Measuring the Risk Spillover Effect of RCEP Stock Markets: Evidence from the TVP-VAR Model and Transfer Entropy
<p>Dynamic total connectedness. Note: This figure shows the time-varying total dependency across RCEP stock markets using TVP-VAR model.</p> "> Figure 2
<p>Net pairwise directional connectedness. Note: This figure only shows the directional spillover effect between China and other countries’ stock markets.</p> "> Figure 3
<p>Risk spillover network of RCEP member countries’ stock markets. Note: In this figure, blue nodes represent the main risk-exporting countries, and yellow nodes represent the risk-receiving countries, and the thickness of the links represents the intensity of risk spillovers. (<b>a</b>) Before the signing of the RCEP. (<b>b</b>) After the signing of the RCEP.</p> "> Figure 4
<p>Heat maps of transfer entropy between different sectors (<b>a</b>) before the singing of the RCEP and (<b>b</b>) after the signing of the RCEP. Note: 1–10 in this figure represent the stock markets of the following 10 countries: China, Vietnam, Singapore, Indonesia, Malaysia, South Korea, Japan, New Zealand, Thailand, and Australia (arranged in order).</p> "> Figure 5
<p>The stock market network constructed based on the transfer entropy matrix. This figure shows a directed network, and the arrows on the edges indicate the direction of information flow. (<b>a</b>) Before the singing of the RCEP. (<b>b</b>) After the signing of the RCEP.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Time-Varying Parameter Vector Autoregression (TVP-VAR) Model
2.2. Transfer Entropy
3. Data and Descriptive Statistics
3.1. Data
3.2. Descriptive Statistics
4. Empirical Results
4.1. Static Risk Spillover Analysis
4.2. Dynamic Risk Spillover Analysis
4.3. Directional Spillover Effects of China’s Stock Market
4.4. Risk Spillover Network of Stock Markets
4.5. Transfer Entropy Matrix
4.6. Network Construction by Transfer Entropy
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Solnik, B.H. An equilibrium model of the international capital market. J. Econ. Theory 1974, 8, 500–524. [Google Scholar] [CrossRef]
- Stulz, R.M. A model of international asset pricing. J. Financ. Econ. 1981, 9, 383–406. [Google Scholar] [CrossRef]
- Adler, M.; Dumas, B. International portfolio choice and corporation finance: A synthesis. J. Financ. 1983, 38, 925–984. [Google Scholar] [CrossRef]
- King, M.A.; Wadhwani, S. Transmission of volatility between stock markets. Rev. Financ. Stud. 1990, 3, 5–33. [Google Scholar] [CrossRef]
- King, M.A.; Sentana, E.; Wadhwani, S. Volatility and Links Between National Stock Markets; National Bureau of Economic Research: Cambridge, MA, USA, 1990. [Google Scholar]
- Ji, Q.; Liu, B.Y.; Nehler, H.; Uddin, G.S. Uncertainties and extreme risk spillover in the energy markets: A time-varying copula-based CoVaR approach. Energy Econ. 2018, 76, 115–126. [Google Scholar] [CrossRef]
- Ji, Q.; Bouri, E.; Roubaud, D.; Shahzad, S.J.H. Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model. Energy Econ. 2018, 75, 14–27. [Google Scholar] [CrossRef]
- Karimalis, E.N.; Nomikos, N.K. Measuring systemic risk in the European banking sector: A copula CoVaR approach. Eur. J. Financ. 2018, 24, 944–975. [Google Scholar] [CrossRef]
- Sun, X.; Liu, C.; Wang, J.; Li, J. Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach. Int. Rev. Financ. Anal. 2020, 68, 101453. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Measuring financial asset return and volatility spillovers, with application to global equity markets. Econ. J. 2009, 119, 158–171. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Trans-Atlantic equity volatility connectedness: US and European financial institutions, 2004–2014. J. Financ. Econom. 2015, 14, 81–127. [Google Scholar]
- Diebold, F.X.; Yılmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 2014, 182, 119–134. [Google Scholar] [CrossRef]
- Chudik, A.; Fratzscher, M. Identifying the global transmission of the 2007–2009 financial crisis in a GVAR model. Eur. Econ. Rev. 2011, 55, 325–339. [Google Scholar] [CrossRef]
- Giglio, S.; Kelly, B.; Pruitt, S. Systemic risk and the macroeconomy: An empirical evaluation. J. Financ. Econ. 2016, 119, 457–471. [Google Scholar] [CrossRef]
- Rossi, B.; Sekhposyan, T. Macroeconomic uncertainty indices based on nowcast and forecast error distributions. Am. Econ. Rev. 2015, 105, 650–655. [Google Scholar] [CrossRef]
- Maghyereh, A.I.; Awartani, B.; Bouri, E. The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes. Energy Econ. 2016, 57, 78–93. [Google Scholar] [CrossRef]
- Baruník, J.; Kočenda, E.; Vácha, L. Asymmetric connectedness on the US stock market: Bad and good volatility spillovers. J. Financ. Mark. 2016, 27, 55–78. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, W.; Zhang, J. Volatility spillovers between the Chinese and world equity markets. Pac.-Basin Financ. J. 2012, 20, 247–270. [Google Scholar] [CrossRef]
- Greenwood-Nimmo, M.; Nguyen, V.H.; Rafferty, B. Risk and return spillovers among the G10 currencies. J. Financ. Mark. 2016, 31, 43–62. [Google Scholar] [CrossRef]
- Antonakakis, N.; Gabauer, D. Refined Measures of Dynamic Connectedness Based on TVP-VAR. 2017. Available online: https://mpra.ub.uni-muenchen.de/78282/1/MPRA_paper_78282.pdf (accessed on 6 January 2025).
- Balcilar, M.; Gabauer, D.; Umar, Z. Crude oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach. Resour. Policy 2021, 73, 102219. [Google Scholar] [CrossRef]
- Gabauer, D.; Gupta, R. On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach. Econ. Lett. 2018, 171, 63–71. [Google Scholar] [CrossRef]
- Adekoya, O.B.; Oliyide, J.A. How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques. Resour. Policy 2021, 70, 101898. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, R.; Nasrallah, N.; Hussainey, K.; Assaf, R. Spillover analysis across FinTech, ESG, and renewable energy indices before and during the Russia–Ukraine war: International evidence. J. Int. Financ. Manag. Account. 2023, 34, 279–317. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Ren, X.; Qu, J. Time-varying spillovers between trade policy uncertainty and precious metal markets: Evidence from China-US trade conflict. Resour. Policy 2022, 76, 102577. [Google Scholar] [CrossRef]
- Fiedor, P. Mutual information-based hierarchies on Warsaw stock exchange. Acta Phys. Pol. A 2015, 127, A-33–A-37. [Google Scholar] [CrossRef]
- Yang, C.; Shen, Y.; Xia, B. Evolution of Shanghai stock market based on maximal spanning trees. Mod. Phys. Lett. B 2013, 27, 1350022. [Google Scholar] [CrossRef]
- Yang, C.; Chen, Y.; Hao, W.; Shen, Y.; Tang, M.; Niu, L. Effects of financial crisis on the industry sector of Chinese stock market—from a perspective of complex network. Mod. Phys. Lett. B 2014, 28, 1450102. [Google Scholar] [CrossRef]
- Fiedor, P. Networks in financial markets based on the mutual information rate. Phys. Rev. E 2014, 89, 052801. [Google Scholar] [CrossRef]
- Kwon, O.; Yang, J.S. Information flow between composite stock index and individual stocks. Phys. A Stat. Mech. Its Appl. 2008, 387, 2851–2856. [Google Scholar] [CrossRef]
- Krier, C.; François, D.; Wertz, V.; Verleysen, M. Feature scoring by mutual information for classification of mass spectra. In Proceedings of the 7th International FLINS Conference on Applied Artificial Intelligence, Genova, Italy, 29–31 August 2006; pp. 557–564. [Google Scholar]
- Lindner, M.; Vicente, R.; Priesemann, V.; Wibral, M. TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC Neurosci. 2011, 12, 119. [Google Scholar] [CrossRef]
- Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy—A model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 2011, 30, 45–67. [Google Scholar] [CrossRef]
- Sensoy, A.; Sobaci, C.; Sensoy, S.; Alali, F. Effective transfer entropy approach to information flow between exchange rates and stock markets. Chaos Solitons Fractals 2014, 68, 180–185. [Google Scholar] [CrossRef]
- Sandoval, L., Jr. Structure of a global network of financial companies based on transfer entropy. Entropy 2014, 16, 4443–4482. [Google Scholar] [CrossRef]
- Yang, P.; Shang, P.; Lin, A. Financial time series analysis based on effective phase transfer entropy. Phys. A Stat. Mech. Appl. 2017, 468, 398–408. [Google Scholar] [CrossRef]
- Mendoza-Urdiales, R.A.; Núñez-Mora, J.A.; Santillán-Salgado, R.J.; Valencia-Herrera, H. Twitter sentiment analysis and influence on stock performance using transfer entropy and EGARCH methods. Entropy 2022, 24, 874. [Google Scholar] [CrossRef]
- Korbel, J.; Jiang, X.; Zheng, B. Transfer entropy between communities in complex financial networks. Entropy 2019, 21, 1124. [Google Scholar] [CrossRef]
- Teng, Y.; Shang, P. Transfer entropy coefficient: Quantifying level of information flow between financial time series. Phys. A Stat. Mech. Its Appl. 2017, 469, 60–70. [Google Scholar] [CrossRef]
- Mao, X.; Shang, P. Transfer entropy between multivariate time series. Commun. Nonlinear Sci. Numer. Simul. 2017, 47, 338–347. [Google Scholar] [CrossRef]
- García-Medina, A.; Hernández, C.J.B. Network analysis of multivariate transfer entropy of cryptocurrencies in times of turbulence. Entropy 2020, 22, 760. [Google Scholar] [CrossRef] [PubMed]
- Koop, G.; Pesaran, M.H.; Potter, S.M. Impulse response analysis in nonlinear multivariate models. J. Econom. 1996, 74, 119–147. [Google Scholar] [CrossRef]
- Pesaran, H.H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar] [CrossRef]
- Clausius, R. Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Ann. Der Phys. 1850, 155, 368–397. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Schreiber, T. Interdisciplinary applications of nonlinear time series methods. Phys. Rep. 1999, 308, 1–64. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, J.; Yook, S.H. Information transfer network of global market indices. Phys. A Stat. Mech. Its Appl. 2015, 430, 39–45. [Google Scholar] [CrossRef]
- Demirer, M.; Diebold, F.X.; Liu, L.; Yilmaz, K. Estimating global bank network connectedness. J. Appl. Econom. 2018, 33, 1–15. [Google Scholar] [CrossRef]
Country/Region | Stock Index | Country/Region | Stock Index |
---|---|---|---|
China | SSE Composite Index | South Korea | KOSPI |
Vietnam | MSCI Vietnam Index | Japan | Nikkei 225 |
Singapore | Singapore REITS Index | New Zealand | S&P/NZX 50 Index |
Indonesia | Jakarta Composite Index | Thailand | Thailand SET Index |
Malaysia | FTSE Malaysia KLCI | Australia | S&P/ASX 200 Index |
Country | Mean | Median | Max | Min | Std_Dev | Skewness | Kurtosis | JB_Stat | ADF_Stat |
---|---|---|---|---|---|---|---|---|---|
China | 0.000 | 0.000 | 0.090 | −0.089 | 0.014 | −0.571 | 6.391 | 7774.574 | −15.961 *** |
Vietnam | 0.000 | 0.000 | 0.075 | −0.109 | 0.015 | −0.423 | 3.214 | 2038.154 | −15.930 *** |
Singapore | 0.000 | 0.000 | 0.103 | −0.137 | 0.011 | −0.171 | 18.889 | 65,815.525 | −13.533 *** |
Indonesia | 0.000 | 0.000 | 0.097 | −0.113 | 0.012 | −0.601 | 11.425 | 24,338.786 | −15.312 *** |
Malaysia | 0.000 | 0.000 | 0.066 | −0.100 | 0.007 | −0.746 | 15.654 | 45,601.178 | −16.180 *** |
South Korea | 0.000 | 0.000 | 0.113 | −0.112 | 0.012 | −0.539 | 10.644 | 21,107.137 | −16.604 *** |
Japan | 0.000 | 0.000 | 0.132 | −0.132 | 0.015 | −0.546 | 9.675 | 17,481.940 | −16.358 *** |
New Zealand | 0.000 | 0.000 | 0.069 | −0.079 | 0.007 | −0.556 | 10.516 | 20,623.057 | −15.952 *** |
Thailand | 0.000 | 0.000 | 0.077 | −0.115 | 0.011 | −1.260 | 16.344 | 50,431.017 | −14.654 *** |
Australia | 0.000 | 0.000 | 0.068 | −0.102 | 0.011 | −0.692 | 8.371 | 13,278.582 | −16.339 *** |
China | Vietnam | Singapore | Indonesia | Malaysia | South Korea | Japan | New Zealand | Thailand | Australia | From | |
---|---|---|---|---|---|---|---|---|---|---|---|
China | 57.98 | 2.78 | 6.32 | 4.68 | 4.24 | 6.88 | 4.83 | 2.94 | 4.56 | 4.81 | 42.02 |
Vietnam | 3.44 | 68.14 | 3.92 | 3.12 | 3.79 | 3.73 | 3.92 | 3.02 | 3.49 | 3.44 | 31.86 |
Singapore | 4.74 | 2.7 | 44.04 | 7.07 | 6.81 | 7.9 | 6.18 | 5.22 | 6.93 | 8.4 | 55.96 |
Indonesia | 3.73 | 2.3 | 7.76 | 49.07 | 8.74 | 7.1 | 4.84 | 3.54 | 7.36 | 5.57 | 50.93 |
Malaysia | 3.39 | 2.53 | 7.42 | 8.95 | 47.61 | 7.59 | 5.64 | 3.93 | 6.88 | 6.07 | 52.39 |
South Korea | 4.91 | 2.2 | 7.39 | 6.14 | 6.5 | 40.33 | 12.24 | 3.98 | 5.77 | 10.53 | 59.67 |
Japan | 3.81 | 2.62 | 6.35 | 4.58 | 5.16 | 13.06 | 43.07 | 4.88 | 4.64 | 11.81 | 56.93 |
New Zealand | 2.83 | 2.56 | 6.66 | 4.03 | 4.45 | 5.26 | 6.1 | 52.89 | 3.96 | 11.25 | 47.11 |
Thailand | 3.86 | 2.6 | 7.83 | 7.72 | 7.09 | 7 | 5.07 | 3.33 | 50.37 | 5.13 | 49.63 |
Australia | 3.49 | 2.32 | 8.07 | 5.05 | 5.35 | 10.65 | 11.25 | 8.73 | 4.54 | 40.56 | 59.44 |
To | 34.2 | 22.61 | 61.73 | 51.34 | 52.13 | 69.17 | 60.07 | 39.57 | 48.11 | 67.01 | 505.93 |
Net | −7.82 | −9.26 | 5.77 | 0.41 | −0.26 | 9.5 | 3.14 | −7.54 | −1.52 | 7.57 |
Rank | Risk Information Flow Out | Risk Information Flow In | Risk Information Net Flow Out | Risk Information Net Flow In |
---|---|---|---|---|
1 | Singapore | New Zealand | Singapore | New Zealand |
2 | South Korea | Australia | Indonesia | Australia |
3 | Thailand | South Korea | Thailand | Japan |
4 | Vietnam | Singapore | South Korea | Malaysia |
5 | Indonesia | Vietnam | China | Vietnam |
6 | Malaysia | Malaysia | Vietnam | China |
7 | Australia | Thailand | Malaysia | South Korea |
8 | New Zealand | Japan | Japan | Thailand |
9 | Japan | Indonesia | Australia | Indonesia |
10 | China | China | New Zealand | Singapore |
Country | Before Signing of RCEP | After Signing of RCEP | Policy Recommendations | ||
---|---|---|---|---|---|
In_Degree | Out_Degree | In_Degree | Out_Degree | ||
China | 0 | 2 | 6 | 4 | Strengthen the monitoring of external financial risks, especially the financial links with other RCEP member countries. |
Vietnam | 3 | 0 | 7 | 5 | Strengthen the control of inbound financial risks, especially the regulation of capital inflows. |
Singapore | 5 | 5 | 6 | 6 | Continue to leverage its advantages as a regional financial center, strengthen the regulation of financial markets, and ensure market transparency and stability. |
Indonesia | 5 | 4 | 2 | 4 | Focus on changes in the transmission of risks within the region and reduce the spillover effects of potential financial shocks. |
Malaysia | 5 | 2 | 6 | 5 | Focus on enhancing the risk management capabilities of domestic financial institutions to reduce the impact of external financial volatility. |
South Korea | 7 | 7 | 6 | 5 | Further optimize the structure of the capital market to reduce the impact of regional financial volatility on the domestic market. |
Japan | 8 | 7 | 4 | 6 | Reduce dependence on external market fluctuations and enhance the independence and stability of the domestic market. |
New Zealand | 5 | 4 | 7 | 7 | Strengthen the management of cross-border capital flows to avoid excessive dependence on external capital. |
Thailand | 5 | 4 | 8 | 6 | Strengthen the early warning mechanism for external financial risks to reduce the impact of external risks on the domestic market. |
Australia | 7 | 8 | 2 | 4 | Shift the policy focus to the domestic financial market to reduce sensitivity to regional financial risks. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Chen, Q.; Han, J.; Xiao, M. Measuring the Risk Spillover Effect of RCEP Stock Markets: Evidence from the TVP-VAR Model and Transfer Entropy. Entropy 2025, 27, 81. https://doi.org/10.3390/e27010081
Zou Y, Chen Q, Han J, Xiao M. Measuring the Risk Spillover Effect of RCEP Stock Markets: Evidence from the TVP-VAR Model and Transfer Entropy. Entropy. 2025; 27(1):81. https://doi.org/10.3390/e27010081
Chicago/Turabian StyleZou, Yijiang, Qinghua Chen, Jihui Han, and Mingzhong Xiao. 2025. "Measuring the Risk Spillover Effect of RCEP Stock Markets: Evidence from the TVP-VAR Model and Transfer Entropy" Entropy 27, no. 1: 81. https://doi.org/10.3390/e27010081
APA StyleZou, Y., Chen, Q., Han, J., & Xiao, M. (2025). Measuring the Risk Spillover Effect of RCEP Stock Markets: Evidence from the TVP-VAR Model and Transfer Entropy. Entropy, 27(1), 81. https://doi.org/10.3390/e27010081