A New Semi-Quantum Two-Way Authentication Protocol between Control Centers and Neighborhood Gateways in Smart Grids
<p>Smart grid architecture.</p> "> Figure 2
<p>Protocol flow chart.</p> "> Figure 3
<p>Detection probability of Eve impersonating CC.</p> "> Figure 4
<p>Detection probability of Eve impersonating NG.</p> "> Figure 5
<p>Quantum circuit diagram for CC authenticate NG. The diagram in (<b>a</b>) shows the quantum state generation by CC, while diagrams (<b>b</b>,<b>c</b>) depict the process where NG measures the quantum state based on <span class="html-italic">K</span> and generates the same quantum state according to the measurement results. Diagram (<b>d</b>) illustrates the circuit where CC measures the quantum state sequence returned by NG.</p> "> Figure 6
<p>Quantum circuit diagram for NG authenticate CC.Diagram (<b>a</b>) shows the circuit for generating the quantum state sequence <span class="html-italic">S</span> by CC, while diagram (<b>b</b>) illustrates the circuit for generating the quantum state sequence <span class="html-italic">T</span> by NG.</p> "> Figure 7
<p>Measurement results. In (<b>a</b>), the diagram shows the measurement results of NG as illustrated in <a href="#entropy-26-00644-f005" class="html-fig">Figure 5</a>b. Diagram (<b>b</b>) represents the measurement results of CC as shown in <a href="#entropy-26-00644-f005" class="html-fig">Figure 5</a>d. Diagrams (<b>c</b>,<b>d</b>) depict the measurement results of NG as illustrated in <a href="#entropy-26-00644-f006" class="html-fig">Figure 6</a>a,b.</p> ">
Abstract
:1. Introduction
2. Two-Way Authentication and Communication between NG and CC
2.1. Initialization Phase
2.2. Authentication Phase
2.3. Data Transport Phase
3. Security Analysis
3.1. Double CNOT Attack
3.2. Impersonation Attack
3.3. Intercept-Measure-Resend Attack
3.4. Entanglement Measurement Attack
4. Efficiency Analysis
5. Simulation Experiments on IBM Platform
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NG | Neighborhood Gateway |
CC | Control Center |
QKD | Quantum Key Distribution |
IBM | International Business Machines |
TLS | Transport Layer Security |
SSL | Secure Sockets Layer |
References
- Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A comprehensive review of recent advances in smart grids: A sustainable future with renewable energy resources. Energies 2020, 13, 6269. [Google Scholar] [CrossRef]
- Islam, M.A.; Hasanuzzaman, M.; Rahim, N.A.; Nahar, A.; Hosenuzzaman, M. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security. Sci. World J. 2014, 2014, 197136. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xue, Y. Smart grids: A cyber–physical systems perspective. Proc. IEEE. 2016, 104, 1058–1070. [Google Scholar] [CrossRef]
- Kimani, K.; Oduol, V.; Langat, K. Cyber security challenges for IoT-based smart grid networks. Int. J. Crit. Infrastruct. Prot. 2019, 25, 36–49. [Google Scholar] [CrossRef]
- Otuoze, A.O.; Mustafa, M.W.; Larik, R.M. Smart grids security challenges: Classification by sources of threats. J. Electr. Syst. Inf. Technol. 2018, 5, 468–483. [Google Scholar] [CrossRef]
- Obaidat, M.A.; Obeidat, S.; Holst, J.; Al Hayajneh, A. A comprehensive and systematic survey on the internet of things: Security and privacy challenges, security frameworks, enabling technologies, threats, vulnerabilities and countermeasures. Computers 2020, 9, 44. [Google Scholar] [CrossRef]
- Islam, S.N.; Baig, Z.; Zeadally, S. Physical layer security for the smart grid: Vulnerabilities, threats, and countermeasures. IEEE Trans. Ind. Inform. 2019, 15, 6522–6530. [Google Scholar] [CrossRef]
- Cavaliere, F.; Mattsson, J.; Smeets, B. The security implications of quantum cryptography and quantum computing. Netw. Secur. 2020, 9, 9–15. [Google Scholar] [CrossRef]
- Mitra, S.; Jana, B.; Bhattacharya, S.; Pal, P.; Poray, J. Quantum cryptography: Overview, security issues and future challenges. In Proceedings of the 2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix), Kolkata, India, 2–3 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Zhou, N.R.; Zhang, T.F.; Xie, X.W. Hybrid quantum–classical generative adversarial networks for image generation via learning discrete distribution. Signal Process. Image Commun. 2023, 110, 116891. [Google Scholar] [CrossRef]
- Alshowkan, M.; Evans, P.G.; Starke, M.; Earl, D.; Peters, N.A. Authentication of smart grid communications using quantum key distribution. Sci. Rep. 2022, 12, 12731. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, P.; Huang, R. Lightweight quantum encryption for secure transmission of power data in smart grid. IEEE Access 2019, 7, 36285–36293. [Google Scholar] [CrossRef]
- Singhrova, A. Quantum Key Distribution-based Techniques in IoT. Sci. Temper 2023, 14, 1008–1013. [Google Scholar]
- Wang, W.; Lu, Z. Cyber security in the smart grid: Survey and challenges. Comput. Netw. 2013, 57, 1344–1371. [Google Scholar] [CrossRef]
- Fouda, M.M.; Fadlullah, Z.M.; Kato, N.; Lu, R.; Shen, X.S. A lightweight message authentication scheme for smart grid communications. IEEE Trans. Smart Grid 2011, 2, 675–685. [Google Scholar] [CrossRef]
- Crépeau, C.; Salvail, L. Quantum oblivious mutual identification. Entropy 1995, 21, 133–146. [Google Scholar]
- Song, Y.; Wu, Y.; Wu, S.; Li, D.; Wen, Q.; Qin, S.; Gao, F. A quantum federated learning framework for classical clients. Sci. China-Phys. Mech. Astron. 2024, 67, 250311. [Google Scholar] [CrossRef]
- Zawadzki, P. Quantum identity authentication without entanglement. Quantum Inf. Process. 2019, 18, 7. [Google Scholar] [CrossRef]
- Termos, H. Quantum Authentication Evolution: Novel Approaches for Securing Quantum Key Distribution. Entropy. 2024, 26, 447. [Google Scholar] [CrossRef]
- Shi, W.M.; Zhang, J.B.; Zhou, Y.H.; Yang, Y.G. A novel quantum deniable authentication protocol without entanglement. Quantum Inf. Process. 2015, 14, 2183–2193. [Google Scholar] [CrossRef]
- Boyer, M.; Kenigsberg, D.; Mor, T. Quantum key distribution with classical Bob. In Proceedings of the 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM’07), Guadeloupe, French Caribbean, 2–6 January 2007; p. 10. [Google Scholar]
- Krawec, W.O. Security proof of a semi-quantum key distribution protocol. In Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 14–19 June 2015; pp. 686–690. [Google Scholar]
- Iqbal, H.; Krawec, W.O. Semi-quantum cryptography. Quantum Inf. Process. 2020, 19, 97. [Google Scholar] [CrossRef]
- Zhou, N.R.; Zhu, K.N.; Bi, W.; Gong, L.H. Semi-quantum identification. Quantum Inf. Process. 2019, 18, 197. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Z.K.; Shi, R.H.; Liang, F.Y. A novel quantum identity authentication based on Bell states. Int. J. Theor. Phys. 2020, 59, 236–249. [Google Scholar] [CrossRef]
- Wang, H.W.; Tsai, C.W.; Lin, J.; Yang, C.W. Authenticated semi-quantum key distribution protocol based on W states. Sensors 2022, 22, 4998. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Pathak, A. Controlled secure direct quantum communication inspired scheme for quantum identity authentication. Quantum Inf. Process. 2022, 22, 13. [Google Scholar] [CrossRef]
- Yang, C.W.; Wang, H.W.; Lin, J.; Tsai, C.W. Semi-Quantum Identification without Information Leakage. Mathematics 2023, 11, 452. [Google Scholar] [CrossRef]
- Iqbal, H.; Krawec, W.O. High-dimensional semiquantum cryptography. IEEE Trans. Quantum Eng. 2020, 1, 1–17. [Google Scholar] [CrossRef]
- Wu, J.; Ma, Q.; Deng, X.; Qin, Z. Lightweight authentication for smart metering infrastructure in smart grid. In Proceedings of the International Conference on Cyber Security, Artificial Intelligence, and Digital Economy (CSAIDE 2023), Nanjing, China, 3–5 March 2023; Volume 12718, pp. 282–290. [Google Scholar]
- Ferrag, M.A.; Maglaras, L.A.; Janicke, H.; Jiang, J.; Shu, L. A systematic review of data protection and privacy preservation schemes for smart grid communications. Sustain. Cities Soc. 2018, 38, 806–835. [Google Scholar] [CrossRef]
- Saxena, N.; Choi, B.J. State of the art authentication, access control, and secure integration in smart grid. Energies 2015, 8, 11883–11915. [Google Scholar] [CrossRef]
- Cabello, A. Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 2000, 85, 5635. [Google Scholar] [CrossRef]
00 | |
01 | |
10 | |
11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zhang, K.; Hou, K.; Zhang, L. A New Semi-Quantum Two-Way Authentication Protocol between Control Centers and Neighborhood Gateways in Smart Grids. Entropy 2024, 26, 644. https://doi.org/10.3390/e26080644
Zhang Q, Zhang K, Hou K, Zhang L. A New Semi-Quantum Two-Way Authentication Protocol between Control Centers and Neighborhood Gateways in Smart Grids. Entropy. 2024; 26(8):644. https://doi.org/10.3390/e26080644
Chicago/Turabian StyleZhang, Qiandong, Kejia Zhang, Kunchi Hou, and Long Zhang. 2024. "A New Semi-Quantum Two-Way Authentication Protocol between Control Centers and Neighborhood Gateways in Smart Grids" Entropy 26, no. 8: 644. https://doi.org/10.3390/e26080644
APA StyleZhang, Q., Zhang, K., Hou, K., & Zhang, L. (2024). A New Semi-Quantum Two-Way Authentication Protocol between Control Centers and Neighborhood Gateways in Smart Grids. Entropy, 26(8), 644. https://doi.org/10.3390/e26080644