Entropy-Based Clustering Algorithm for Fingerprint Singular Point Detection
"> Figure 1
<p>The global and local features in the fingerprint. (<b>a</b>) Singular points (SPs) (square: core; triangle: delta) and (<b>b</b>)minutiae (red circle: ridges ending; blue circle: bifurcation).</p> "> Figure 2
<p>Effects of singular values on a fingerprint image. (<b>a</b>) Fingerprint image in FVC 2002 DB2 database; (<b>b</b>) reconstructed fingerprint image when all singular values of <a href="#entropy-21-00786-f002" class="html-fig">Figure 2</a>a are set to 1; (<b>c</b>) reconstructed fingerprint image when all singular values of <a href="#entropy-21-00786-f002" class="html-fig">Figure 2</a>a are multiplied by 2; (<b>d</b>) equalized fingerprint images of <a href="#entropy-21-00786-f002" class="html-fig">Figure 2</a>a.</p> "> Figure 3
<p>(<b>a</b>) Original fingerprint image in FVC 2002 DB2 database; (<b>b</b>) binary image by using energy transformation and blur detection obtained with2D non-separable wavelet entropy filtering for <a href="#entropy-21-00786-f003" class="html-fig">Figure 3</a>a; (<b>c</b>) segmented image of <a href="#entropy-21-00786-f003" class="html-fig">Figure 3</a>a.</p> "> Figure 4
<p>Filter bank implementation of 2D non-separable discrete wavelet transform (NSDWT), <span class="html-italic">j</span>: level.</p> "> Figure 5
<p>Fingerprint alignment: (<b>a</b>) number of cores = 0; (<b>b</b>) number of cores = 1; (<b>c</b>,<b>d</b>) number of cores = 2.</p> "> Figure 6
<p>(<b>a</b>) COI subregion; (<b>b</b>)skeletonized ridges; (<b>c</b>) 2D wavelet extrema.</p> "> Figure 7
<p>Core point detection based on wavelet extrema and Henry system. (<b>a</b>) Two 8-adjacency grids moving toward each other along the ridge curve indicated in yellow; (<b>b</b>) traced path of the ridge curve (green line: from left to right); (<b>c</b>) SP located at the lowest ridge curve (red square) and the area beneath (blue line: searching extrema from right to left); (<b>d</b>) SP detection in accordance with the Henry system (blue cross).</p> "> Figure 8
<p>Results of our proposed method for the FVC2002 DB1 database. (<b>a</b>) Original fingerprint images; (<b>b</b>) histogram of <a href="#entropy-21-00786-f008" class="html-fig">Figure 8</a>a; (<b>c</b>) equalized fingerprint images of <a href="#entropy-21-00786-f008" class="html-fig">Figure 8</a>a; (<b>d</b>) histogram of <a href="#entropy-21-00786-f008" class="html-fig">Figure 8</a>c.</p> "> Figure 9
<p>Results of our proposed method for the FVC2002 DB2 database. (<b>a</b>) Original fingerprint images and (<b>b</b>) equalized fingerprint images of <a href="#entropy-21-00786-f009" class="html-fig">Figure 9</a>a.</p> "> Figure 10
<p>Binary images by using energy transformation for the FVC 2002 DB1 and DB2 databases. (<b>a</b>) Equalized images of five fingerprint images in the FVC 2002 database; (<b>b</b>) binary images of <a href="#entropy-21-00786-f010" class="html-fig">Figure 10</a>a; (<b>c</b>) segmented images of <a href="#entropy-21-00786-f010" class="html-fig">Figure 10</a>a.</p> "> Figure 11
<p>Blur detection result obtained by 2D non-separable wavelet entropy filtering for low-quality images: (<b>a</b>) original images and (<b>b</b>) blur detection results.</p> "> Figure 12
<p>Truly detected SPs for the FVC2002 database (blue: core point; green: delta point) by our proposed method: (<b>a</b>) FVC2002 DB1 and (<b>b</b>) FVC2002 DB2 databases.</p> "> Figure 13
<p>Some comparison results of SP detection for the FVC2002 database. The blue and green crosses indicate the core and delta points, respectively, detected by our proposed method, and the red cross indicates the core point detected by the Poincaré index method.</p> ">
Abstract
:1. Introduction
2. Blurring Detection for Fingerprint Impression
2.1. Fingerprint Background Removal
2.2. Impression Region Detection and Boundary Segmentation
2.3. Blurring Detection
3. SP Detection
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Henry, E.R. Classification and Uses of Finger Prints; George Rutledge & Sons: London, UK, 1900. [Google Scholar]
- Jain, A.; Lin, H.; Bolle, R. On-line fingerprint verification. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Ratha, N.; Bolle, R. Automatic Fingerprint Recognition Systems; Springer: New York, NY, USA, 2004. [Google Scholar]
- Wang, C.-N.; Wang, J.-W.; Lin, M.-H.; Chang, Y.-L.; Kuo, C.-M. Optical methods in fingerprint imaging for medical and personality applications. Sensors 2017, 17, 2418. [Google Scholar] [CrossRef] [PubMed]
- Maltoni, D.; Maio, D.; Jain, A.K.; Prabhakar, S. Handbook of Fingerprint Recognition; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Pankanti, S.; Prabhakar, S.; Jain, A.K. On the individuality of fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 1010–1025. [Google Scholar] [CrossRef]
- Kawagoe, M.; Tojo, A. Fingerprint pattern classification. Pattern Recognit. 1984, 17, 295–303. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Phillips, D. A Fingerprint Orientation Model Based on 2D Fourier Expansion (FOMFE) and Its Application to Singular-Point Detection and Fingerprint Indexing. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, K.; Bigun, J. Localization of corresponding points in fingerprints by complex filtering. Pattern Recognit. Lett. 2003, 24, 2135–2144. [Google Scholar] [CrossRef] [Green Version]
- Liu, M. Fingerprint classification based on Adaboost learning from singularity features. Pattern Recognit. 2010, 43, 1062–1070. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, F.; Gu, J. A novel algorithm for detecting singular points from fingerprint images. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1239–1250. [Google Scholar] [CrossRef]
- Chen, H.; Liang, J.; Liu, E.; Tian, J. Fingerprint singular point detection based on multiple-scale orientation entropy. IEEE Signal Process. Lett. 2011, 18, 679–682. [Google Scholar] [CrossRef]
- Hung, D.D. Enhancement and feature purification of fingerprint images. Pattern Recognit. 1993, 26, 1661–1671. [Google Scholar] [CrossRef]
- He, Y.; Tian, J.; Lou, X.; Zhang, T. Image enhancement and minutiae matching in fingerprint verification. IEEE Signal Process. Lett. 2003, 24, 1349–1360. [Google Scholar] [CrossRef]
- Jirachaweng, S.; Hou, Z.; Yau, W.Y.; Areekul, V. Residual orientation modeling for fingerprint enhancement and singular point detection. Pattern Recognit. 2011, 44, 431–442. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Huang, F.; Feng, H. Design and implementation of Log-Gabor filter in fingerprint image enhancement. Pattern Recognit. Lett. 2008, 29, 301–308. [Google Scholar] [CrossRef]
- Gottschlich, C. Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement. IEEE Trans. Image Process. 2011, 21, 2220–2228. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y. Fingerprint enhancement in the singular point area. IEEE Signal Process. Lett. 2004, 11, 16–19. [Google Scholar] [CrossRef]
- Yang, J.; Xiong, N.; Vasilakos, A.V. Two-stage enhancement scheme for low-quality fingerprint images by learning from the images. IEEE Trans. Human-Mach. Syst. 2013, 43, 235–259. [Google Scholar] [CrossRef]
- Yun, E.K.; Cho, S.B. Adaptive fingerprint image enhancement with fingerprint image quality analysis. Image Vis. Comput. 2006, 24, 101–110. [Google Scholar] [CrossRef]
- Fronthaler, H.; Kollreider, K.; Bigun, J. Local features for enhancement and minutiae extraction in fingerprint. IEEE Trans. Image Process. 2008, 17, 354–363. [Google Scholar] [CrossRef]
- Bennet, D.; Perumal, D.S.A. Fingerprint: DWT, SVD based enhancement and significant contrast for ridges and valleys using fuzzy measures. J. Comput. Sci. Eng. 2011, 6, 28–32. [Google Scholar]
- Wang, J.; Le, N.T.; Wang, C.C.; Lee, J.S. Enhanced ridge structure for improving fingerprint image quality based on a wavelet domain. IEEE Signal Process. Lett. 2015, 22, 390–395. [Google Scholar] [CrossRef]
- Mehtre, B.M.; Murthy, N.N.; Kapoor, S.; Chatterjee, B. Segmentation of fingerprint images using the directional image. Pattern Recognit. 1987, 20, 429–435. [Google Scholar] [CrossRef]
- Mehtre, B.M.; Chatterjee, B. Segmentation of fingerprint images – a composition method. Pattern Recognit. 1989, 22, 381–385. [Google Scholar] [CrossRef]
- Zhang, J.; Lai, R.; Kou, C.C.J. Adaptive directional total – variation model for latent fingerprint segmentation. IEEE Trans. Inf. Forensics Secur. 2013, 8, 1261–1273. [Google Scholar] [CrossRef]
- Cao, K.; Liu, E.; Jain, A.K. Segmentation and enhancement of latent fingerprint: A coarse to fine ridge structure dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1847–1859. [Google Scholar] [CrossRef]
- Maio, D.; Maltoni, D.; Cappelli, R.; Wayman, J.L.; Jain, A.K. FVC2002: Second fingerprint verification competition. Proceeding of the Object Recognition Supported by User Interaction for Service Robots, Quebec City, QC, Canada, 11–15 August 2002; pp. 811–814. [Google Scholar]
- Andrews, H.; Patterson, C. Singular value decompositions and digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1976, 24, 26–53. [Google Scholar] [CrossRef]
- Wang, J.W.; Le, N.T.; Wang, C.C. Color face image enhancement using adaptive singular value decomposition in Fourier domain for face recognition. Pattern Recognit. 2016, 57, 31–49. [Google Scholar] [CrossRef]
- Wang, J.W.; Le, N.T.; Lee, J.S.; Wang, C.C. Illumination compensation for face recognition using adaptive singular value decomposition in the wavelet domain. Inf. Sci. 2018, 435, 69–93. [Google Scholar] [CrossRef]
- Unser, M. Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 1995, 4, 1546–1560. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing, 3rd ed.; The Sparse Way; Academic Press, Inc.: Cambridge, MA, USA, 2008. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423/623–656. [Google Scholar] [CrossRef]
- Tsai, D.Y.; Lee, Y.; Matsuyama, E. Information entropy measure for evaluation of image quality. J. Digital Imaging 2008, 21, 338–347. [Google Scholar] [CrossRef]
- Min, B.S.; Lim, D.K.; Kim, S.J.; Lee, J.H. A novel method of determining parameters of CLAHE based on image entropy. Int. J. Softw. Eng. Its Appl. 2013, 7, 113–120. [Google Scholar] [CrossRef]
- Tico, M. and Kuosmanen, P. A multiresolution method for singular points detection in fingerprint images. IEEE Int. Symp. Circuit Syst. 1999, 4, 183–186. [Google Scholar]
- Ramo, P.; Tico, M.; Onnia, V.; Saarinen, J. Optimized singular point detection algorithm for fingerprint images. IEEE Trans. Image Process. 2001, 3, 242–245. [Google Scholar]
- Chikkerur, S.; Ratha, N.K. Impact of singular point detection on fingerprint matching performance. In Proceedings of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies, Buffalo, NY, USA, 17–18 October 2005; pp. 207–212. [Google Scholar]
Database | Mean | Standard Deviation |
---|---|---|
FVC2002 DB1 | 0.84 | 0.24 |
FVC2002 DB2 | 0.50 | 0.18 |
The Entropy of Image | ||||||||
---|---|---|---|---|---|---|---|---|
FVC2002 DB1 | FVC2002 DB2 | |||||||
Original image | 5.1222 | 5.5262 | 5.4171 | 5.3983 | 7.2446 | 7.1543 | 7.7012 | 7.5129 |
Equalized image | 4.8028 | 5.3939 | 5.0496 | 4.9844 | 6.8401 | 7.0603 | 6.3322 | 6.2088 |
Algorithm | SCR | SDR | SMR | SFR | |||
---|---|---|---|---|---|---|---|
Core | Delta | Core | Delta | Core | Delta | ||
Tico’s [37] | 58.50 | 90.27 | 55.49 | 9.83 | 44.51 | 10.78 | 80.20 |
Ramo’s [38] | 53.54 | 92.19 | 68.42 | 7.81 | 31.58 | 8.47 | 46.15 |
Zhou’s [11] | 88.88 | 95.78 | 96.98 | 4.22 | 3.02 | 2.27 | 9.97 |
Chikkerur’s [39] | 85.13 | 95.89 | 92.75 | 4.11 | 7.25 | 6.93 | 8.16 |
Rule-based [5] | 50.00 | 86.26 | 55.24 | 13.74 | 44.76 | 15.92 | 81.04 |
Proposed | 90.72 | 92.43 | 97.25 | 7.57 | 2.75 | 1.41 | 3.07 |
Algorithm | SCR | SDR | SMR | SFR | |||
---|---|---|---|---|---|---|---|
Core | Delta | Core | Delta | Core | Delta | ||
Tico’s [37] | 32.32 | 65.38 | 34.75 | 34.62 | 65.25 | 52.94 | 187.80 |
Ramo’s [38] | 49.49 | 80.72 | 37.50 | 19.28 | 62.50 | 23.88 | 166.67 |
Zhou’s [11] | 81.25 | 95.95 | 90.88 | 4.05 | 9.12 | 8.45 | 12.54 |
Chikkerur’s [39] | 73.25 | 93.23 | 94.20 | 6.77 | 5.80 | 13.87 | 28.62 |
Rule-based [5] | 56.57 | 73.86 | 37.61 | 26.14 | 62.39 | 35.40 | 165.85 |
Proposed | 89.92 | 95.54 | 95.21 | 4.46 | 4.79 | 1.51 | 2.76 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, N.T.; Le, D.H.; Wang, J.-W.; Wang, C.-C. Entropy-Based Clustering Algorithm for Fingerprint Singular Point Detection. Entropy 2019, 21, 786. https://doi.org/10.3390/e21080786
Le NT, Le DH, Wang J-W, Wang C-C. Entropy-Based Clustering Algorithm for Fingerprint Singular Point Detection. Entropy. 2019; 21(8):786. https://doi.org/10.3390/e21080786
Chicago/Turabian StyleLe, Ngoc Tuyen, Duc Huy Le, Jing-Wein Wang, and Chih-Chiang Wang. 2019. "Entropy-Based Clustering Algorithm for Fingerprint Singular Point Detection" Entropy 21, no. 8: 786. https://doi.org/10.3390/e21080786
APA StyleLe, N. T., Le, D. H., Wang, J.-W., & Wang, C.-C. (2019). Entropy-Based Clustering Algorithm for Fingerprint Singular Point Detection. Entropy, 21(8), 786. https://doi.org/10.3390/e21080786