Quantifying the Variability in Resting-State Networks
<p>Panels (<b>a</b>), (<b>e</b>), and (<b>c</b>) show the weighted networks DMN, FPN, and both of them inferred together (DMN+FPN), respectively. Note that the differences in the inferred links in DMN only involve very weak links. The similarity measure used here is the maximum entropy conditional mutual information (MECMI), see Methodology for details. Panels (<b>b</b>) and (<b>d</b>) show the sites of the regions of interest (ROIs) in the human brain (adapted from <a href="https://www.blendswap.com/blend/13180" target="_blank">https://www.blendswap.com/blend/13180</a>), where (b) corresponds to DMN (only one set of the symmetrically located nodes is shown) and (d) corresponds to FPN, see <a href="#entropy-21-00882-t001" class="html-table">Table 1</a> for the specific names. In panel (c), we can separate the links into two classes: Links within a network, the so-called intranetwork links, corresponding to the links inside the boxes; and cross-links between DMN and FPN, the so-called internetwork links, corresponding to the links outside the boxes.</p> "> Figure 2
<p>The information diagram for 3 variables. It contains 7 regions corresponding to the possible combinations of 3 variables, with their corresponding information-theoretic quantities defined in the text. The univariate entropy <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics></math> is the sum of all the regions in the red circle, and the mutual information <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mi>Y</mi> <mo>;</mo> <mi>Z</mi> <mo>)</mo> </mrow> </semantics></math> is the sum of all the regions in the blue oval.</p> "> Figure 3
<p>Comparison of rank ordering between group average and individual subjects (labeled S1 to S9) for the three different similarity measures, panels (<b>a</b>–<b>c</b>), and the three different networks. The rank order is by descending link strength, such that rank 1 corresponds to the strongest link. Note that a rank 0 is assigned to those links that have not been detected by a given similarity measure.</p> "> Figure 4
<p>DMN+FPN: Comparison of link ranking across different similarity measures. (<b>a</b>) MECMI vs. CC; (<b>b</b>) MECMI vs. PC; (<b>c</b>) PC vs. CC. Intranetwork links are indicated by pluses and internetwork links are indicated by crosses, see <a href="#entropy-21-00882-f001" class="html-fig">Figure 1</a> for their definition.</p> "> Figure 5
<p>Comparison of rank ordering of the five strongest links of a given subject with those obtained for individual 30 min recordings of the same subject using (<b>a</b>) CC, (<b>b</b>) PC, and (<b>c</b>) MECMI. For each similarity measure, the top row corresponds to DMN, the middle one to FPN, and the bottom row to DMN+FPN. The solid lines give the rank averaged over the different recordings and the variation is quantified by the overall standard deviation (upper left corner). Note that if a link is not detected from a single recording (indicated by rank 0 in the panels), it is included in the average/standard deviation with a rank corresponding to the number of detected links for that recording plus one. Only subjects 1 to 5 are shown here, the other ones are shown in <a href="#entropy-21-00882-f0A1" class="html-fig">Figure A1</a>.</p> "> Figure 6
<p>Precision-recall diagrams using the different subject networks as ground truth for (<b>a</b>) CC, (<b>b</b>) PC, and (<b>c</b>) MECMI. In all panels, the first row corresponds to DMN, the second row to FPN, and the third one to DMN+FPN. The size of the bins is <math display="inline"><semantics> <msup> <mrow> <mo>(</mo> <mrow> <mi>num</mi> <mo> </mo> <mi>of</mi> <mo> </mo> <mi>links</mi> <mo> </mo> <mi>in</mi> <mo> </mo> <mi>the</mi> <mo> </mo> <mi>subject</mi> <mo> </mo> <mi>network</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. Only subjects 1 to 5 are shown here, the other ones are shown in <a href="#entropy-21-00882-f0A3" class="html-fig">Figure A3</a>.</p> "> Figure 6 Cont.
<p>Precision-recall diagrams using the different subject networks as ground truth for (<b>a</b>) CC, (<b>b</b>) PC, and (<b>c</b>) MECMI. In all panels, the first row corresponds to DMN, the second row to FPN, and the third one to DMN+FPN. The size of the bins is <math display="inline"><semantics> <msup> <mrow> <mo>(</mo> <mrow> <mi>num</mi> <mo> </mo> <mi>of</mi> <mo> </mo> <mi>links</mi> <mo> </mo> <mi>in</mi> <mo> </mo> <mi>the</mi> <mo> </mo> <mi>subject</mi> <mo> </mo> <mi>network</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. Only subjects 1 to 5 are shown here, the other ones are shown in <a href="#entropy-21-00882-f0A3" class="html-fig">Figure A3</a>.</p> "> Figure 7
<p>Histograms of the number of intranetwork links and internetwork links, as defined in <a href="#entropy-21-00882-f001" class="html-fig">Figure 1</a>, for each subject and each similarity measure.</p> "> Figure 8
<p>As in <a href="#entropy-21-00882-f006" class="html-fig">Figure 6</a>, but for intranetwork links in DMN+FPN only. Only subjects 1 to 5 are shown here, the other ones are shown in <a href="#entropy-21-00882-f0A4" class="html-fig">Figure A4</a>.</p> "> Figure 9
<p>As in <a href="#entropy-21-00882-f006" class="html-fig">Figure 6</a>, but for internetwork links in DMN+FPN only. Only subjects 1 to 5 are shown here, the other ones are shown in <a href="#entropy-21-00882-f0A5" class="html-fig">Figure A5</a>.</p> "> Figure 10
<p>DMN+FPN: Partial correlation analysis using just the ROIs corresponding to DFM+FPN (PC 18) and all ROIs (PC 90). (<b>a</b>) Weighted network for PC 90 thresholded using the 90% significance level, analogously to <a href="#entropy-21-00882-f001" class="html-fig">Figure 1</a>c. (<b>b</b>) Comparison of link ranking between PC 18 and PC 90—for a comparison of the weights, see <a href="#entropy-21-00882-f0A6" class="html-fig">Figure A6</a>. Intranetwork links are indicated by pluses and internetwork links are indicated by crosses, as in <a href="#entropy-21-00882-f004" class="html-fig">Figure 4</a>.</p> "> Figure 11
<p>DMN+FPN: Precision-recall diagrams for the individual subjects (PC 18) while using the group average from PC 90 as ground truth, (<b>a</b>) all links and (<b>b</b>) intranetwork links only.</p> "> Figure A1
<p>As in <a href="#entropy-21-00882-f005" class="html-fig">Figure 5</a>, but for subjects 6, 7, 9, and 10.</p> "> Figure A2
<p>As in <a href="#entropy-21-00882-f005" class="html-fig">Figure 5</a> and <a href="#entropy-21-00882-f0A1" class="html-fig">Figure A1</a>, but for 5 min slices instead of the full 30 min recordings.</p> "> Figure A3
<p>As in <a href="#entropy-21-00882-f006" class="html-fig">Figure 6</a>, but for subjects 6, 7, 9, and 10.</p> "> Figure A4
<p>As in <a href="#entropy-21-00882-f008" class="html-fig">Figure 8</a>, but for subjects 6, 7, 9, and 10.</p> "> Figure A5
<p>As in <a href="#entropy-21-00882-f009" class="html-fig">Figure 9</a>, but for subjects 6, 7, 9, and 10.</p> "> Figure A6
<p>DMN+FPN: Comparison of link weights between PC 18 and PC 90, see <a href="#entropy-21-00882-f010" class="html-fig">Figure 10</a> for the corresponding rank comparison.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
3. Results
3.1. Robustness in the Inferred Rank Order: Existence of a Well-Defined Backbone
3.1.1. Group Average vs. Individual Subjects
3.1.2. Robustness across Similarity Measures
3.1.3. Detection of the Backbone in Individual Recordings
3.2. Precision-Recall Analysis: Robustness of the Network Links
3.2.1. Robustness across Similarity Measures
3.2.2. Robustness: Intranetwork Links vs. Internetwork Links
3.3. Partial Analysis: Local vs. Global Conditioning
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bassett, D.S.; Sporns, O. Network neuroscience. Nat. Neurosci. 2017, 20, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Hastings, H.M.; Davidsen, J.; Leung, H. Challenges in the analysis of complex systems: Introduction and overview. Eur. Phys. J. Spec. Top. 2017, 226, 3185–3197. [Google Scholar] [CrossRef]
- Bassett, D.S.; Zurn, P.; Gold, J.I. On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 2018, 19, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Power, J.D.; Schlaggar, B.L.; Petersen, S.E. Primer Studying Brain Organization via Spontaneous fMRI Signal. Neuron 2014, 84, 681–696. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Hlinka, J.; Paluš, M.; Vejmelka, M.; Mantini, D.; Corbetta, M. Functional connectivity in resting-state fMRI: Is linear correlation sufficient? NeuroImage 2011, 54, 2218–2225. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.J. Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp. 1994, 2, 56–78. [Google Scholar] [CrossRef]
- Hlinka, J.; Hartman, D.; Paluš, M. Small-world topology of functional connectivity in randomly connected dynamical systems. Chaos 2012, 22. [Google Scholar] [CrossRef]
- Hlinka, J.; Hartman, D.; Jajcay, N.; Tomeček, D.; Tintěra, J.; Paluš, M. Small-world bias of correlation networks: From brain to climate. Chaos 2017, 27, 035812. [Google Scholar] [CrossRef]
- Sporns, O.; Betzel, R.F. Modular Brain Networks. Annu. Rev. Psychol. 2016, 67, 613–640. [Google Scholar] [CrossRef] [Green Version]
- Bray, S.; Arnold, A.E.; Levy, R.M.; Iaria, G. Spatial and temporal functional connectivity changes between resting and attentive states. Hum. Brain Mapp. 2015, 36, 549–565. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, V.D.; Adal, T. Multisubject Independent Component Analysis of fMRI: A Decade of Intrinsic Networks, Default Mode, and Neurodiagnostic Discovery. IEEE Rev. Biomed. Eng. 2012, 5, 60–73. [Google Scholar] [CrossRef]
- Shen, H.; Xu, H.; Wang, L.; Lei, Y.; Yang, L.; Zhang, P.; Qin, J.; Zeng, L.; Zhou, Z.; Yang, Z.; et al. Making Group Inferences Using Sparse Representation of Resting-State Functional MRI Data With Application to Sleep Deprivation. Hum. Brain Mapp. 2017, 38, 4671–4689. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.L.; Lesh, T.A.; Howell, A.M.; Salo, T.P.; Ragland, J.D.; MacDonald, A.W.; Gold, J.M.; Silverstein, S.M.; Barch, D.M.; Carter, C.S. Functional network changes and cognitive control in schizophrenia. Neuroimage Clin. 2017, 15, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Zanchi, D.; Montandon, M.L.; Sinanaj, I.; Rodriguez, C.; Depoorter, A.; Herrmann, F.R.; Borgwardt, S.; Giannakopoulos, P.; Haller, S. Decreased fronto-parietal and increased default mode network activation is associated with subtle cognitive deficits in elderly controls. NeuroSignals 2018, 25, 127–138. [Google Scholar] [CrossRef]
- Mohan, A.; Roberto, A.J.; Mohan, A.; Lorenzo, A.; Jones, K.; Carney, M.J.; Liogier-Weyback, L.; Hwang, S.; Lapidus, K.A. The significance of the Default Mode Network (DMN) in neurological and neuropsychiatric disorders: A review. Yale J. Biol. Med. 2016, 89, 49–57. [Google Scholar]
- He, Y.; Wang, J.; Wang, L.; Chen, Z.J.; Yan, C.; Yang, H.; Tang, H.; Zhu, C.; Gong, Q.; Zang, Y.; et al. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE 2009, 4, 23–25. [Google Scholar] [CrossRef]
- Dosenbach, N.U.F.; Fair, D.A.; Miezin, F.M.; Cohen, A.L.; Wenger, K.K.; Dosenbach, R.A.T.; Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E.; et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. USA 2007, 104, 11073–11078. [Google Scholar] [CrossRef] [Green Version]
- Damoiseaux, J.S.; Rombouts, S.A.R.B.; Barkhof, F.; Scheltens, P.; Stam, C.J.; Smith, S.M.; Beckmann, C.F. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA 2006, 103, 13848–13853. [Google Scholar] [CrossRef] [Green Version]
- Dubois, J.; Adolphs, R. Building a Science of Individual Differences from fMRI. Trends Cogn. Sci. 2016, 20, 425–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.S.; Ferguson, M.A.; Lopez-Larson, M.; Yurgelun-Todd, D. Reproducibility of single-subject functional connectivity measurements. Am. J. Neuroradiol. 2011, 32, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Gordon, E.M.; Laumann, T.O.; Gilmore, A.W.; Newbold, D.J.; Greene, D.J.; Berg, J.J.; Ortega, M.; Hoyt-Drazen, C.; Gratton, C.; Sun, H.; et al. Precision Functional Mapping of Individual Human Brains. Neuron 2017, 95, 791–807. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zuo, X.; He, Y. Graph-based network analysis of resting-state functional MRI. Front. Syst. Neurosci. 2010, 4, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.S.; Meyer-Lindenberg, A.; Achard, S.; Duke, T.; Bullmore, E. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. USA 2006, 103, 19518–19523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Wang, J.; Yan, C.; Shu, N.; Xu, K.; Gong, G.; He, Y. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: A resting-state functional MRI study. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Watanabe, T.; Hirose, S.; Wada, H.; Imai, Y.; Machida, T.; Shirouzu, I.; Konishi, S.; Miyashita, Y.; Masuda, N. A pairwise maximum entropy model accurately describes resting-state human brain networks. Nat. Commun. 2013, 4, 1370. [Google Scholar] [CrossRef] [Green Version]
- Ferrarini, L.; Veer, I.M.; Baerends, E.; Tol, V.; Renken, R.J.; Wee, N.J.A.V.D.; Zitman, F.G.; Veltman, D.J.; Penninx, B.W.J.H.; Buchem, M.A.V.; et al. Hierarchical functional modularity in the resting-state human brain. Hum. Brain Mapp. 2009, 30, 2220–2231. [Google Scholar] [CrossRef]
- Martin, E.A.; Hlinka, J.; Davidsen, J. Pairwise network information and nonlinear correlations. Phys. Rev. E 2016, 94, 1–2. [Google Scholar] [CrossRef]
- Martin, E.A.; Hlinka, J.; Meinke, A.; Děchtěrenko, F.; Tintěra, J.; Oliver, I.; Davidsen, J. Network Inference and Maximum Entropy Estimation on Information Diagrams. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, Y.; Restom, K.; Liau, J.; Liu, T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 2007, 37, 90–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, X.J.; Castañón, A.N.; Ongür, D.; Whitfield-Gabrieli, S. Anticorrelations in resting state networks without global signal regression. NeuroImage 2012, 59, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, T.; Schmitz, A. Surrogate time series. Phys. D 2000, 142, 346. [Google Scholar] [CrossRef]
- Salvador, R.; Suckling, J.; Coleman, M.R.; Pickard, J.D.; Menon, D.; Bullmore, E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 2005, 15, 1332–2342. [Google Scholar] [CrossRef]
- Yeung, R.W. Information Theory and Network Coding; Springer: New York, NY, USA, 2008. [Google Scholar]
DMN Regions | FPN Regions |
---|---|
Frontal Superior Medial L | Frontal Middle L |
Frontal Superior Medial R | Frontal Middle R |
Cingulum Anterior L | Frontal Inferior Opercularis L |
Cingulum Anterior R | Frontal Inferior Opercularis R |
Cingulum Posterior L | Frontal Inferior Triangular L |
Cingulum Posterior R | Frontal Inferior Triangular R |
Angular L | Parietal Inferior L |
Angular R | Parietal Inferior R |
Precuneus L | Angular L |
Precuneus R | Angular R |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliver, I.; Hlinka, J.; Kopal, J.; Davidsen, J. Quantifying the Variability in Resting-State Networks. Entropy 2019, 21, 882. https://doi.org/10.3390/e21090882
Oliver I, Hlinka J, Kopal J, Davidsen J. Quantifying the Variability in Resting-State Networks. Entropy. 2019; 21(9):882. https://doi.org/10.3390/e21090882
Chicago/Turabian StyleOliver, Isaura, Jaroslav Hlinka, Jakub Kopal, and Jörn Davidsen. 2019. "Quantifying the Variability in Resting-State Networks" Entropy 21, no. 9: 882. https://doi.org/10.3390/e21090882
APA StyleOliver, I., Hlinka, J., Kopal, J., & Davidsen, J. (2019). Quantifying the Variability in Resting-State Networks. Entropy, 21(9), 882. https://doi.org/10.3390/e21090882