Tensile Behavior and Evolution of the Phases in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex/High Entropy Alloy
<p>Comparison of the XRD spectra of four states of the Al<sub>10</sub>Co<sub>25</sub>Cr<sub>8</sub>Fe<sub>15</sub>Ni<sub>36</sub>Ti<sub>6</sub> alloy.</p> "> Figure 2
<p>(<b>a</b>,<b>b</b>) Optical micrographs of the microstructure of the Al<sub>10</sub>Co<sub>25</sub>Cr<sub>8</sub>Fe<sub>15</sub>Ni<sub>36</sub>Ti<sub>6</sub> alloy after annealing at (<b>a</b>) 900 °C 5 h and (<b>b</b>) 900 °C 50 h; (<b>c</b>,<b>d</b>) SEM images after annealing at (<b>c</b>) 950 °C 100 h and (<b>d</b>) 950 °C 1000 h.</p> "> Figure 3
<p>Volume fractions of the γ’ and the needle phase in the different annealing states of the Al<sub>10</sub>Co<sub>25</sub>Cr<sub>8</sub>Fe<sub>15</sub>Ni<sub>36</sub>Ti<sub>6</sub> alloy.</p> "> Figure 4
<p>Evolution of the γ-γ’ morphology in six states of the Al<sub>10</sub>Co<sub>25</sub>Cr<sub>8</sub>Fe<sub>15</sub>Ni<sub>36</sub>Ti<sub>6</sub> alloy: (<b>a</b>–<b>d</b>) DF TEM in (<b>a</b>) the as-cast; (<b>b</b>) homogenized at 1220 °C 20 h; subsequent annealing (<b>c</b>) at 900 °C 5 h and (<b>d</b>) at 900 °C 50 h. The upper right corner shows the corresponding SAED taken along the [001] zone axis. The DF images have been recorded with the (110) reflex; (<b>e</b>,<b>f</b>) SEM micrographs of the alloy after annealing at (<b>e</b>) 950 °C 200 h and (<b>f</b>) 950 °C 1000 h. Note the different scale bar in (<b>b</b>).</p> "> Figure 5
<p>Relative γ’ particle size distribution of the Al<sub>10</sub>Co<sub>25</sub>Cr<sub>8</sub>Fe<sub>15</sub>Ni<sub>36</sub>Ti<sub>6</sub> alloy in (<b>a</b>) the as-cast state; (<b>b</b>) homogenized state at 1220 °C 20 h; and subsequent annealing (<b>c</b>) at 900 °C 5 h, (<b>d</b>) at 900 °C 50 h, (<b>e</b>) at 950 °C 100 h, and (<b>f</b>) at 950 °C 1000 h. The dashed line corresponds to the Gauss normal distribution (GND) and the continuous line to the LSW distribution for every case. Note the different class sizes and class size distributions in the as-cast and the homogenized states. Volume fraction shave been added in the graphs for comparison.</p> "> Figure 6
<p>The Gauss Normal Distributions of the relative γ’ particle size distribution of the Al<sub>10</sub>Co<sub>25</sub>Cr<sub>8</sub>Fe<sub>15</sub>Ni<sub>36</sub>Ti<sub>6</sub> alloy in all investigated states. The 900 °C annealed states are shown in dashed lines for an easier comparison.</p> "> Figure 7
<p>Growth of the γ’ particles in the states annealed at 950 °C, according to the LSW theory. The error bars are given by the standard deviation 2σ.</p> "> Figure 8
<p>Engineering stress-strain curves of (<b>a</b>) the 900 °C 5 h (from [<a href="#B20-entropy-20-00646" class="html-bibr">20</a>]); (<b>b</b>) the 900 °C 50 h (from [<a href="#B20-entropy-20-00646" class="html-bibr">20</a>]); (<b>c</b>) the 900 °C 50 h; and (<b>d</b>) the 950 °C 100 h annealed states at room temperature and at 800 °C.</p> "> Figure 9
<p>SEM images of fractures of the states (<b>a</b>–<b>d</b>) 900 °C 50 h tested at (<b>a</b>,<b>b</b>) RT and (<b>c</b>,<b>d</b>) 800 °C and (<b>e</b>–<b>h</b>) 950 °C 100 h tested at (<b>e</b>,<b>f</b>) RT and (<b>g</b>,<b>h</b>) at 800 °C. The colored boxes show the zoom to reveal the microstructure.</p> "> Figure 10
<p>Distribution of the ratios of the γ’ precipitate lengths in the Al<sub>10</sub>Co<sub>25</sub>Cr<sub>8</sub>Fe<sub>15</sub>Ni<sub>36</sub>Ti<sub>6</sub> alloy along the [100] and [010] directions: (<b>a</b>) after 900 °C 5 h and (<b>b</b>) after 900 °C 50 h.</p> "> Figure 11
<p>Picodentor hardness maps of two investigated states of the Al<sub>10</sub>Co<sub>25</sub>Cr<sub>8</sub>Fe<sub>15</sub>Ni<sub>36</sub>Ti<sub>6</sub> alloy. Left column: the position of the nanoindentations; right column: the corresponding color-coded HV0.0025/20 Vickers hardness values (red = highest values). (<b>a</b>) The as-cast sample; (<b>b</b>) the sample aged at 900 °C 50 h.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alloy Preparation
2.2. Microstructural Observations
2.3. Mechanical Tests
3. Results and Discussion
3.1. Morphological Evolution
3.1.1. Al-Ni Rich Needles
3.1.2. The γ-γ’ Morphology in Detail
3.2. Mechanical Observations
3.2.1. Tensile Tests
- The deformation temperature and the implied softening of the material
- The abundance of the Al-Ni rich needles
- The state of the γ’ precipitates
- 1.
- The deformation temperature is the most important factor. The heating from RT to 800 °C implies a softening of the material and allows for a more ductile tensile behavior. The fracture micrographs of the samples deformed at RT, shown in Figure 9a,e, show little (900 °C 50 h state, Figure 9a) or no (950 °C 100 h state, Figure 9e) necking behavior and thus a quite brittle fracture. The samples deformed at 800 °C (Figure 9c,g) display an important necking and thus a ductile fracture.
- 2.
- The amount of needles is lowest in the 900 °C 5 h annealed alloy (about 1%) and highest in the 950 °C 100 h annealed alloy (about 13%). Both the longer annealing times and the higher annealing temperature increase the amount of needles, but the temperature has the stronger influence. In all five states annealed at 950 °C, the volume fraction of needles is up to ten times higher than in the 900 °C annealed states.
- 3.
- The γ-γ’ morphology at room temperature has been analyzed in detail (see Section 3.1.2) and is responsible for the difference in behavior between the 900 °C 5 h and the 900 °C 50 h state. As stated above, after 900 °C 5 h annealing, the γ’ precipitates have not yet established their optimum cuboidal shape. After 900 °C 50 h annealing, however, with the cuboids sides parallel to the tensile load direction and thus a higher geometrical ordering, the dislocation movement is more difficult. This effect is in accordance with the order hardening mechanism, which is often observed in Ni-based alloys [33,34].
3.2.2. Micro- and Nanohardness
3.3. Comparison with Other Alloys
- -
- High entropy alloys Al10Co25Cr8Fe15Ni36Ti6, Co20Cr20Fe20Mn20Ni20, Al8Cr17Co17Cu8Fe17Ni33
- -
- Ni-based Alloy 800H and Inconel 617, Alloy 800, and Inconel 706 single crystal Ni-based CMSX-4
- -
- Co-based Co-9Al-9W-2Ta-0.02B
- -
- Co-Ni based Co-30Ni-10Al-5Mo-2Ta and TMW-4M3-1.
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Di Martino, S.F.; Faulkner, R.G.; Hogg, S.C.; Vujic, S.; Tassa, O. Characterisation of microstructure and creep properties of alloy 617 for high-temperature applications. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2014, 619, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.R.; Liaw, P.K.; Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater. 2018, 61, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Klimova, M.; Stepanov, N.; Shaysultanov, D.; Chernichenko, R.; Yurchenko, N.; Sanin, V.; Zherebtsov, S. Microstructure and mechanical properties evolution of the al, c-containing cocrfenimn-type high-entropy alloy during cold rolling. Materials 2018, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Yin, H.; Xu, Y. Microstructure, Mechanical and tribological properties of oxide dispersion strengthened high-entropy alloys. Materials 2017, 10, 1312. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.; Kim, M.J.; Hwang, J.Y.; Choi, H. Strengthening of Al0.15CoCrCuFeNiTix–C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route. J. Alloys Compd. 2018, 762, 29–37. [Google Scholar] [CrossRef]
- Manzoni, A.M.; Glatzel, U. New multiphase compositionally complex alloys driven by the high entropy alloy approach. Mater. Charact. 2018, in press. [Google Scholar] [CrossRef]
- Durand-Charre, M. The Microstructure of Superalloys; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 1997; p. 124. [Google Scholar]
- Singh, S.; Wanderka, N.; Kiefer, K.; Siemensmeyer, K.; Banhart, J. Effect of decomposition of the Cr–Fe–Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy 2011, 111, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Wanderka, N.; Murty, B.S.; Glatzel, U.; Banhart, J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011, 59, 182–190. [Google Scholar] [CrossRef]
- Tong, C.J.; Chen, M.R.; Chen, S.K.; Yeh, J.W.; Shun, T.T.; Lin, S.J.; Chang, S.Y. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 1263–1271. [Google Scholar] [CrossRef]
- Tong, C.J.; Chen, Y.L.; Chen, S.K.; Yeh, J.W.; Shun, T.T.; Tsau, C.H.; Lin, S.J.; Chang, S.Y. Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 881–893. [Google Scholar] [CrossRef]
- Daoud, H.M.; Manzoni, A.; Völkl, R.; Wanderka, N.; Glatzel, U. Microstructure and tensile behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) high-entropy alloy. JOM 2013, 65, 1805–1814. [Google Scholar] [CrossRef]
- Manzoni, A.; Daoud, H.; Völkl, R.; Glatzel, U.; Wanderka, N. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 2013, 132, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, A.; Daoud, H.; Mondal, S.; van Smaalen, S.; Völkl, R.; Glatzel, U.; Wanderka, N. Investigation of phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 high entropy alloys and comparison with equilibrium phases predicted by Thermo-Calc. J. Alloys Compd. 2013, 552, 430–436. [Google Scholar] [CrossRef]
- Manzoni, A.M.; Daoud, H.M.; Voelkl, R.; Glatzel, U.; Wanderka, N. Influence of W, Mo and Ti trace elements on the phase separation in Al8Co17Cr17Cu8Fe17Ni33 based high entropy alloy. Ultramicroscopy 2015, 159, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Daoud, H.M.; Manzoni, A.M.; Völkl, R.; Wanderka, N.; Glatzel, U. Oxidation Behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17 Compositionally Complex Alloys (High-Entropy Alloys) at Elevated Temperatures in Air. Adv. Eng. Mater. 2015, 17, 1134–1141. [Google Scholar] [CrossRef]
- Jien-Wei, Y. Recent progress in high entropy alloys. Ann. Chim. Sci. Mat. 2006, 31, 633–648. [Google Scholar]
- The Version Tccr; Thermocalc Software AB: Stockholm, Sweden. Available online: http://www.Thermocalc.Com (accessed on 15 June 2016).
- Thermotech Ni-Based Superalloys Database, TTNi7, 7.0, Thermo-Calc Software AB: Stockholm, Sweden, 2006.
- Daoud, H.M.; Manzoni, A.M.; Wanderka, N.; Glatzel, U. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). JOM 2015, 67, 2271–2277. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhy, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, A.V.; Shaysultanov, D.G.; Stepanov, N.D.; Salishchev, G.A.; Senkov, O.N. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2012, 533, 107–118. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Seung, H.S. Trainable weka segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676. [Google Scholar] [CrossRef] [PubMed]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. Nih image to imagej: 25 years of image analysis. Nat. Methods 2012, 9, 671. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochem Ber. Bunsenges. Phys. Chem. 1961, 65, 581–591. [Google Scholar]
- Lifshitz, I.M.; Slyozov, V.V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50. [Google Scholar] [CrossRef]
- Kahlweit, M. Ostwald ripening of precipitates. Adv. Colloid Interface Sci. 1975, 5, 1–35. [Google Scholar] [CrossRef]
- Baldan, A. Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. J. Mater. Sci. 2002, 37, 2171–2202. [Google Scholar] [CrossRef]
- Sudbrack, C.K.; Yoon, K.E.; Mao, Z.; Noebe, R.D.; Isheim, D.; Seidman, D.N. Temporal Evolution of Nanostructures in a Model Nickel-Base Superalloy: Experiments and Simulations; Minerals, Metals & Materials Soc.: Warrendale, PA, USA, 2003; pp. 43–50. [Google Scholar]
- Gleiter, H. Microstructure. In Physical Metallurgy; Cahn, R.W., Hassen, P., Eds.; North-Holland Physics Publishing: Amsterdam, The Netherlands; Oxford, UK; New York, NY, USA; Tokyo, Japan, 1983; Volume 1, p. 1973. [Google Scholar]
- Sengupta, A.; Putatunda, S.K.; Bartosiewicz, L.; Hangas, J.; Nailos, P.J.; Peputapeck, M.; Alberts, F.E. Tensile behavior of a new single-crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures. J. Mater. Eng. Perform. 1994, 3, 73–81. [Google Scholar] [CrossRef]
- Müller, L.; Glatzel, U.; Feller-Kniepmeier, M. Calculation of the internal stresses and strains in the microstructure of a single crystal nickel-base superalloy during creep. Acta Metall. Mater. 1993, 41, 3401–3411. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys. Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Wu, Q.Y.; Song, H.J.; Swindeman, R.W.; Shingledecker, J.P.; Vasudevan, V.K. Microstructure of long-term aged in617 Ni-base superalloy. Metal. Mater. Trans. A Phys. Met. Mater. Sci. 2008, 39, 2569–2585. [Google Scholar] [CrossRef]
- Inconel Alloy 617. Available online: http://www.Specialmetals.Com/documents/inconel%20alloy%20617.Pdf (accessed on 3 December 2015).
- Wanderka, N.; Naundorf, V.; Banhart, J.; Mukherji, D.; Genovesse, D.D.; Rosler, J. Microstructural characterization of Inconel 706 alloy. Surf. Interface Anal. 2004, 36, 546–551. [Google Scholar] [CrossRef]
- Alloy 800. Available online: http://www.Sandmeyersteel.Com/images/alloy-800-spec-sheet.Pdf (accessed on 3 December 2015).
- Coppola, R.; Fiorentin, S.R. Study of γ′-precipitation kinetics in alloy 800 at 575 °C by small angle neutron scattering. Nucl. Instr. Meth. Phys. Res. Sect. B Beam Interact. Mater. Atoms 1987, 22, 564–572. [Google Scholar] [CrossRef]
- Vittori, M. Gamma particle coarsening and yield in alloy 800. J. Mater. Sci. 1981, 16, 3461–3469. [Google Scholar] [CrossRef]
- Nilsson, J.O.; Thorvaldsson, T. Low cycle fatigue behavior of alloy 800 h at 600–800 °C—Effect of grain size and gamma particle dispersion. Fatigue Fracture Eng. Mater. Struct. 1985, 8, 373–384. [Google Scholar] [CrossRef]
- Zhong, F.; Li, S.S.; Sha, J.B. Tensile behaviour of Co–Al–W–Ta–B–Mo alloys with a coherent γ/γ′ microstructure at room and high temperatures. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2015, 637, 175–182. [Google Scholar] [CrossRef]
- Feng, G.; Li, H.; Li, S.S.; Sha, J.B. Effect of Mo additions on microstructure and tensile behavior of a Co–Al–W–Ta–B alloy at room temperature. Scripta Mater. 2012, 67, 499–502. [Google Scholar] [CrossRef]
- Makineni, S.K.; Samanta, A.; Rojhirunsakool, T.; Alam, T.; Nithin, B.; Singh, A.K.; Banerjee, R.; Chattopadhyay, K. A new class of high strength high temperature cobalt based γ–γ′ Co–Mo–Al alloys stabilized with Ta addition. Acta. Mater. 2015, 97, 29–40. [Google Scholar] [CrossRef]
- Gu, Y.; Zhong, Z.; Yuan, Y.; Osada, T.; Cui, C.; Yokokawa, T.; Harada, H. An advanced cast-and-wrought superalloy (TMW-4M3) for turbine disk applications beyond 700 C. In Proceedings of the International Symposium on Superalloys, Champion, PA, USA, 10 September 2012; Volume 903, pp. 903–910. [Google Scholar]
- Osada, T.; Gu, Y.F.; Nagashima, N.; Yuan, Y.; Yokokawa, T.; Harada, H. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure. Acta Mater. 2013, 61, 1820–1829. [Google Scholar] [CrossRef]
Phase | Composition (at.%) | |||||
---|---|---|---|---|---|---|
Al | Co | Cr | Fe | Ni | Ti | |
Nominal | 10 | 25 | 8 | 15 | 36 | 6 |
As-cast | ||||||
De -γ matrix | 8.8 ± 2.2 | 29.5 ± 1.8 | 7.7 ± 1.2 | 20.0 ± 4.2 | 30.7 ± 4.3 | 3.2 ± 1.7 |
De -γ’ precipitate | 12.1 ± 1.4 | 22.3 ± 1.9 | 3.1 ± 1.1 | 7.7 ± 1.7 | 45.5 ± 2.9 | 9.3 ± 1.2 |
ID core | 20.6 ± 2.5 | 23.3 ± 1.4 | 3.6 ± 0.9 | 9.1 ± 1.2 | 34.3 ± 2.2 | 9.1 ± 0.5 |
Homogenized 1220 °C 20 h | ||||||
γ Matrix | 9.3 ± 1.6 | 26.1 ± 0.8 | 7.2 ± 0.5 | 14.8 ± 1.0 | 37.1 ± 0.8 | 5.5 ± 0.5 |
γ’ precipitate | ||||||
Annealed 1220 °C 20 h—900 °C 5 h | ||||||
γ matrix | 8.9 ± 1.7 | 28.1 ± 1.2 | 9.4 ± 0.7 | 18.8 ± 0.9 | 31.1 ± 1.1 | 3.6 ± 0.4 |
Primary γ’ precipitate | 14.0 ± 1.0 | 21.4 ± 0.8 | 3.6 ± 0.4 | 8.2 ± 0.6 | 44.4 ± 1.1 | 8.3 ± 0.8 |
Al-Ni needle | 24.7 ± 1.9 | 20.8 ± 0.7 | 2.9 ± 0.2 | 9.4 ± 0.1 | 36.2 ± 1.1 | 6.0 ± 0.2 |
Annealed 1220 °C 20 h—900 °C 50 h | ||||||
γ matrix | 6.9 ± 0.6 | 29.5 ± 0.5 | 9.3 ± 0.4 | 20.4 ± 0.6 | 30.4 ± 1.0 | 3.5 ± 0.4 |
Primary γ’ precipitate | 11.4 ± 0.6 | 22.5 ± 0.6 | 3.5 ± 0.4 | 8.8 ± 0.7 | 45.0± 1.5 | 8.7 ± 0.5 |
Al-Ni needle | 24.4 ± 1.3 | 21.9 ± 1.7 | 3.6 ± 0.2 | 10.7 ± 0.4 | 33.9 ± 0.6 | 5.6 ± 0.2 |
PropertyState | As-Cast | Homogenized 1220 °C-20 h | Annealed 1220 °C-20 h/900 °C-5 h | Annealed 1220 °C-20 h/900 °C-50 h | Annealed 1220 °C-20 h/950 °C-100 h | |
---|---|---|---|---|---|---|
Morphological data | Size of primary γ’ precipitates (nm) | 60 ± 12 | 14 ± 3 | 368 ± 92 | 315 ± 62 | 388 ± 132 |
Volume fraction of primary γ’ precipitates | ~57 | ~32 | ~45 | ~40 | ~45 | |
Volume fraction of the (needle-like) Al-Ni phase | ~5 | 0 | ~1 | ~4 | ~9 | |
Mechanical data | Micro HV50/20 | 343 ± 22 (DE) | 341 ± 12 | 345 ± 14 | 345 ± 17 | 373 ± 11 |
Nano HV0.025/20 γ-γ’ | 433 ± 32 (DE) | 457 ± 5 | 448 ± 7 | 451 ± 5 | 454 ± 91 | |
Nano HV0.025/20 Al-Ni phase | 736 ± 87 (ID) | - | 569 ± 61 | 560 ± 148 | 647 ± 72 | |
Ultimate tensile strength σTS at RT (MPa) | - | - | 786 from [20] | 1197 ± 6 | 758 ± 40 | |
Yield strength at RT (MPa) | - | - | 568 from [20] | 648 ± 1 | 473 ± 38 | |
Elongation at RT (%) | 12 from [20] | 26 ± 1 | 5 ± 1 | |||
Young’s modulus at RT (GPa) | - | - | 90 ± 18 | 99 ± 37 | 118 ± 32 | |
Ultimate tensile strength σTS at 800 °C (MPa) | - | - | 672 from [20] | 575 ± 7 | 493 ± 40 | |
Yield strength at 800 °C (MPa) | - | - | 535 from [20] | 450 | 310 ± 15 | |
Elongation to fracture at 800 °C (%) | - | - | 27 from [20] | 20 ± 4 | 14 ± 5 | |
Young’s modulus at 800 °C (GPa) | - | - | 52 ± 6 | 54 ± 4 | 51 ± 10 |
Alloy | Size of the Primary γ’ Precipitates (after Optimum Heat Treatment) | Volume Fraction of the Primary γ’ Precipitates (after Optimum Heat Treatment) | Additional Phases (except γ Matrix) | Ultimate Tensile Strength at 800 °C (MPa) | Ref. | |
---|---|---|---|---|---|---|
HEAS | Al8Cr17Co17Cu8Fe17Ni33 | 20 nm | 20% | L12 at grain boundaries | Not known | [14,15] |
Al10Co25Cr8Fe15Ni36Ti6 | 191 nm | 36% | Al-Ni rich needles | 565 | this work | |
Co20Cr20Fe20Mn20Ni20 | - | - | - | ~170 | [21] | |
Al17Co17 Cr17Cu17Fe17Ni17 | - | - | A2, B2, fcc1, fcc2, L12 | 180 | [22] | |
Ni-based alloys | CMSX-4 | 500 nm | 70% | - | ~1100 | [33,35] |
Inconel 617 | 80 nm | 5% | Ni2(Cr,Mo); MC; M23C6; M6C | ~500 | [36,37] | |
Inconel 706 | 10–100 nm | <25% | γ″, η, carbides, nitrides, (Ni3Nb) | Not known | [38] | |
Alloy 800 | <10 nm | 1% | Cr23C6, TiC | ~180 | [39,40,41] | |
Alloy 800H | <100 nm | small | Cr23C6, TiC | ~200 | [39,42] | |
Co-based alloy | Co-9Al-9W-2Ta-0.02B | ~200 nm | ~70% | - | ~580 | [43,44] |
Co-Ni based alloys | Co-30Ni-10-A-5Mo-2Ta | 30–50 nm | ~74% | - | >600 | [45] |
TMW-4M3-1 | <2.5 μm | 17% | Secondary & tertiary γ’, σ, η | below 1122 | [46,47] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzoni, A.M.; Haas, S.; Daoud, H.; Glatzel, U.; Förster, C.; Wanderka, N. Tensile Behavior and Evolution of the Phases in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex/High Entropy Alloy. Entropy 2018, 20, 646. https://doi.org/10.3390/e20090646
Manzoni AM, Haas S, Daoud H, Glatzel U, Förster C, Wanderka N. Tensile Behavior and Evolution of the Phases in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex/High Entropy Alloy. Entropy. 2018; 20(9):646. https://doi.org/10.3390/e20090646
Chicago/Turabian StyleManzoni, Anna Maria, Sebastian Haas, Haneen Daoud, Uwe Glatzel, Christiane Förster, and Nelia Wanderka. 2018. "Tensile Behavior and Evolution of the Phases in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex/High Entropy Alloy" Entropy 20, no. 9: 646. https://doi.org/10.3390/e20090646
APA StyleManzoni, A. M., Haas, S., Daoud, H., Glatzel, U., Förster, C., & Wanderka, N. (2018). Tensile Behavior and Evolution of the Phases in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex/High Entropy Alloy. Entropy, 20(9), 646. https://doi.org/10.3390/e20090646