, 111, 116–125. [Google Scholar] [CrossRef]
- Nicolaou, G.; McComas, D.J.; Bagenal, F.; Elliott, H.A.; Wilson, R.J. Plasma Properties in the deep jovian magnetotail. Planet. Space Sci. 2015, 119, 222–232. [Google Scholar] [CrossRef]
- Nicolaou, G.; Livadiotis, G.; Owen, C.J.; Verscharen, D.; Wicks, R.T. Determining the kappa distributions of space plasmas from observations in a limited energy range. Astrophys. J. 2018, 864, 3. [Google Scholar] [CrossRef]
- Nicolaou, G.; Verscharen, D.; Wicks, R.T.; Owen, C.J. The impact of turbulent solar wind fluctuations on Solar Orbiter plasma proton measurements. Astrophys. J. 2019, 886, 101. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.J.; Bagenal, F.; Persoon, A.M. Survey of thermal ions in Saturn’s magnetosphere utilizing a forward model. J. Geophys. Res. 2017, 122, 7256–7278. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.K.; Ebert, R.W.; Valek, P.W.; Allegrini, F.; McComas, D.J.; Bagenal, F.; Chae, K.; Livadiotis, G.; Loeffler, C.E.; Pollock, C.; et al. Method to derive ion properties from Juno JADE including abundance estimates for O+ and S2+. J. Geophys. Res. 2019. accepted article. [Google Scholar] [CrossRef]
- Wilson, R.J. Error analysis for numerical estimates of space plasma parameters. Earth Space Sci. 2015, 2, 201–222. [Google Scholar] [CrossRef] [Green Version]
- Ebert, R.W.; Allegrini, F.; Fuselier, S.A.; Nicolaou, G.; Bedworth, P.; Sinton, S.; Trattner, K.J. Angular scattering of 1–50 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation. Rev. Sci. Instrum. 2014, 85, 033302. [Google Scholar] [CrossRef]
- Allegrini, F.; Ebert, R.W.; Nicolaou, G.; Grubbs, G. Semi-empirical relationships for the energy loss and straggling of 1-50 keV hydrogen ions passing through thin carbon foils. Nuclear Instrum. Methods Phys. Res. Sect. B 2015, 359, 115–119. [Google Scholar] [CrossRef]
Parameter | Input | Fit Including Ci = 0 Points | Fit Excluding Ci = 0 Points |
---|---|---|---|
n (cm−3) | 7 | 5.4 ± 0.2 | 6.1 ± 0.2 |
κ | 3 | 3.2 ± 0.2 | 2.3 ± 0.1 |
(eV) | 10 | 9.4 ± 0.3 | 12.5 ± 0.7 |
(eV) | 20 | 19.8 ± 0.6 | 23.7 ± 1.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolaou, G.; Wicks, R.; Livadiotis, G.; Verscharen, D.; Owen, C.; Kataria, D. Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements. Entropy 2020, 22, 103. https://doi.org/10.3390/e22010103
Nicolaou G, Wicks R, Livadiotis G, Verscharen D, Owen C, Kataria D. Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements. Entropy. 2020; 22(1):103. https://doi.org/10.3390/e22010103
Chicago/Turabian StyleNicolaou, Georgios, Robert Wicks, George Livadiotis, Daniel Verscharen, Christopher Owen, and Dhiren Kataria. 2020. "Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements" Entropy 22, no. 1: 103. https://doi.org/10.3390/e22010103
APA StyleNicolaou, G., Wicks, R., Livadiotis, G., Verscharen, D., Owen, C., & Kataria, D. (2020). Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements. Entropy, 22(1), 103. https://doi.org/10.3390/e22010103