Virtual Network Embedding Based on Graph Entropy
<p>A two-level architectural model for virtual network embedding, with the correspondence between virtual edge and physical edge for InP2 omitted. The numbers in circles indicate the switching capacity of the routing and switching devices, and the ones near the links represent the transmission bandwidth, in Gbps. Virtual-to-physical edge correspondence is marked by distinct colors. VNR: virtual network request; SN: substrate network.</p> "> Figure 2
<p>An example of embedding same one virtual network (VN) into two subnetworks.</p> "> Figure 3
<p>Entropy expression on structure information of VN and SN. (a) Structures of VN, SN, (b) Definitions of <span class="html-italic">S<sub>k</sub></span>(<span class="html-italic">v</span>, <span class="html-italic">G</span>) and <span class="html-italic">S<sub>k</sub></span>(<span class="html-italic">v</span>, <span class="html-italic">H</span>).</p> "> Figure 4
<p>Computation of <span class="html-italic">S<sub>k</sub></span>(<span class="html-italic">v</span>, <span class="html-italic">G</span>) in a five-node example network.</p> "> Figure 5
<p>An example of finding a candidate of VN in SN, (<b>a</b>) VN (<b>left</b>) and SN (<b>right</b>), (<b>b</b>) searching candidates in SN.</p> "> Figure 6
<p>An example of exhibiting probability of equal entropies existing in two different topologies: (<b>a</b>) Binary Tree <span class="html-italic">BT</span><sub>4</sub> and (<b>b</b>) 2 × 2 Mesh <span class="html-italic">M</span>(2, 2).</p> "> Figure 7
<p>The comparisons of GE-VNE with other representative VNE approaches in terms of six VNE metrics, (<b>a</b>) AR; (<b>b</b>) Cost; (<b>c</b>) CRR; (<b>d</b>) LCPV; (<b>e</b>) LU; and (<b>f</b>) ALS, from executing algorithms 20 times on 7 × 7 Mesh <span class="html-italic">M</span>(7, 7).</p> "> Figure 8
<p>The comparisons of GE-VNE with other representative VNE approaches in terms of six VNE metrics, (<b>a</b>) AR; (<b>b</b>) Cost; (<b>c</b>) CRR; (<b>d</b>) LCPV; (<b>e</b>) LU; and (<b>f</b>) ALS, from executing algorithms 20 times on <span class="html-italic">BT</span><sub>100</sub>.</p> ">
Abstract
:1. Introduction
1.1. Virtual Network Embedding
1.2. Graph Entropy Measures
2. Definition and Model of VNE
3. VNE Algorithm Using Graph Entropy
3.1. Algorithmic Profile
3.2. Selection of Candidate Areas
3.3. Computation of VN and SN Entropies
3.4. Presentation of Algorithmic Pseudocodes
Algorithm 1. GE-VNE (Procedure 1): Embedding Areas Search |
Input: SN, VN |
Output: {Si} |
1. for each node ui(1 ≤ i ≤ n) in SN |
2. calculate w(ui); |
3. end for |
4. sort {ui|1 ≤ i ≤ n} as {μi|1 ≤ i ≤ n} by w(ui) in descending order; |
5. select p top important nodes {μi|1 ≤ i ≤ p}; |
6. for each μi ∈ {μi|1 ≤ i ≤ p} |
7. Si←Sk(μi, G, rk(G)); |
8. end for |
9. Sc←S1; |
10. for each Si in {Si|1 ≤ i ≤ p} |
11. calculate a(Si); |
12. if a(Si) > a(Sc) |
13. Sc←Si; |
14. end if |
15. end for |
16. output Sc as the candidate area for VN embedding. |
Algorithm 2. GE-VNE (Procedure 2): Embedding Candidates Searching |
1. sort all virtual nodes by their importance as V(H) = {v1, v2, …, vn}; |
2. sort all substrate nodes by their importance as S = {u1, u2, …, un}; |
3. initialize the candidate of VN as S11 = null |
4. for each node vi in V(H) |
5. search top s nodes of SN which fulfill the demand of node vi: |
Ti = {ui|1 ≤ i ≤ s, ui ∈ V(G), c(ui) ≥ d(vi)} |
6. for each node uj in Ti |
Sij = S(i−1)j∪uj |
7. end for |
8. end for; |
9. output Sij |
Algorithm 3. GE-VNE (Procedure 3): VNE based on graph entropy |
Input: {Sc1, Sc1, …, Scr}, H |
Output: f: H→G |
1. calculate entropy I(H) of H |
2. for each Sci in {Sc1, Sc2, …, Scr} |
3. calculate entropy I(Sci); |
4. d(I(Sci))←|I(Sci) − I(H)| |
5. end for |
6. sort {Sc1, Sc2, …, Scr} as {Tc1, Tc2, …, Tcr} by d(I(Sci)) as ascending order |
7. for each Tci in {Tc1, Tc2, …, Tcr} |
8. if (Tci fulfills VN) |
9. break; |
10. end if; |
11. end for |
3.5. Limitations of This Work
4. Experiments
4.1. Experimental Configuration
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
InP | Infrastructure Provider |
ISP | Internet Service Provider |
SN | Substrate Network |
VN | Virtual Network |
VNE | Virtual Network Embedding |
VNP | Virtual Network Provider |
VNR | Virtual Network Request |
References
- Fischer, A.; Botero, J.F.; Beck, M.T.; de Meer, H.; Hesselbach, X. Virtual Network Embedding: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 1888–1906. [Google Scholar] [CrossRef]
- Chowdhury, N.; Rahman, M.R.; Boutaba, R. Virtual network embedding with coordinated node and link mapping. In Proceedings of the IEEE INFOCOM, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 19–25. [Google Scholar]
- Jarray, A.; Karmouch, A. Decomposition approaches for virtual network embedding with one-shot node and link mapping. IEEE/ACM Trans. Netw. 2015, 23, 1012–1025. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.; Jiang, Y. Optimization model and algorithm for energy efficient virtual node embedding. IEEE Commun. Lett. 2015, 19, 327–1330. [Google Scholar] [CrossRef]
- Yu, M.; Yi, Y.; Rexford, J.; Chiang, M. Rethinking virtual network embedding: Substrate support for path splitting and migration. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 17–29. [Google Scholar] [CrossRef]
- Lischka, J.; Karl, H. A virtual network mapping algorithm based on subgraph isomorphism detection. In Proceedings of the 1st ACM workshop on Virtualized Infrastructure Systems and Architectures (VISA ’09), Barcelona, Spain, 17 August 2009; pp. 81–88. [Google Scholar]
- Cheng, X.; Su, S.; Zhang, Z.; Wang, H.; Yang, F. Virtual network embedding through topology-aware node ranking. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 38–47. [Google Scholar] [CrossRef]
- Beck, M.T.; Fischer, A.; Demeer, H. Distributed and scalable embedding of virtual networks. J. Netw. Comput. Appl. 2015, 56, 124–136. [Google Scholar] [CrossRef]
- Zhang, S.; Qian, Z.; Wu, J.; Lu, S.; Epstein, L. Virtual Network Embedding with Opportunistic Resource Sharing. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 816–827. [Google Scholar] [CrossRef]
- Dehmer, M.; Mowshowitz, A. A history of graph entropy measures. Inf. Sci. 2011, 181, 57–78. [Google Scholar] [CrossRef]
- Mowshowitz, A.; Dehmer, M. Entropy and the complexity of graphs revisited. Entropy 2012, 14, 559–570. [Google Scholar] [CrossRef]
- Rashevsky, N. Life information theory and topology. Bull. Math. Biophys. 1955, 17, 229–235. [Google Scholar] [CrossRef]
- Trucco, E. A note on the information content of graphs. Bull. Math. Biol. 1956, 18, 129–135. [Google Scholar] [CrossRef]
- Mowshowitz, A. Entropy and the complexity of graphs IV: Entropy measures and graphical structure. Bull. Math. Biophys. 1968, 30, 533–546. [Google Scholar] [CrossRef]
- Körner, J. Coding of an information source having ambiguous alphabet and the entropy of graphs. In Proceedings of the 6th Prague Conference on Information Theory, Prague, Czech Republic, 19–25 September 1971; pp. 411–425. [Google Scholar]
- Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 2008, 201, 82–94. [Google Scholar] [CrossRef]
- Dehmer, M. A novel method for measuring the structural information content of networks. Cybern. Syst. 2008, 39, 825–842. [Google Scholar] [CrossRef]
- Bonchev, D.; Balaban, D.; Mekenyan, A.T. Generalization of the graph center concept, and derived topological centric indexes. J. Chem. Inf. Comput. Sci. 1980, 20, 106–113. [Google Scholar] [CrossRef]
- Emmert-Streib, F. The chronic fatigue syndrome: A comparative pathway analysis. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2007, 14, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Emmert-Streib, F.; Dehmer, M. Gobal information processing in gene networks: Fault tolerance. In Proceedings of the 2nd Bio-Inspired Models of Network, Information and Computing Systems (Bionetics 2007), Budapest, Hungary, 10–12 December 2007; pp. 3009–3028. [Google Scholar]
- Dehmer, M.; Chen, Z.; Li, X.; Shi, Y. Mathematical Foundations and Applications of Graph Entropy; Wiley-Blackwell: Oxford, UK, 2016; pp. 101–112. [Google Scholar]
- Beck, M.T.; Linnhoff-Popien, C.; Fischer, A. A simulation framework for Virtual Network Embedding algorithms. In Proceedings of the 2014 16th International Telecommunications Network Strategy and Planning Symposium, Funchal, Portugal, 17–19 September 2014; pp. 1–6. [Google Scholar]
- Leiserson, C.E. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE Trans. Comput. 2012, C-34, 892–901. [Google Scholar] [CrossRef]
- On-Line Data. Available online: https://scholar.google.com (accessed on 1 April 2017).
Parameters | Values | Description |
---|---|---|
rk(H) | 0 | Radius of Sk(v, G) for VN |
rk(G) | 20 | Radius of Sk(v, G) for SN |
rj − rj−1 | 10 | The increment of radius for Sk(v, G) |
α | 3 | Constant in Formula (13) |
ci (1 ≤ i ≤ 7) | 1–7 | Weights in Formula (13) |
p | 6 | Number of candidate areas |
s | 1/3 | Number of candidate nodes |
wi (1 ≤ i ≤ 3) | 1 | Initial distance factor in Formula (9) |
Parameters | Description | Values |
---|---|---|
dist | Distance for candidates | 20 |
wCPU | CPU weight | 1 |
wBw | Bandwidth weight | 1 |
nodeoverload | Node overload concerned | false |
type | Type of routing | 0 |
Number of k-shortest path | 5 |
Algorithm | Reference | Brief Description |
---|---|---|
DViNE-SP DViNE-PS | Chowdhury et al. [2] | VNE with coordinated strategy in two stages where node mapping is implemented by mixed integer programming (MIP) and link mapping with k-shortest paths. Google Scholar [24] citations: 415 |
GAR-SP | Yu et al. [5] | VNE preferentially using available resources for node mapping and k-shortest paths for link mapping. Google Scholar [24] citations: 998 |
RW-MM-SP RW-MM-PS | Cheng et al. [7] | VNE ranking nodes with topology properties for node mapping and k-shortest paths for link mapping. Google Scholar [24] citations: 346 |
Metrics | Interpretations |
---|---|
ALS | The average of the proportion of occupied bandwidth on each link |
AR | The ratio between the number of accepted VNRs and the total number of VNRs |
CRR | The ratio of embedding cost and revenue |
cost | The sum of the substrate resources allocated to the VNR |
LU | The proportion of occupied bandwidth |
LCPV | The link cost for embedding each VN |
Algorithms | AR | Cost | CRR | LCPV | LU | ALS |
---|---|---|---|---|---|---|
RW-MM-SP | 84% | 10.50 | 2.70 | 163.80 | 10.5 | 0.37 |
RW-MM-PS | 41% | 750.7 | 1.58 | 44.80 | 26.8 | 0.04 |
DViNE-SP | 89% | 116.0 | 2.07 | 122.75 | 14.2 | 0.29 |
DViNE-PS | 66% | 642.7 | 1.24 | 34.84 | 27.5 | 0.063 |
GE-VNE | 86% | 203.8 | 1.55 | 68.70 | 28.7 | 0.18 |
GAR-SP | 74% | 402.8 | 1.82 | 91.71 | 24.9 | 0.16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, C.; Wu, H.; Lin, M.; Duan, R. Virtual Network Embedding Based on Graph Entropy. Entropy 2018, 20, 315. https://doi.org/10.3390/e20050315
Zhang J, Zhao C, Wu H, Lin M, Duan R. Virtual Network Embedding Based on Graph Entropy. Entropy. 2018; 20(5):315. https://doi.org/10.3390/e20050315
Chicago/Turabian StyleZhang, Jingjing, Chenggui Zhao, Honggang Wu, Minghui Lin, and Ren Duan. 2018. "Virtual Network Embedding Based on Graph Entropy" Entropy 20, no. 5: 315. https://doi.org/10.3390/e20050315
APA StyleZhang, J., Zhao, C., Wu, H., Lin, M., & Duan, R. (2018). Virtual Network Embedding Based on Graph Entropy. Entropy, 20(5), 315. https://doi.org/10.3390/e20050315