Global Reliability Sensitivity Analysis Based on Maximum Entropy and 2-Layer Polynomial Chaos Expansion
<p>PCE based GRSA method framework.</p> "> Figure 2
<p>The importance ranking based on global reliability sensitivity indices.</p> "> Figure 3
<p>The beam structure of example 2.</p> "> Figure 4
<p>The importance ranking of case 1. (<b>a</b>) The importance ranking based on GRSA; (<b>b</b>) The importance ranking based on GSA.</p> "> Figure 5
<p>The importance ranking of case 2. (<b>a</b>) The importance ranking based on GRSA; (<b>b</b>) The importance ranking based on GSA.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Global Sensitivity Analysis and Sobol’s Indices
2.2. Global Reliability Sensitivity Analysis
3. R-PCE Framework for GRSA
3.1. PCE-Based GRSA Method
3.2. Conditional Polynomial Chaos Expansion and Moments Calculation
3.3. The Maximum Entropy Method
3.4. Global Reliability Sensitivity Indices Calculation
3.5. Implementation
- Step 1:
- Represent distributions of the input into the associated standardized random variable. If the distribution types are not unified, we could map different distributions into the normal distribution. The following computation will be based upon standardized random variables.
- Step 2:
- Step 3:
- Based upon PCE above, compute R-PCE. First of all, generate a set of conditional variable samples. Then, integrate gPCE(ξ) and ME method to obtain the CFP value Pf(ξ|ξI), where I = {i} for main effect indices and I = {1, 2, ..., n}/{i} for total effect indices. Specifically, for each sample set , substitute it into Equations (24)–(26) to obtain C-PCE . With the moments given by C-PCE, we could calculate the with ME method analytically. Third, the R-PCE comes out as Equation (44).
- Step 4:
- Compute the global reliability sensitivity indices by Equation (22), Equation (23) and Equations (46) and (47).
4. Test Examples
4.1. A Numerical Example
4.2. An Engineering Example
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
the dimension of a variable | |
, the input of given model | |
, the independent standardized orthogonal random variable | |
the output of given model | |
the vector without the ith element | |
the PDF of xi | |
, the joint PDF of | |
the PDF of y | |
expectation | |
variance | |
the main effect of GSA | |
the total effect of GSA | |
the main effect of GRSA | |
the total effect of GRSA | |
the degree of PCE | |
the degree of R-PCE | |
the coefficient of jth PCE item | |
the coefficient of jth CPCE item | |
the coefficient of jth R-PCE item | |
the number of PCE items | |
the number of CPCE items | |
the number of R-PCE items | |
the kth one-dimensional orthogonal polynomial | |
where and , the base of PCE | |
the indicator function | |
the failure probability | |
the unknown parameter of ME formula | |
the number of unknown parameter of ME formula | |
the kth moment of |
Appendix B
Appendix C
Algorithm A1: Algorithm for main effect indices using proposed method. |
Algorithm A2: Algorithm for Total Effect Indices Using Proposed Method. |
References
- Borgonovo, E.; Plischke, E. Sensitivity analysis: A review of recent advances. Eur. J. Oper. Res. 2016, 248, 869–887. [Google Scholar] [CrossRef]
- Li, L.; Lu, Z. A new algorithm for importance analysis of the inputs with distribution parameter uncertainty. Int. J. Syst. Sci. 2016, 47, 3065–3077. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef]
- Jensen, H.A.; Mayorga, F.; Valdebenito, M.A. Reliability sensitivity estimation of nonlinear structural systems under stochastic excitation: A simulation-based approach. Comput. Methods Appl. Mech. Eng. 2015, 289, 1–23. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; John Wiley & Sons: Chichester, UK, 2008. [Google Scholar]
- Blatman, G.; Sudret, B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2010, 95, 1216–1229. [Google Scholar] [CrossRef]
- Borgonovo, E. Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches. Risk Anal. 2006, 26, 1349–1361. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Chung, J.; Behdinan, K.; Lee, J. Multidisciplinary wing design optimization considering global sensitivity and uncertainty of approximation models. J. Mech. Sci. Technol. 2014, 28, 2231–2242. [Google Scholar] [CrossRef]
- Reuter, U.; Liebscher, M.; Müllerschön, H. Global sensitivity analysis in structural optimization. In Proceedings of the 7th European LS-DYNA Conference, Salzburg, Austria, 14–15 May 2009. [Google Scholar]
- Morio, J. Influence of input PDF parameters of a model on a failure probability estimation. Simul. Model. Pract. Theory 2011, 19, 2244–2255. [Google Scholar] [CrossRef]
- Borgonovo, E.; Castaings, W.; Tarantola, S. Model emulation and moment-independent sensitivity analysis: An application to environmental modelling. Environ. Model. Softw. 2012, 34, 105–115. [Google Scholar] [CrossRef]
- Borgonovo, E.; Castaings, W.; Tarantola, S. Moment independent importance measures: New results and analytical test cases. Risk Anal. 2011, 31, 404–428. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lu, Z.; Feng, J.; Wang, B. Moment-independent importance measure of basic variable and its state dependent parameter solution. Struct. Saf. 2012, 38, 40–47. [Google Scholar] [CrossRef]
- Cui, L.; Lü, Z.; Zhao, X. Moment-independent importance measure of basic random variable and its probability density evolution solution. Sci. China Technol. Sci. 2010, 53, 1138–1145. [Google Scholar] [CrossRef]
- Wei, P.; Lu, Z.; Yuan, X. Monte Carlo simulation for moment-independent sensitivity analysis. Reliab. Eng. Syst. Saf. 2013, 110, 60–67. [Google Scholar] [CrossRef]
- Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Blatman, G.; Sudret, B. Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 2011, 230, 2345–2367. [Google Scholar] [CrossRef]
- Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008, 93, 964–979. [Google Scholar] [CrossRef]
- Crestaux, T.; le Maıtre, O.; Martinez, J. Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 2009, 94, 1161–1172. [Google Scholar] [CrossRef]
- Xiu, D.; Karniadakis, G.E. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 2002, 191, 4927–4948. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chowdhury, R. Sequential experimental design based generalised ANOVA. J. Comput. Phys. 2016, 317, 15–32. [Google Scholar] [CrossRef]
- Lasota, R.; Stocki, R.; Tauzowski, P.; Szolc, T. Polynomial chaos expansion method in estimating probability distribution of rotor-shaft dynamic responses. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 413–422. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chowdhury, R. A semi-analytical framework for structural reliability analysis. Comput. Methods Appl. Mech. Eng. 2015, 289, 475–497. [Google Scholar] [CrossRef]
- Xi, Z.; Hu, C.; Youn, B.D. A comparative study of probability estimation methods for reliability analysis. Struct. Multidiscip. Optim. 2012, 45, 33–52. [Google Scholar] [CrossRef]
- Wiener, N. The homogeneous chaos. Am. J. Math. 1938, 60, 897–936. [Google Scholar] [CrossRef]
- Isukapalli, S.S. Uncertainty Analysis of Transport-Transformation Models. Ph.D. Thesis, Rutgers University, New Brunswick, NJ, USA, 1999. [Google Scholar]
- Wei, P.; Lu, Z.; Hao, W.; Feng, J.; Wang, B. Efficient sampling methods for global reliability sensitivity analysis. Comput. Phys. Commun. 2012, 183, 1728–1743. [Google Scholar] [CrossRef]
- Melchers, R.E. Structural Reliability Analysis and Prediction; John Wiley & Son Ltd.: Chichester, UK, 1999. [Google Scholar]
- Savin, E.; Faverjon, B. Higher-order moments of generalized polynomial chaos expansions for intrusive and non-intrusive uncertainty quantification. In Proceedings of the 19th AIAA Non-Deterministic Approaches Conference, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Zellner, A.; Highfield, R.A. Calculation of maximum entropy distributions and approximation of marginalposterior distributions. J. Econom. 1988, 37, 195–209. [Google Scholar] [CrossRef]
- Abramov, R.V. An improved algorithm for the multidimensional moment-constrained maximum entropy problem. J. Comput. Phys. 2007, 226, 621–644. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Bhattacharya, A.K.; Biswas, P.; Drabold, D.A. Maximum entropy and the problem of moments: A stable algorithm. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Blatman, G.; Sudret, B. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 2010, 25, 183–197. [Google Scholar] [CrossRef]
Method | x1 | x2 | x3 | Times of Function Evaluations | |
---|---|---|---|---|---|
Full-scale MCS | 0.7120 | 0.0005274 | 0.005265 | 1.5 × 107 | |
0.9946 | 0.1130 | 0.2602 | |||
IS | 0.7206 | 0.0005147 | 0.005327 | 1.2 × 105 | |
0.9945 | 0.1124 | 0.2583 | |||
Proposed method | 0.7181 | 0.0005426 | 0.005139 | 182 | |
0.9932 | 0.1119 | 0.2625 |
Input Variables | q/(N/M) | E/(kN/m2) | I/m4 | L/m | Fp | |
---|---|---|---|---|---|---|
Distribution type | Normal | Normal | Normal | Lognormal | Lognormal | |
Mean value | 662.5 | 2 × 1011 | 2.172 × 10−4 | 10 | 3 × 104 | |
variances | Case 1 | 0.1 | 0.08 | 0.1 | 0.06 | 0.1 |
Case 2 | 0.05 | 0.06 | 0.05 | 0.03 | 0.04 |
Method | q | E | I | L | Fp | Times of Function Evaluations | |
---|---|---|---|---|---|---|---|
Full-scale MCS | 0.001283 | 0.05398 | 0.1029 | 0.1446 | 0.05583 | 1.5 × 107 | |
0.07086 | 0.4701 | 0.5967 | 0.6891 | 0.4895 | |||
IS | 0.001267 | 0.05103 | 0.09755 | 0.1397 | 0.05129 | 1.2 × 105 | |
0.06961 | 0.4727 | 0.6026 | 0.6985 | 0.4905 | |||
Proposed method | 0.001118 | 0.05404 | 0.1031 | 0.1445 | 0.05591 | 3882 | |
0.07251 | 0.4714 | 0.5879 | 0.6865 | 0.4983 |
Method | q | E | I | L | Fp | Times of Function Evaluations | |
---|---|---|---|---|---|---|---|
Full-scale MCS | 0.000486 | 0.03123 | 0.01150 | 0.02078 | 0.002947 | 1.5 × 107 | |
0.09433 | 0.8405 | 0.7389 | 0.8240 | 0.5270 | |||
IS | 0.000502 | 0.03111 | 0.01194 | 0.02260 | 0.002806 | 1.2 × 105 | |
0.09845 | 0.8509 | 0.7356 | 0.8333 | 0.5336 | |||
Proposed method | 0.000532 | 0.03064 | 0.01183 | 0.02047 | 0.003107 | 3882 | |
0.09512 | 0.8497 | 0.7298 | 0.8199 | 0.5277 |
q | E | I | L | Fp | ||
---|---|---|---|---|---|---|
Case 1 | 0.003538 | 0.15818 | 0.253083 | 0.387629 | 0.183083 | |
0.003718 | 0.16375 | 0.260962 | 0.397182 | 0.188962 | ||
Case 2 | 0.003182 | 0.317395 | 0.218915 | 0.349925 | 0.106503 | |
0.003227 | 0.319898 | 0.220892 | 0.352517 | 0.107553 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zeng, S.; Guo, J.; Du, S. Global Reliability Sensitivity Analysis Based on Maximum Entropy and 2-Layer Polynomial Chaos Expansion. Entropy 2018, 20, 202. https://doi.org/10.3390/e20030202
Zhao J, Zeng S, Guo J, Du S. Global Reliability Sensitivity Analysis Based on Maximum Entropy and 2-Layer Polynomial Chaos Expansion. Entropy. 2018; 20(3):202. https://doi.org/10.3390/e20030202
Chicago/Turabian StyleZhao, Jianyu, Shengkui Zeng, Jianbin Guo, and Shaohua Du. 2018. "Global Reliability Sensitivity Analysis Based on Maximum Entropy and 2-Layer Polynomial Chaos Expansion" Entropy 20, no. 3: 202. https://doi.org/10.3390/e20030202
APA StyleZhao, J., Zeng, S., Guo, J., & Du, S. (2018). Global Reliability Sensitivity Analysis Based on Maximum Entropy and 2-Layer Polynomial Chaos Expansion. Entropy, 20(3), 202. https://doi.org/10.3390/e20030202