A Novel Codeword Selection Scheme for MIMO-MAC Lower-Bound Maximization
<p>Proposed two-cell multiple-input multiple-output (MIMO)-MAC system model with <math display="inline"><semantics> <mrow> <mi>K</mi> </mrow> </semantics></math> users.</p> "> Figure 2
<p>Spectral efficiency analysis of the <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> system configuration.</p> "> Figure 3
<p>Spectral efficiency analysis of the <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>×</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> system configuration.</p> "> Figure 4
<p>Spectral efficiency analysis of the <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> system configuration when bit = 6. CSI = Channel State Information.</p> "> Figure 5
<p>Spectral efficiency analysis of the <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>×</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> system configuration when bit = 8.</p> "> Figure 6
<p>The average lower limit of the system user rate at <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> and bit = 6.</p> "> Figure 7
<p>The average lower limit of the system user rate at <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>×</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> and bit = 8.</p> "> Figure 8
<p>Algorithm complexity with limited feedback bit = 8.</p> "> Figure 9
<p>Spectral efficiency analysis of the <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> system configuration with a total number of feedback bits <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mi mathvariant="normal">T</mi> </msub> <mo>=</mo> <mn>32</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Spectral efficiency analysis of the <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>×</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> system configuration with a total number of feedback bits <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mi mathvariant="normal">T</mi> </msub> <mo>=</mo> <mn>32</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Spectral efficiency analysis of the <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> system configuration.</p> "> Figure 12
<p>Spectral efficiency analysis of the <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>×</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> system configuration.</p> "> Figure 13
<p>Spectral efficiency analysis of the <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> system configuration when bit = 24.</p> "> Figure 14
<p>Spectral efficiency analysis of the <math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>×</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> system configuration when bit = 32.</p> ">
Abstract
:1. Introduction
2. Related Work
3. System Model
4. New Limited Feedback Interference Alignment Algorithm
4.1. Precoding Matrix and Codeword Selection Scheme
4.2. Decoding Algorithm Improvement
5. Rate Loss Analysis and Bit Allocation Algorithm
5.1. Rate Loss Analysis
5.2. Bit Allocation Algorithm
6. Algorithm Summary and Theoretical Performance Analysis
6.1. Algorithm Summary
Algorithm 1 Limited Feedback IA |
Step 1: Determine the bit allocation using Equations (25) according to the user’s channel quality. Step 2: Obtain the ideal precoding according to Equations (4) and (5), according to the ideal CSI. Step 3: Generate the precoding feasible region according to Equations (9) and (10), according to the ideal precoding obtained in Step 2. Step 4: Select one code word for each user in the feasible field and generate a user quantized precoding combination. Step 5: Perform decoding according to Equation (16), according to the obtained quantized precoding combination. Step 6: Calculate the channel capacity of all users and let the smallest element in the channel capacity set be . Step 7: Repeat steps 4 and 5 until a codeword combination that maximizes is found in the precoding feasible region, and the corresponding codeword combination is used as the optimal quantization precoding combination. Step 8: Feedback the location index of the best-quantized precoding in the codebook to the transmitter. |
6.2. User Rate Lower-Bound Analysis
6.3. Complexity Analysis
6.4. Number of Required Antennas
7. Simulation Results and Analysis
7.1. Average Spectral Efficiency under Ideal CSI
7.2. Average Spectral Efficiency under Limited Feedback CSI
7.3. Spectral Efficiency Analysis Considering Channel Attenuation with Limited Feedback CSI
7.4. Average Spectral Efficiency under Ideal CSI
7.5. Average Spectral Efficiency of Limited Feedback CSI with Equal Loss and High Speeds
- The bit allocation scheme of this paper improves the spectrum utilization of the algorithm when the feedback is limited.
- The interference leakage caused by the influence of the quantization error is getting larger and larger, which will limit the spectrum efficiency of the system.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cadambre, V.R.; Jafar, S.A. Interference alignment and degrees of freedom of the K-user interference channel. IEEE Trans. Inf. Theory 2008, 54, 3425–3441. [Google Scholar] [CrossRef]
- Jafar, S.A. Interference alignment-a new look at signal dimensions in a communication network. Found. Trends Commun. Inf. Theory 2011, 7, 1–136. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, C.; Shu, R.; Zhou, Z.; Zou, W. Interference alignment in multi-user MIMO systems. ICT Express 2015, 1, 5–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Meng, J.; Li, S.; Li, L. Adaptive limited feedback for interference alignment in MIMO interference channels. EURASIP J. Wirel. Commun. Netw. 2016. [Google Scholar] [CrossRef] [PubMed]
- Pivaro, G.; Kumar, S.; Fraidenraich, G. On the Exact Distribution of Mutual Information of Two-User MIMO MAC Based on Quotient Distribution of Wishart Matrices. EURASIP J. Wirel. Commun. Netw. 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Ghasemi, A.; Motahari, A.S.; Khandani, A.K. Interference alignment for the K user MIMO Interference channel. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Austin, TX, USA, 12–18 June 2010. [Google Scholar]
- Zhang, Y.X.; Cheng, R.S. On the design of the interference alignment scheme for multi-user MIMO with limited feedback. In Proceedings of the IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013. [Google Scholar]
- Sara, T.; Adão, S.; Ruid, R.; Gameiro, A. Robust iterative interference alignment with limited feedback. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015. [Google Scholar]
- Lee, N.; Shin, W.; Clerckx, B. Interference alignment with limited feedback for two-cell interfering MIMO-MAC. In Proceedings of the International Symposium on Wireless Communication Systems, Paris, France, 28–31 August 2012. [Google Scholar]
- Jan, S.; Gerhard, W.; Peter, J. Robust iterative interference alignment for cellular networks with limited feedback. IEEE Trans. Wirel. Commun. 2015, 14, 882–894. [Google Scholar]
- Li, Y.; Diao, X.; Dong, Q.; Tang, C. Interference alignment based on rank constraint in MIMO cognitive radio networks. Symmetry 2017, 9, 107. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, H.H.; Ko, Y.C. Limited feedback design for interference alignment on two-cell interfering MIMO-MAC. IEEE Trans. Veh. Technol. 2015, 64, 4019–4030. [Google Scholar] [CrossRef]
- Wang, H.; Shin, R.I.; Leung, S.H. Throughput analysis of interference alignment for a general centralized limited feedback model. IEEE Trans. Veh. Technol. 2016, 65, 8775–8781. [Google Scholar] [CrossRef]
- Gao, H.; Lv, T.; Fang, D.; Yang, S.; Yuen, C. Limited feedback-based interference alignment for interfering multi-access channels. IEEE Commun. Lett. 2014, 18, 540–543. [Google Scholar] [CrossRef]
- Mosleh, S.; Ashdown, J.D.; Mayas, J.D.; Medley, M.J.; Zhang, J.; Liu, L. Interference Alignment for Downlink Multi-Cell LTE-Advanced Systems with Limited Feedback. IEEE Trans. Wirel. Commun. 2016, 15, 8107–8121. [Google Scholar] [CrossRef]
- Hassan, N.; Fernando, X. Massive MIMO wireless networks: An overview. Electronics 2017, 6, 1–29. [Google Scholar] [CrossRef]
- Jeon, S.W.; Gastpar, M. A Survey on interference networks: Interference alignment and neutralization. Entropy 2012, 14, 1842–1863. [Google Scholar] [CrossRef]
- Dong, A.; Shu, H.Z.M.; Yuan, D. Simultaneous wireless information and power transfer for MIMO interference channel networks based on interference alignment. Entropy 2017, 19, 484. [Google Scholar] [CrossRef]
- Kakar, J.; Sezgin, A. A survey on robust interference management in wireless networks. Entropy 2017, 19, 362. [Google Scholar] [CrossRef]
- Jhung, B.C.; Kim, S.M.; Shing, W.Y.; Yang, H.J. Optimal multiuser diversity in multi-cell MIMO uplink networks: User scaling law and beamforming design. Entropy 2017, 19, 393. [Google Scholar] [CrossRef]
- Kocian, A.; Badiu, M.A.; Fleury, B.H.; Martelli, F.; Santi, P. A unified message-passing algorithm for MIMO-SDMA software-defined radio. EURASIP J. Wirel. Commun. Netw. 2017, 4. [Google Scholar] [CrossRef]
- Lameiro, C.; González, Ó.; García-Naya, J.A.; Santamaría, I.; Castedo, L. Experimental evaluation of interference alignment for broadband WLAN systems. EURASIP J. Wirel. Commun. Netw. 2015, 180. [Google Scholar] [CrossRef]
- Pitaval, R.A.; Tirkonen, O.; Blosteing, S.D. Low complexity MIMO precoding codebooks from orthoplex packings. In Proceedings of the IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011. [Google Scholar]
- Khan, I.; Zafar, M.H.; Jan, M.T.; Lloret, J.; Basheri, M.; Singh, D. Spectral and energy efficient low-overhead uplink and downlink channel estimation for 5G massive MIMO systems. Entropy 2018, 20, 92. [Google Scholar] [CrossRef]
- Khan, I.; Singh, M.; Singh, D. Compressive sensing based sparsity adaptive channel estimation for 5G massive MIMO systems. Appl. Sci. 2018, 8, 754. [Google Scholar] [CrossRef]
- Gomadam, K.; Cadambe, V.R.; Jafar, S.A. Distributed numerical approach to interference alignment and applications to wireless interference networks. IEEE Trans. Inf. Theory 2011, 57, 3309–3322. [Google Scholar] [CrossRef]
- Khan, I.; Singh, D. Efficient Compressive Sensing Based Sparse Channel Estimation for 5G Massive MIMO Systems. Int. J. Electron. Commun. 2018, 89, 181–190. [Google Scholar] [CrossRef]
- Kim, J.S.; Moon, S.H.; Lee, S.R.; Lee, I. A new channel quantization strategy for MIMO interference alignment with limited feedback. IEEE Trans. Wirel. Commun. 2012, 11, 358–366. [Google Scholar] [CrossRef]
- Ayach, E.O.; Heath, R.W., Jr. Grassmannian differential limited feedback for interference alignment. IEEE Trans. Signal Process. 2012, 60, 6481–6494. [Google Scholar] [CrossRef]
- Thukral, J.; Olcskei, H.B. Interference alignment with limited feedback. In Proceedings of the IEEE International Symposium on Information Theory, Seoul, Korea, 28 June–3 July 2009. [Google Scholar]
- Guillaud, R.M. Limited feedback for interference alignment in the K-user MIMO interference channel. In Proceedings of the IEEE Information Theory Workshop, Lausanne, Switzerland, 3–7 September 2012. [Google Scholar]
- Zhou, R.; Lv, T.; Gao, H.; Long, W.; Lu, Y. A new limited feedback scheme for interference alignment in two-cell interfering MIMO-MAC. In Proceedings of the IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications, Sydney, Australia, 9–12 September 2012. [Google Scholar]
- Zhou, R.; Lv, T.; Long, W.; Gao, H.; Lu, Y.; Liu, E. Limited feedback schemes based on ICI alignment in two-cell interfering MIMO-MAC. In Proceedings of the IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013. [Google Scholar]
- Cho, S.; Huang, K.; Kim, D.; Seo, H. Interference alignment for uplink cellular systems with limited feedback. IEEE Commun. Lett. 2012, 16, 960–963. [Google Scholar] [CrossRef]
- Krishnamachari, R.T.; Varanasi, M.K. Interference alignment under limited feedback for MIMO interference channels. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Austin, TX, USA, 12–18 June 2010. [Google Scholar]
- Chen, X.; Yuen, C. Performance analysis and optimization for interference alignment over MIMO interference channels with limited feedback. IEEE Trans. Signal Process. 2014, 62, 1785–1795. [Google Scholar] [CrossRef]
- Suh, C.; Minnie, H.; Tse, D. Downlink interference alignment. IEEE Trans. Commun. 2011, 59, 2616–2626. [Google Scholar] [CrossRef]
- Dai, W.; Liu, Y.; Rider, B. Quantization bounds on Grassmann manifolds and applications to MIMO communications. IEEE Trans. Inf. Theory 2008, 54, 1108–1123. [Google Scholar] [CrossRef]
- Selvaprabhu, P.; Chinnadurai, S.; Sarker, M.A.L.; Lee, M.H. Joint interference alignment and power allocation for k-user multicell MIMO channel through staggered antenna switching. Sensors 2018, 18, 380. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, R.; Maxime, G. Interference alignment with quantized grassmannian feedback in the k-user constant MIMO interference channel. IEEE Trans. Wirel. Commun. 2016, 15, 1456–1468. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahjehan, W.; Shah, S.W.; Lloret, J.; Bosch, I. A Novel Codeword Selection Scheme for MIMO-MAC Lower-Bound Maximization. Entropy 2018, 20, 546. https://doi.org/10.3390/e20080546
Shahjehan W, Shah SW, Lloret J, Bosch I. A Novel Codeword Selection Scheme for MIMO-MAC Lower-Bound Maximization. Entropy. 2018; 20(8):546. https://doi.org/10.3390/e20080546
Chicago/Turabian StyleShahjehan, Waleed, Syed Waqar Shah, Jaime Lloret, and Ignacio Bosch. 2018. "A Novel Codeword Selection Scheme for MIMO-MAC Lower-Bound Maximization" Entropy 20, no. 8: 546. https://doi.org/10.3390/e20080546
APA StyleShahjehan, W., Shah, S. W., Lloret, J., & Bosch, I. (2018). A Novel Codeword Selection Scheme for MIMO-MAC Lower-Bound Maximization. Entropy, 20(8), 546. https://doi.org/10.3390/e20080546