3C3R, an Image Encryption Algorithm Based on BBI, 2D-CA, and SM-DNA
"> Figure 1
<p>Scrambling one-to-one mapping.</p> "> Figure 2
<p>Block bit Inversion.</p> "> Figure 3
<p>Bit selection.</p> "> Figure 4
<p>Von-Neumann (VN) + Rotated VN.</p> "> Figure 5
<p>SM-DNA (Random rule generator).</p> "> Figure 6
<p>Binary to DNA Conversion.</p> "> Figure 7
<p>General Block Diagram</p> "> Figure 8
<p>Encryption and decryption results. (<b>a</b>) The plain image of baboon; (<b>b</b>) The cipher image of baboon; (<b>c</b>) The decrypted image of baboon.</p> "> Figure 9
<p>All the test Images.</p> "> Figure 10
<p>Histogram of ciphered images of the above all the test Images in Sequence.</p> "> Figure 10 Cont.
<p>Histogram of ciphered images of the above all the test Images in Sequence.</p> "> Figure 11
<p>Histograms of RGB channels of Baboon. (<b>a</b>) Plain red channel; (<b>b</b>) Plain green channel; (<b>c</b>) Plain blue channel; (<b>d</b>) Ciphered red channel; (<b>e</b>) Ciphered green channel; (<b>f</b>) Ciphered blue channel.</p> "> Figure 12
<p>Correlation of RGB Channels of baboon (<b>a</b>) Plain red in horizontal; (<b>b</b>) Plain green in vertical; (<b>c</b>) Plain blue in diagonal; (<b>d</b>) Ciphered red in horizontal; (<b>e</b>) Ciphered green in vertical; (<b>f</b>) Ciphered blue in diagonal.</p> "> Figure 13
<p>Key sensitivity test. (<b>a</b>) Ciphered image decrypted by K1; (<b>b</b>) Ciphered image decrypted by K2; (<b>c</b>) Subtracted image of cipher-(a); (<b>d</b>) Histogram of (a); Histogram of (b); Histogram of (c).</p> "> Figure 14
<p>Encryption result of all white and full black images. (<b>a</b>) All white image; (<b>b</b>) Full black image; (<b>c</b>) Cipher image of (a); (<b>d</b>) Cipher image of (b); (<b>e</b>) Histogram of (c); (<b>f</b>) Histogram of (d).</p> "> Figure 15
<p>Occlusion attack test. (<b>a</b>) Cropped image of Lena; (<b>b</b>) Cropped image of Panda; (<b>c</b>) Cropped image of House; (<b>d</b>) Cropped image of baboon; (<b>e</b>) Cropped image of Panda; <b>(f</b>) Cropped image of Lena; (<b>g</b>) Retrieved image of (a); (<b>h</b>) Retrieved image of (b); (<b>i</b>) Retrieved image of (c); (<b>j</b>) Retrieved image of (d); (<b>k</b>) Retrieved image of (e); (<b>l</b>) Retrieved image of (f).</p> ">
Abstract
:1. Introduction
2. Literature Survey
2.1. Scrambling Method
Algorithm 1 Scrambling |
|
Algorithm 2 Scrambling |
|
2.2. Novel Block Bit Inversion (BBI)
2.3. Two-Dimensional Cellular Automata
2.4. DNA Sequence
3. Proposed Encryption Method
4. Experimental Results and Discussion
5. Security Analysis and Test
5.1. Security Keyspace
5.2. Histogram Analysis
5.3. Pixel Correlation Analysis
5.4. Key Sensitivity Analysis
5.5. Differential Attack
5.6. Known and Chosen Plain Text Analysis
5.7. Robustness against Occlusion Attack
5.8. Local and Shannon Information Entropy
5.9. Gray Value Degree (GVD) Analysis
5.10. Performance Comparison
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Wong, K.; Kwok, B.; Law, W. A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 2008, 372, 2645–2652. [Google Scholar] [CrossRef] [Green Version]
- Gehani, A.; LaBean, T.H.; Reif, J.H. DNA-based cryptography. In Aspects of Molecular Computing; Springer: Berlin/Heidelberg, Germany, 2003; Volume 54, pp. 233–249. [Google Scholar]
- Lian, S.G. Multimedia Content Encryption: Techniques and Applications; Auerbach Publication Taylor & Francis Group: Boca Raton, FL, USA, 2008; ISBN 1420065270. [Google Scholar]
- Wang, Y.; Wong, K.; Liao, X.; Xiang, T.; Chen, G. A chaos-based image encryption algorithm with variable control parameters. Chaos Solitons Fract. 2009, 41, 1773–1783. [Google Scholar] [CrossRef]
- Guan, Z.H.; Huang, F.; Guan, W. Chaos-based image encryption algorithm. Phys. Lett. A 2005, 346, 153–157. [Google Scholar] [CrossRef]
- Yavuz, E.; Yazici, R.; Kasapbasi, M.C.; Yamac, C. A chaos-based image encryption algorithm with simple logical functions. Comput. Electr. Eng. 2016, 54, 471–483. [Google Scholar] [CrossRef]
- Dou, Y.; Liu, X.; Fan, H.; Li, M. Cryptanalysis of a DNA and chaos based image encryption algorithm. Optik 2017, 145, 456–464. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Qi, L.; Fu, C.; Xu, L. Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression. Opt. Laser Technol. 2018, 99, 238–248. [Google Scholar] [CrossRef]
- Jeng, F.G.; Huang, W.L.; Chen, T.H. Cryptanalysis and improvement of two hyper chaos based image encryption schemes. Signal Process. 2015, 34, 45–51. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Z.; Wang, H.; Gong, Q. Binary image encryption in a joint transform correlator scheme by aid of run length encoding and QR code. Opt. Laser Technol. 2018, 103, 93–98. [Google Scholar] [CrossRef]
- Kumar, R.; Bhaduri, B. Optical image encryption using Kronecker product and hybrid phase masks. Opt. Laser Technol. 2017, 95, 51–55. [Google Scholar] [CrossRef]
- Chen, H.; Tanougast, C.; Liu, Z.; Blondel, W.; Hao, B. Optical hyperspectral image encryption based on improved Chirikov mapping and gyrator transform. Opt. Lasers Eng. 2018, 107, 62–70. [Google Scholar] [CrossRef]
- Li, X.; Meng, X.; Yang, X.; Wang, Y.; Yin, Y.; Peng, X.; He, W.; Dong, G.; Chen, H. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme. Opt. Lasers Eng. 2018, 102, 106–111. [Google Scholar] [CrossRef]
- Chai, X.; Gan, Z.; Yang, K.; Chen, Y.; Liu, X. An image encryption algorithm based on the memristive hyper-chaotic system, cellular automata and DNA sequence operations. Signal Process. 2017, 52, 6–19. [Google Scholar]
- Wu, X.; Wang, K.; Wang, X.; Kan, H.; Kurths, J. Color image DNA encryption using NCA map based CML and one time keys. Signal Process. 2018, 148, 272–287. [Google Scholar] [CrossRef]
- Talarposhti, K.M.; Jamei, M.K. A secure image encryption method based on dynamic harmony search (DHS) combined with chaotic map. Opt. Lasers Eng. 2016, 81, 21–34. [Google Scholar] [CrossRef]
- Lian, S. A block cipher based on chaotic neural networks. Neurocomputing 2009, 72, 1296–1301. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, W. A new chaotic algorithm for image encryption. In Proceedings of the 2008 International Conference on Audio, Language and Image Processing, Shanghai, China, 7–9 July 2008; pp. 889–892. [Google Scholar] [CrossRef]
- Xue, X.L.; Zhang, Q. An image fusion encryption algorithm based on DNA sequence and multi-chaotic maps. J. Comput. Theor. Nanosci. 2010, 7, 397–403. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, L.; Chen, C.L.P. A new 1D chaotic system for image encryption. Signal Process. 2014, 97, 172–182. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Pun, C.M. Image encryption using 2D Logistic-Sine chaotic map. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; pp. 3229–3234. [Google Scholar]
- Zamani, S.; Javanmard, M.; Jafarzadeh, N. A novel image encryption scheme based on hyper chaotic systems and fuzzy cellular automata. In Proceedings of the 2014 22nd Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 20–22 May 2014; pp. 1136–1141. [Google Scholar]
- Norouzi, B.; Mirzakuchaki, S. A fast color image encryption algorithm based on hyper-chaotic systems. Nonlinear Dyn. 2014, 78, 995–1015. [Google Scholar] [CrossRef]
- Khan, S.; Han, L.; Lu, H.; Butt, K.K.; Bachira, G.; Khan, N. A New Hybrid Image Encryption Algorithm Based on 2D-CA, FSM-DNA Rule Generator, and FSBI. IEEE Access 2019, 7, 81333–81350. [Google Scholar] [CrossRef]
- Huang, Q.; Li, G. Research on the Application of Image Encryption Technology Based on 7 Dimensional CNN Hyper Chaos. In Proceedings of the 2016 International Conference on Smart City and Systems Engineering (ICSCSE), Hunan, China, 25–26 November 2016; pp. 531–534. [Google Scholar]
- Liu, H.J.; Wang, X.Y.; Kadir, A. Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 2012, 12, 1457–1466. [Google Scholar] [CrossRef]
- Liu, W.H.; Sun, K.H.; He, Y.; Yu, M.Y. Color image encryption using three-dimensional sine ICMIC modulation map and DNA sequence operations. Int. J. Bifurc. Chaos 2017, 27, 1750171. [Google Scholar] [CrossRef]
- Niyat, A.Y.; Moattar, M.H.; Torshiz, M.N. Color image encryption based on hybrid hyper chaotic system and cellular automata. Opt. Lasers Eng. 2017, 90, 225–237. [Google Scholar] [CrossRef]
- Rehman, A.; Liao, X.; Ashraf, R.; Ullah, S.; Wang, H. A color image encryption technique using exclusive-OR with DNA complementary rules based on chaos theory and SHA-2. Optik 2018, 159, 348–367. [Google Scholar] [CrossRef]
- Zhang, W.; Wong, K.W.; Yu, H.; Zhu, Z.L. A symmetric color image encryption algorithm using the intrinsic features of bit distributions. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 584–600. [Google Scholar] [CrossRef]
- Hoang, T.M.; Thanh, H.X. Cryptanalysis and security improvement for a symmetric color image encryption algorithm. Optik 2018, 155, 366–383. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, D.; Liu, Y.; Yuan, Y.; Liu, Q. A novel image encryption algorithm based on chaos and Line map. Neurocomputing 2015, 169, 150–157. [Google Scholar] [CrossRef]
- Chen, L.; Ma, B.; Zhao, X.; Wang, S. Differential cryptanalysis of a novel image encryption algorithm based on chaos and Line map. Nonlinear Dyn. 2016, 84, 1–11. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, H.; Zhao, Y.L.; Zhu, Z.L. Image encryption based on three-dimensional bit matrix permutation. Signal Process. 2016, 118, 36–50. [Google Scholar] [CrossRef]
- Wu, J.; Liao, X.; Yang, B. Cryptanalysis and Enhancements of Image Encryption Based on Three-dimensional Bit Matrix Permutation. Signal Process. 2018, 142, 292–300. [Google Scholar] [CrossRef]
- Huang, X. Image encryption algorithm using chaotic Chebyshev generator. Nonlinear Dyn. 2012, 67, 2411–2417. [Google Scholar] [CrossRef]
- Wang, X.; Luan, D.; Bao, X. Cryptanalysis of an image encryption algorithm using Chebyshev generator. Digit. Signal Process. 2014, 25, 244–247. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Z.; Fu, C.; Zhang, L.; Zhang, Y. An efficient image encryption scheme using lookup table-based confusion and diffusion. Signal Process. 2015, 81, 1151–1166. [Google Scholar] [CrossRef]
- Gao, T.G.; Chen, Z.Q. A new image encryption algorithm based on hyper chaos. Phys. Lett. A 2008, 372, 394–400. [Google Scholar] [CrossRef]
- Hu, G.; Xiao, D.; Wang, Y.; Li, X. Cryptanalysis of a chaotic image cipher using Latin square-based confusion and diffusion. Nonlinear Dyn. 2017, 88, 1305–1316. [Google Scholar] [CrossRef]
- Rhouma, R.; Belghith, S. Cryptanalysis of a new image encryption algorithm based on hyperchaos. Phys. Lett. A 2008, 372, 5973–5978. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, X.; Ma, J. Image encryption algorithm based on hyper-chaotic system and dynamic S-box. Multimed. Tools Appl. 2016, 75, 7739–7759. [Google Scholar] [CrossRef]
- Tong, X.; Cui, M. Image encryption with compound chaotic sequence cipher shifting dynamically. Image Vis. Comput. 2008, 26, 843–850. [Google Scholar] [CrossRef]
- Zhang, X.; Nie, W.; Ma, Y.; Tian, Q. Cryptanalysis and improvement of an image encryption algorithm based on hyper-chaotic system and dynamic S-box. Multimed. Tools Appl. 2017, 76, 1–19. [Google Scholar] [CrossRef]
- CLi, Q.; Li, S.J.; Chen, G.R.; Halang, W.A. Cryptanalysis of an image encryption scheme based on a compound chaotic sequence. Image Vis. Comput. 2009, 27, 1035–1039. [Google Scholar] [Green Version]
- Zhu, C.X. A novel image encryption scheme based on improved hyper chaotic sequences. Opt. Commun. 2012, 285, 29–37. [Google Scholar] [CrossRef]
- Pak, C.; Huang, L. A new color image encryption using combination of the 1d chaotic map. Signal Process. 2017, 138, 129–137. [Google Scholar] [CrossRef]
- Li, C.Q.; Liu, Y.S.; Xie, T.; Chen, M.Z.Q. Breaking a novel image encryption scheme based on improved hyper chaotic sequences. Nonlinear Dyn. 2013, 73, 2083–2089. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, D.; Chen, X.; Huang, H. Cryptanalysis and Enhancements of Image Encryption Using Combination of the 1D Chaotic Map. Signal Process. 2018, 144, 444–452. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Liu, Z.; Wu, C.; Wang, J.; Hu, Y. A Color Image Encryption Using Dynamic DNA and 4-D Memristive Hyper-Chaos. IEEE Access 2019, 7, 78367–78378. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, W.; Chen, C. Image encryption using binary bit-plane. Signal Process. 2014, 100, 197–207. [Google Scholar] [CrossRef]
- Enayatifar, R.; Abdullah, A.H.; Isnin, I.F.; Altameem, A.; Lee, M. Image encryption using a synchronous permutation-diffusion technique. Opt. Lasers Eng. 2017, 90, 146–154. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Budhiraja, R.; Das, M.K.; Singh, S. Intertwining logistic map and Cellular Automata based color image encryption model. In Proceedings of the 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), New Delhi, India, 11–13 March 2016; pp. 618–623. [Google Scholar] [CrossRef]
- Guesmi, R.; Farah, M.A.B.; Kachouri, A.; Samet, M. A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2. Nonlinear Dyn. 2016, 83, 1123–1136. [Google Scholar] [CrossRef]
- Suri, S.; Vijay, R. A synchronous intertwining logistic map-DNA approach for color image encryption. J. Ambient Intell. Humaniz. Comput. 2019, 10, 2277–2290. [Google Scholar] [CrossRef]
- Brindha, M.; Gounden, N.A. A chaos based image encryption and lossless compression algorithm using hash table and chinese remainder theorem. Appl. Soft Comput. 2016, 40, 379–390. [Google Scholar] [CrossRef]
- Hu, T.; Liu, Y.; Gong, L.; Guo, S.; Yuan, H. Chaotic image crypto-system using DNA deletion and DNA insertion. Signal Process. 2017, 134, 234–243. [Google Scholar] [CrossRef]
- Ye, G.; Huang, X. An efficient symmetric image encryption algorithm based on an intertwining logistic map. Neuro-Computing 2017, 251, 45–53. [Google Scholar] [CrossRef]
- Li, C. Cracking a hierarchical chaotic image encryption algorithm based on permutation. Signal Process. 2015, 118, 203–210. [Google Scholar] [CrossRef]
- Castro, J.C.H.; Sierra, J.M.; Seznec, A.; Izquierdo, A.; Ribagorda, A. The strict avalanche criterion randomness test. Math. Comput. Simul. 2005, 68, 1–7. [Google Scholar] [CrossRef]
- Chai, X.; Fu, X.; Gan, Z.; Lu, Y.; Chen, Y. A color image crypto-system based on dynamic DNA encryption and chaos. Signal Process. 2019, 155, 44–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, D. An image encryption scheme based on rotation matrix bit-level permutation and block diffusion. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 74–82. [Google Scholar] [CrossRef]
- Huang, L.; Cai, S.; Xiao, M.; Xiong, X. A Simple Chaotic Map-Based Image Encryption System Using Both plaintext Related Permutation and Diffusion. Entropy 2018, 20, 535. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.L. A color image encryption with heterogeneous bit-permutation and correlated chaos. Opt. Commun. 2015, 342, 51–60. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, W.; Wong, K.; Yu, H. A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf Sci. 2011, 181, 1171–1186. [Google Scholar] [CrossRef]
- Song, C.; Qiao, Y.; Zhang, X. An image encryption scheme based on new spatio-temporal chaos. Optik 2013, 124, 3329–3334. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X. A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice. Inf. Sci. 2014, 273, 329–351. [Google Scholar] [CrossRef]
- Wei, X.; Guo, L.; Zhang, Q.; Zhang, J.; Lian, S. A novel color image encryption algorithm based on DNA sequence operation and hyper-chaotic system. J. Syst. Softw. 2012, 85, 290–299. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, L.; Wei, X. A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik 2013, 124, 3596–3600. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, X. A novel couple images encryption algorithm based on DNA sub-sequence operation and chaotic system. Optik 2013, 124, 6276–6281. [Google Scholar] [CrossRef]
- Enayatifar, R.; Abdullah, A.H.; Isnin, I.F. Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt. Lasers Eng. 2014, 56, 83–93. [Google Scholar] [CrossRef]
- Zhen, P.; Zhao, G.; Min, L.; Jin, X. Chaos-based image encryption scheme combining DNA coding and entropy. Multimed. Tools Appl. 2016, 75, 6303–6319. [Google Scholar] [CrossRef]
- Xu, L.; Li, Z.; Li, J.; Hua, W. A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 2016, 78, 17–25. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, Y.Q.; Bao, X.M. A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers Eng. 2015, 73, 53–61. [Google Scholar] [CrossRef]
- Ramasamy, P.; Ranganathan, V.; Kadry, S.; Damasevicius, R.; Blazauskas, T. An Image Encryption Scheme Based on Block Scrambling, Modified Zigzag Transformation and Key Generation Using Enhanced Logistic-Tent Map. Entropy 2019, 21, 656. [Google Scholar] [CrossRef]
- Wu, X.; Kurths, J.; Kan, H. A robust and lossless DNA encryption scheme for color images. Multimed. Tools Appl. 2017, 77, 12349–12376. [Google Scholar] [CrossRef]
- Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based crypto-systems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef]
- Tong, X.J.; Zhang, M.; Wang, Z.; Ma, J. A joint color image encryption and compression scheme based on hyper-chaotic system. Nonlinear Dyn. 2016, 84, 2333–2356. [Google Scholar] [CrossRef]
- Toughi, S.; Fathi, M.H.; Sekhavat, Y.A. An image encryption scheme based on elliptic curve pseudo random and advanced encryption system. Signal Process. 2017, 141, 217–227. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, B.; Hu, Y.; Ran, Y. A novel color image encryption scheme using rectangular transform-enhanced chaotic tent maps. IEEE Access 2017, 5, 6429–6436. [Google Scholar]
- Van den Assem, R.; van Elk, W. A chosen-plaintext attack on the microsoft basic protection. Comput. Secur. 1986, 5, 36–45. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Z.; Zhang, L.; Zhang, Y.; Yang, B. Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption. Signal Process. 2018, 142, 340–353. [Google Scholar] [CrossRef]
- Wu, X.; Kan, H.; Kurths, J. A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps. Appl. Soft Comput. J. 2015, 37, 24–39. [Google Scholar] [CrossRef]
- Fu, C.; Chen, J.; Zou, H.; Meng, W.; Zhan, Y.; Yu, Y. A chaos-based digital image encryption scheme with an improved diffusion strategy. Opt. Express 2012, 20, 2363–2378. [Google Scholar] [CrossRef] [PubMed]
- Boopathy, D.; Sundaresan, M. A novel multi-dimensional encryption technique to secure the grayscale images and color images in public cloud storage. Innov. Syst. Softw. Eng. 2019, 15, 43–64. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Kadir, A. Color image encryption using Choquet fuzzy integral and hyper chaotic system. Opt. Int. J. Light Electron. Opt. 2013, 124, 3527–3533. [Google Scholar] [CrossRef]
- Kadir, A.; Hamdulla, A.; Guo, W. Color image encryption using skew tent map and hyper chaotic system of 6th-order CNN. Optik 2014, 125, 1671–1675. [Google Scholar] [CrossRef]
- Rhouma, R.; Meherzi, S.; Belghith, S. OCML-based colour image encryption. Chaos Solitons Fract. 2009, 40, 309–318. [Google Scholar] [CrossRef]
- Ahmad, J.; Hwang, S.O. A secure image encryption scheme based on chaotic maps and affine transformation. Multimed. Tools Appl. 2016, 75, 13951–13976. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, D.; Xiang, Y. Quantum Image Encryption Using Intra and Inter Bit Permutation Based on Logistic Map. IEEE Access 2019, 7, 6937–6946. [Google Scholar] [CrossRef]
- Taneja, N.; Raman, B.; Gupta, I. Combinational domain encryption for still visual data. Multimed. Tool Appl. 2012, 59, 775–793. [Google Scholar] [CrossRef]
- Wang, X.; Teng, L.; Qin, X. A novel colour image encryption algorithm based on chaos. Signal Process. 2012, 92, 1101–1108. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y.; Saveriades, G.; Agaian, S.; Noonan, J.P.; Natarajan, P. Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 2013, 222, 323–342. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, Y.Q.; Bao, X.M. A Colour Image Encryption Scheme Using Permutation-Substitution Based on Chaos. Entropy 2015, 17, 3877–3897. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X. Color image encryption using spatial bit level permutation and high-dimension chaotic system. Opt. Commun. 2011, 284, 3895–3903. [Google Scholar] [CrossRef]
- Kalpana, J.; Murali, P. An improved color image encryption based on multiple DNA sequence operations with DNA synthetic image and chaos. Opt. Int. J. Light Electron. Opt. 2015, 126, 5703–5709. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, R.; Liu, J.; Qiu, S.; Cao, Y. An efficient and self-adapting colour image encryption algorithm based on chaos and interactions among multiple layers. Multimed. Tools Appl. 2018, 77, 26191–26217. [Google Scholar] [CrossRef]
- Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [Google Scholar] [CrossRef]
- Moafimadani, S.S.; Chen, Y.; Tang, C. A New Algorithm for Medical Color Images Encryption Using Chaotic Systems. Entropy 2019, 21, 577. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Zhang, Y.; Zhou, S.; Zhao, T.; Yao, N. A novel chaotic system and its application in a color image cryptosystem. Opt. Lasers Eng. 2019, 121, 479–494. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Z.; Yu, H. A Symmetric Image Encryption Algorithm Based on a Coupled Logistic-Bernoulli Map and Cellular Automata Diffusion Strategy. Entropy 2019, 21, 504. [Google Scholar] [CrossRef]
- Patro, K.A.K.; Acharya, B. An efficient colour image encryption scheme based on 1-D chaotic maps. J. Inf. Secur. Appl. 2019, 46, 23–41. [Google Scholar] [CrossRef]
Proposed by | Cryptanalysis by | Attack Approach |
---|---|---|
Zhang et al. (2013) [30] | Hoang et al. (2018) [31] | Chosen cipher-text |
Zhou et al. (2015) [32] | Chen et al. (2017) [33] | Differential attack |
Zhang et al. (2016) [34] | Wu et al. (2018) [35] | Chosen plaintext |
Huang et al. (2012) [36] | Wang et al. (2014) [37] | Chosen plaintext |
Chen et al. (2015) [38], Gao et al. (2008) [39] | Hu et al. (2017) [40], Rhouma et al. (2008) [41] | Chosen plaintext and cipher-text |
Liu et al. (2016) [42], Tong et al. (2008) [43] | Zhang et al. (2017) [44], Li et al. (2009) [45] | Chosen plaintext |
Zhu (2012) [46], Pak et al. (2017) [47] | Li et al. (2013) [48], Wang et al. (2018) [49] | Chosen plaintext |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
Rule 1 | Rule 2 | Rule 3 | Rule 4 |
00 ↦ A | 00 ↦ A | 01 ↦ A | 01 ↦ A |
11 ↦ T | 11 ↦ T | 10 ↦ T | 10 ↦ T |
01 ↦ C | 10 ↦ C | 00 ↦ C | 11 ↦ C |
10 ↦ G | 01↦ G | 11↦ G | 00 ↦ G |
Rule 5 | Rule 6 | Rule 7 | Rule 8 |
10 ↦ A | 10 ↦ A | 11 ↦ A | 11 ↦ A |
01 ↦ T | 01 ↦ T | 00 ↦ T | 00 ↦ T |
00 ↦ C | 11 ↦ C | 01 ↦ C | 10 ↦ C |
11 ↦ G | 00 ↦ G | 10 ↦ G | 01 ↦ G |
Terms | System Parameters/Values |
---|---|
512-bit | 40CD744F6682BD0ACF73579A5DC353DB |
Hexadecimal | 3A295D3A2D8703566C8ACF9BE8AA688E |
key | 87621E8F5F3D073763C46E93FF7B1A2B |
0476C3BB8408F2A2E8AFAB48087BB9C4 | |
Seed | |
P1 | |
P2 | |
Algorithm | Rule/Map | Keyspace | Operation | Image Type | Testing Parameters |
---|---|---|---|---|---|
Enayatifar2017 [53] | LM | 120 bit | DNA XOR | Gray Scale | NPCR, UACI, Entropy, CC, Key-space, Histogram, Time parameter |
Kumar2016 [54] | ILM | 128 bit | CA | Color | NPCR, UACI, Entropy, CC, Key-space, |
Histogram, Noise test, Crop test | |||||
Guesmi2016 [55] | Lorenz | SHA-256 | DNA XOR | Color | NPCR, UACI, Entropy, CC, |
system | Key-space, Histogram | ||||
S.Suri2018 [56] | ILM | SHA-256 | DNA XOR | Color | NPCR, UACI, Entropy, CC, |
DNA Addition | Binary | Key-space, Histogram, Contrast | |||
Our Proposed 3C3R | DNA, | NPCR, UACI, Entropy, GVD CC, | |||
LSS PRNG | SHA-512 | BBI, | Color | Key-sensitivity, Histogram, PSNR, Occlusion, | |
2D-CA | (24 bit) | Chosen/known plain text, Variance. |
Images | Plain | 3C3R | Ref. [62] | Ref. [49] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cipher | Cipher | Cipher | ||||||||||
Red | Green | Blue | Red | Green | Blue | Red | Green | Blue | Red | Green | Blue | |
Lena | 123,072.5 | 87,100.835 | 33,522.734 | 293.99 | 264.977 | 254.722 | 247.78 | 279.62 | 265.71 | 527.32 | 504.75 | 501.68 |
Couple | 289,630.656 | 337,863.062 | 210,359.81 | 242.434 | 216.323 | 246.357 | 284.35 | 247.37 | 260.76 | - | - | - |
Female | 113,045.289 | 64,436.410 | 66,971.062 | 298.134 | 256.690 | 243.771 | 280.64 | 280.46 | 230.42 | - | - | - |
Tree | 129,825.531 | 57,011.605 | 81,373.710 | 239.590 | 233.216 | 238.281 | 282.81 | 254.87 | 225.79 | - | - | - |
Bean | 168,076.796 | 501,640.093 | 789,945.75 | 231.815 | 257.557 | 228.984 | 232.98 | 279.61 | 245.61 | - | - | - |
House | 992,034.12 | 1,330,180.12 | 768,126.75 | 998.60 | 1107.34 | 1046.96 | 1070.2 | 1231.2 | 941.65 | - | - | - |
All White | 220.130 | 203.561 | 216.067 | 291.021 | 223.145 | 264.58 | - | - | - |
Algorithms | Cipher Image | |||
---|---|---|---|---|
Horizontal | Vertical | Diagonal | ||
3C3R | Plain | 0.95589 | 0.96567 | 0.93313 |
Cipher | 0.00750 | −0.00184 | 0.00012 | |
Ref. [15] | −0.0082 | −0.0128 | −0.0012 | |
Ref. [66] | 0.0020 | −0.0009 | 0.0017 | |
Ref. [28] | 0.0265 | 0.0792 | 0.0625 | |
Ref. [67] | 0.0055 | 0.0041 | 0.002 | |
Ref. [68] | 0.0005 | 0.003 | 0.0021 | |
Ref. [69] | 0.0044 | 0.0034 | 0.0020 | |
Ref. [70] | 0.0012 | 0.0026 | 0.0021 | |
Ref. [71] | 0.0024 | 0.0012 | 0.0016 | |
Ref. [72] | 0.0072 | 0.0058 | 0.0031 | |
Ref. [55] | 0.0022 | 0.0001 | −0.0017 | |
Ref. [73] | 0.0214 | 0.0465 | −0.0090 | |
Ref. [58] | −0.0077 | 0.0002 | −0.0055 |
Algorithm | Horizontal | Vertical | Diagonal | UACI | NPCR |
---|---|---|---|---|---|
Ref. [64] | 0.003 | −0.0040 | 0.0013 | 33.45 | 99.60 |
Ref. [63] | 0.0018 | 0.0011 | −0.0013 | 33.43 | 99.61 |
Ref. [74] | −0.0023 | 0.0019 | −0.0034 | 33.51 | 99.62 |
Ref. [75] | 0.0020 | −0.0007 | −0.0014 | 27.97 | 98.36 |
Ref. [65] | −0.0098 | −0.0050 | −0.0013 | 32.48 | 93.21 |
Ref. [76] | −0.0237 | −0.0178 | −0.0284 | 33.58 | 99.62 |
Ref. [77] | 0.0080 | 0.0098 | −0.0058 | 33.43 | 99.60 |
3C3R | −0.0027 | −0.00054 | −0.0013 | 34.45 | 99.998 |
Images | Channels | Plain | Cipher | Entropy | ||||
---|---|---|---|---|---|---|---|---|
Horizontal | Vertical | Diagonal | Horizontal | Vertical | Diagonal | (R,G,B) | ||
Lena.jpg | Red | 0.95589 | 0.96567 | 0.93313 | 0.00750 | −0.00184 | 0.00012 | 7.9972 |
Green | 0.93722 | 0.95832 | 0.92499 | 0.036575 | 0.002284 | −0.003513 | 7.9974 | |
Blue | 0.91142 | 0.93501 | 0.88513 | 0.0014717 | −0.008797 | 0.0096045 | 7.9967 | |
Baboon.png | Red | 0.92283 | 0.86082 | 0.85468 | −0.003068 | 0.004990 | −0.002213 | 7.999 |
Green | 0.86721 | 0.76839 | 0.7416 | 0.0076227 | −0.002984 | −0.007508 | 7.999 | |
Blue | 0.91092 | 0.88181 | 0.83619 | 0.012334 | 0.0007122 | 0.006166 | 7.9994 | |
Fruits.jpg | Red | 0.9865 | 0.98558 | 0.97342 | −0.006591 | −0.021533 | −0.008414 | 7.996 |
Green | 0.98127 | 0.97943 | 0.96401 | −0.003553 | 0.015646 | −0.003781 | 7.9968 | |
Blue | 0.95148 | 0.94673 | 0.91089 | 0.0085275 | 0.0084825 | −0.002547 | 7.9972 | |
Pepper.bmp | Red | 0.96088 | 0.96686 | 0.95436 | −0.001994 | −0.007431 | −0.009151 | 7.999 |
Green | 0.98276 | 0.98156 | 0.96989 | −0.004029 | −0.001068 | −0.001439 | 7.9992 | |
Blue | 0.967 | 0.96797 | 0.94546 | 0.0011452 | 0.00081563 | −0.005897 | 7.9998 | |
Skull.png | Red | 0.98542 | 0.99226 | 0.97901 | 0.003727 | 0.007569 | −0.001029 | 7.999 |
Green | 0.98546 | 0.99283 | 0.9822 | −0.009794 | 0.017652 | −0.001104 | 7.9993 | |
Blue | 0.98659 | 0.99249 | 0.98009 | −0.009525 | −0.010168 | −0.008972 | 7.999 | |
Nike.png | Red | 0.98823 | 0.99089 | 0.972 | −0.0876 | 0.000835 | −0.007701 | 7.999 |
Green | 0.98618 | 0.99008 | 0.9706 | −0.095098 | 0.0008801 | 0.0003289 | 7.9997 | |
Blue | 0.98723 | 0.9906 | 0.97178 | −0.008857 | 0.003444 | 0.0054982 | 7.999 | |
Playboy.png | Red | 0.97007 | 0.98775 | 0.95954 | −0.08556 | −0.006046 | −0.000411 | 7.999 |
Green | 0.97039 | 0.98257 | 0.95089 | −0.10513 | −0.001043 | −0.000546 | 7.999 | |
Blue | 0.96919 | 0.98127 | 0.95565 | −0.002814 | −0.005621 | 0.0066023 | 7.999 | |
Airplane.bmp | Red | 0.94741 | 0.93617 | 0.88936 | −0.029442 | −0.001137 | −0.008049 | 7.9975 |
Green | 0.94242 | 0.94759 | 0.90503 | −0.034386 | −0.000201 | −0.014404 | 7.9971 | |
Blue | 0.9586 | 0.92611 | 0.90723 | 0.013706 | −0.009122 | −0.001553 | 7.9973 | |
Bike.png | Red | 0.95786 | 0.95752 | 0.92943 | −0.003292 | 0.0047614 | 0.0073559 | 7.9992 |
Green | 0.96244 | 0.96579 | 0.935 | 0.013224 | 0.007460 | −0.004485 | 7.999 | |
Blue | 0.97765 | 0.97543 | 0.96262 | −0.003638 | −0.003146 | 0.0006025 | 7.9992 | |
Opera.png | Red | 0.97407 | 0.97118 | 0.9524 | −0.000680 | 0.004448 | −0.01049 | 7.999 |
Green | 0.96834 | 0.96442 | 0.94837 | 0.0009368 | 0.0007775 | −0.004144 | 7.999 | |
Blue | 0.97498 | 0.97311 | 0.95446 | −0.001574 | 0.0000351 | −0.01126 | 7.9993 | |
Bridge.png | Red | 0.95037 | 0.97699 | 0.92247 | −0.004985 | 0.0036574 | −0.002305 | 7.9993 |
Green | 0.95693 | 0.97946 | 0.92737 | −0.000379 | 0.008972 | 0.003696 | 7.999 | |
Blue | 0.96218 | 0.98441 | 0.94551 | 0.0069794 | 0.017072 | −0.001523 | 7.9992 | |
Vegetables.jpg | Red | 0.97696 | 0.97952 | 0.96247 | 0.005099 | −0.005643 | −0.001603 | 7.999 |
Green | 0.97391 | 0.9767 | 0.95684 | 0.002007 | 0.009278 | 0.003720 | 7.999 | |
Blue | 0.96823 | 0.96769 | 0.94104 | −0.007227 | −0.004639 | −0.003687 | 7.999 |
Algorithm | Lena | Pepper | ||
---|---|---|---|---|
NPCRR,G,B | UACIR,G,B | NPCRR,G,B | UACIR,G,B | |
3C3R | 99.978 | 33.46 | 99.998 | 34.54 |
Ref. [28] | 99.66 | 33.44 | 99.63 | 33.47 |
Ref. [58] | 99.599 | 33.465 | - | - |
Ref. [59] | 99.62 | 33.65 | - | - |
Ref. [79] | 99.62 | 33.77 | 99.64 | 33.53 |
Ref. [81] | 99.71 | 33.45 | 99.74 | 33.53 |
Ref. [80] | 99.60 | 33.48 | - | - |
Ref. [83] | 99.6037 | 33.44 | - | - |
Ref. [84] | 99.61 | 33.463 | 99.608 | 33.49 |
Images | NPCRR,G,B(99.6174) | UACIR,G,B(33.4738) | ||||
Red | Green | Blue | Red | Green | Blue | |
Full Black | 99.7021 | 99.6903 | 99.6905 | 33.4641 | 33.4412 | 33.4710 |
All White | 99.7025 | 99.6912 | 99.6908 | 33.4715 | 33.4698 | 33.4708 |
SPimage1 | 99.5975 | 99.4875 | 99.4764 | 33.4355 | 33.5970 | 33.4466 |
SPimage2 | 99.6105 | 99.5091 | 99.5622 | 33.4344 | 33.5201 | 33.4649 |
Cropped Size | Proposed 3C3R | Ref. [29] | ||
---|---|---|---|---|
PSNR | MSE | PSNR | MSE | |
1/2 | 12.88 | 3121.1 | 11.58 | 4578.34 |
1/4 | 14.722 | 2192.2 | 14.59 | 2289.90 |
1/8 | 16.75 | 1375.9 | 17.57 | 1155.32 |
1/16 | 19.25 | 772.65 | 20.57 | 579.98 |
Algorithm | PSNR | Lena | Baboon | Couple | Panda | Vegetables |
---|---|---|---|---|---|---|
3C3R | O to D | ∞ | ∞ | ∞ | ∞ | ∞ |
O to C | 8.1020 | 8.011 | 6.2414 | 7.7028 | 6.8459 | |
Ref. [15] | O to C | 8.1300 | 7.8569 | 7.4892 | 7.7410 | 7.4395 |
Ref. [46] | O to D | 96.295 | - | - | - | - |
O to C | 9.0348 | - | - | - | - | |
Ref. [23] | O to C | 8.6878 | - | - | - | - |
Ref. [92] | O to C | 9.0486 | - | - | - | - |
Ref. [90] | O to C | 8.3655 | 8.8532 | - | - | - |
Ref. [91] | O to C | 8.2522 | 8.8223 | - | - | - |
Algorithm | Test | Plain | Ciphered | ||||
---|---|---|---|---|---|---|---|
Image | R | G | B | R | G | B | |
Lena | 7.568 | 7.058 | 6.779 | 7.997 | 7.997 | 7.996 | |
Pepper | 7.338 | 7.496 | 7.058 | 7.999 | 7.999 | 7.999 | |
Our | Baboon | 7.706 | 7.474 | 7.752 | 7.999 | 7.999 | 7.999 |
3C3R | Panda | 7.708 | 7.552 | 7.726 | 7.996 | 7.997 | 7.997 |
Vegetable | 7.905 | 7.674 | 6.345 | 7.999 | 7.999 | 7.999 | |
Ref. [82] | Lena | 7.293 | 7.581 | 7.085 | 7.989 | 7.989 | 7.989 |
Pepper | 7.331 | 7.524 | 7.079 | 7.989 | 7.988 | 7.989 | |
Baboon | 7.700 | 7.512 | 7.765 | 7.989 | 7.989 | 7.988 | |
Panda | 7.711 | 7.627 | 7.793 | 7.988 | 7.989 | 7.989 | |
Vegetable | 7.797 | 7.821 | 7.359 | 7.989 | 7.989 | 7.989 | |
Ref. [87] | Lena | - | - | - | 7.987 | 7.987 | 7.986 |
Ref. [88] | Lena | - | - | - | 7.927 | 7.974 | 7.970 |
Ref. [89] | Lena | - | - | - | 7.973 | 7.975 | 7.971 |
Ref. [96] | Lena | - | - | - | 7.987 | 7.988 | 7.987 |
Images | Our 3C3R | Ref. [95] | ||
---|---|---|---|---|
ShannonC | Plain | Cipher | ShannonC | |
Vegetables | 7.9028 | 7.496 | 7.999 | - |
Bridge | 7.9023 | 7.876 | 7.999 | - |
Opera | 7.9018 | 7.798 | 7.999 | - |
Bike | 7.9023 | 7.441 | 7.999 | - |
Airplane | 7.9027 | 6.665 | 7.9991 | - |
House | 7.9027 | 7.4858 | 7.9998 | 7.9021 |
Playboy | 7.9030 | 0.5257 | 8.00 | - |
Nike | 7.9029 | 1.1969 | 7.9998 | - |
Skull | 7.9019 | 7.483 | 7.999 | - |
Pepper | 7.9029 | 7.669 | 7.999 | 7.9024 |
Fruit | 7.9019 | 7.532 | 7.998 | - |
Baboon | 7.9025 | 7.7624 | 7.9998 | 7.9023 |
Lena | 7.9028 | 7.4517 | 7.9991 | 7.9024 |
All White | 7.9020 | 0 | 8.00 | - |
Full Black | 7.9027 | 0 | 8.00 | - |
USC-SIPI | Our 3C3R | Ref. [29] | Ref. [69] | Ref. [97] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GVD | GVD | GVD | GVD | |||||||||
Red | Green | Blue | Red | Green | Blue | Red | Green | Blue | Red | Green | Blue | |
4.1.01 | 0.981 | 0.984 | 0.923 | 0.977 | 0.979 | 0.975 | - | - | - | - | - | - |
4.1.02 | 0.984 | 0.989 | 0.987 | 0.978 | 0.979 | 0.979 | - | - | - | - | - | |
4.1.03 | 0.886 | 0.774 | 0.814 | 0.978 | 0.976 | 0.977 | - | - | - | - | - | - |
4.1.04 | 0.988 | 0.978 | 0.966 | 0.979 | 0.975 | 0.980 | - | - | - | - | - | - |
4.1.05 | 0.983 | 0.921 | 0.975 | 0.982 | 0.966 | 0.969 | - | - | - | - | - | - |
4.1.06 | 0.986 | 0.998 | 0.976 | 0.943 | 0.912 | 0.934 | - | - | - | - | - | - |
4.1.08 | 0.700 | 0.979 | 0.921 | 0.985 | 0.973 | 0.983 | - | - | - | - | - | - |
4.2.01 | 0.958 | 0.998 | 0.986 | 0.989 | 0.968 | 0.977 | - | - | - | - | - | - |
4.2.03 | 0.986 | 0.988 | 0.992 | 0.936 | 0.906 | 0.903 | - | - | - | 0.9801 | 0.989 | 0.9865 |
4.2.07 | 0.995 | 0.953 | 0.847 | 0.976 | 0.948 | 0.974 | - | - | - | - | - | - |
Lena | 0.960 | 0.9856 | 0.9874 | - | - | - | 0.9805 | 0.9812 | 0.9876 | 0.9701 | 0.9700 | 0.9690 |
Image Size | Proposed 3C3R | Ref. [98] | Ref. [81] | Ref. [99] | Ref. [57] |
---|---|---|---|---|---|
3.321 s | 4.7795 s | - | 3.617 s | - | |
6.713 s | 8.670 s | 8.308 s | 14.811 s | 16.170 s |
Algorithms | Images | Entropy Comparison | |||
---|---|---|---|---|---|
Red | Green | Blue | |||
S.S Moafimadani2019 [100] | Full white | 7.9994 | 7.9994 | 7.9993 | |
Full black | 7.9993 | 7.9994 | 7.9993 | ||
Z. Liu2019 [51] | Full white | 7.9914 | 7.9942 | 7.9856 | |
Full black | 7.9965 | 7.9948 | 7.9955 | ||
3C3R | Full white | 8.00 | 8.00 | 8.00 | |
Full black | 8.00 | 8.00 | 8.00 | ||
M. Wang2019 [101] | Lena | 7.9970 | 7.9973 | 7.9973 | |
3C3R | Lena | 7.9972 | 7.9974 | 7.9967 | |
Histogram Variance | |||||
X. Chai2019 [62] | House | Red | Green | Blue | |
1070.2 | 1231.2 | 941.65 | |||
3C3R | House | 998.60 | 1107.34 | 1046.96 | |
Correlation Comparison | |||||
W. Zhang2019 [102] | Pepper | Horizontal | Vertical | Diagonal | |
Red | 0.003853 | 0.001284 | −0.001832 | ||
Green | −0.000912 | 0.001460 | 0.002366 | ||
Blue | −0.001647 | 0.006770 | −0.000366 | ||
3C3R | Pepper | Red | −0.001994 | −0.007431 | −0.009151 |
Green | −0.004029 | −0.001068 | −0.001439 | ||
Blue | 0.0011452 | 0.00081563 | −0.005897 | ||
UACI Comparison | |||||
S.Suri2019 [56] | Lena | 32.1752 | |||
Baboon | 30.3547 | ||||
3C3R | Lena | 33.45 | |||
Baboon | 33.43 | ||||
NPCR, UACI Comparison | |||||
K.A.K Patro2019 [103] | Lena | NPCR | 99.6314 | ||
UACI | 33.551 | ||||
3C3R | Lena | NPCR | 99.978 | ||
UACI | 33.45 | ||||
Corr. Comparison Of 1000 pixels | |||||
P. Ramasamy2019 [76] | Lena | Horizontal | Vertical | Diagonal | |
−0.0237 | −0.0178 | −0.0284 | |||
3C3R | Lena | −0.0027 | −0.00054 | −0.0013 | |
PSNR Comparison | |||||
X. Liu2019 [91] | Lena | O to C | 8.2522 | ||
Baboon | O to C | 8.8223 | |||
3C3R | Lena | O to C | 8.1020 | ||
Baboon | O to C | 8.011 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Han, L.; Mudassir, G.; Guehguih, B.; Ullah, H. 3C3R, an Image Encryption Algorithm Based on BBI, 2D-CA, and SM-DNA. Entropy 2019, 21, 1075. https://doi.org/10.3390/e21111075
Khan S, Han L, Mudassir G, Guehguih B, Ullah H. 3C3R, an Image Encryption Algorithm Based on BBI, 2D-CA, and SM-DNA. Entropy. 2019; 21(11):1075. https://doi.org/10.3390/e21111075
Chicago/Turabian StyleKhan, Sajid, Lansheng Han, Ghulam Mudassir, Bachira Guehguih, and Hidayat Ullah. 2019. "3C3R, an Image Encryption Algorithm Based on BBI, 2D-CA, and SM-DNA" Entropy 21, no. 11: 1075. https://doi.org/10.3390/e21111075
APA StyleKhan, S., Han, L., Mudassir, G., Guehguih, B., & Ullah, H. (2019). 3C3R, an Image Encryption Algorithm Based on BBI, 2D-CA, and SM-DNA. Entropy, 21(11), 1075. https://doi.org/10.3390/e21111075