FFT-Based Probability Density Imaging of Euler Solutions
<p>Linear binning counts: a trivariate datum <math display="inline"><semantics> <msup> <mi>χ</mi> <mi>i</mi> </msup> </semantics></math> is converted into the counts assigned to its eight nearest grid points. Following Rao’s work [<a href="#B50-entropy-26-00517" class="html-bibr">50</a>] and Chacón and Duong’s work [<a href="#B49-entropy-26-00517" class="html-bibr">49</a>], their respective counts are equal to their natural coordinate values.</p> "> Figure 2
<p>The 1D verification results. BSS: B-spline probability density estimation method; KS: Gaussian kernel smoothing estimation method; BSSFFT: B-spline probability density estimation method based on fast Fourier transform.</p> "> Figure 3
<p>The 2D verification results: (<b>a</b>) the 2D random dataset, <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>3000</mn> </mrow> </semantics></math>; (<b>b</b>) the BSS result; (<b>c</b>) the BSSFFT result; (<b>d</b>) the true probability density function (pdf); (<b>e</b>) the relative error between the BSS result and true pdf; (<b>f</b>) the relative error between the BSSFFT result and true pdf.</p> "> Figure 4
<p><math display="inline"><semantics> <msub> <mi>g</mi> <mi>z</mi> </msub> </semantics></math> of the cubic model (<b>a</b>) without noise and (<b>b</b>) with <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>%</mo> </mrow> </semantics></math> Gaussian noise. The residual density of the cube is 0.36 g/cm<sup>3</sup>.</p> "> Figure 5
<p>Scatter plots of Euler solutions. (<b>a</b>) <math display="inline"><semantics> <msub> <mi>g</mi> <mi>z</mi> </msub> </semantics></math> without noise and (<b>b</b>) with <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>%</mo> </mrow> </semantics></math> Gaussian noise, Euler solutions filtered by <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>r</mi> </msub> <mo>≤</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> [<a href="#B4-entropy-26-00517" class="html-bibr">4</a>] in different views: (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>37.5</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>90</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 6
<p>Probability density curves obtained using 1D BSS and BSSFFT with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> for subsets of the Euler solutions derived from noise-corrupted data. (<b>a</b>) subsets <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>; (<b>b</b>) subset <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>N</mi> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>Probability density distribution obtained using 2D BSS and BSSFFT with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mn>100</mn> <mo>,</mo> <mn>100</mn> </mfenced> </mrow> </semantics></math> for subsets <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> <mo>}</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> <mo>}</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> <mo>}</mo> </mrow> </semantics></math> of the cubic model.</p> "> Figure 8
<p>Probability density isosurface obtained using 3D BSS with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mn>100</mn> <mo>,</mo> <mn>100</mn> <mo>,</mo> <mn>100</mn> </mfenced> </mrow> </semantics></math> for Euler solution subsets: (<b>a</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mfenced> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> </mfenced> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> </mfenced> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> </mfenced> </semantics></math>.</p> "> Figure 9
<p>Probability density isosurface obtained using 3D BSSFFT with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mn>100</mn> <mo>,</mo> <mn>100</mn> <mo>,</mo> <mn>100</mn> </mfenced> </mrow> </semantics></math> for subsets (<b>a</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mfenced> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> </mfenced> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> </mfenced> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> </mfenced> </semantics></math>.</p> "> Figure 10
<p><math display="inline"><semantics> <msub> <mi>g</mi> <mi>z</mi> </msub> </semantics></math> of the synthetic model (<b>a</b>) without noise and (<b>b</b>) with <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>%</mo> </mrow> </semantics></math> Gaussian noise. The density values of left and right anomalous sources are 0.3 g/cm<sup>3</sup> and 0.7 g/cm<sup>3</sup>, respectively.</p> "> Figure 11
<p>Scatter plots of Euler solutions. The red box and black box are representative of the abnormal source. (<b>a</b>) <math display="inline"><semantics> <msub> <mi>g</mi> <mi>z</mi> </msub> </semantics></math> without noise and (<b>b</b>) with <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>%</mo> </mrow> </semantics></math> Gaussian noise, Euler solutions filtered by <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>r</mi> </msub> <mo>≤</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> in different views: (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>37.5</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>90</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p>Probability density curves obtained using 1D BSS with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> for subsets of the combination models. (<b>a</b>) subsets <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>; (<b>b</b>) subset <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>N</mi> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 13
<p>Probability density distribution obtained using 2D BSS and BSSFFT with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mn>100</mn> <mo>,</mo> <mn>100</mn> </mfenced> </mrow> </semantics></math> for subsets <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>N</mi> <mo>,</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>N</mi> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>N</mi> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math> of the combination model.</p> "> Figure 14
<p>Probability density isosurface obtained using 3D BSSFFT with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mn>100</mn> <mo>,</mo> <mn>100</mn> <mo>,</mo> <mn>100</mn> </mfenced> </mrow> </semantics></math> for subsets (<b>a</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mfenced> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> </mfenced> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> </mfenced> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>N</mi> </mfenced> </semantics></math> of the combination model. The red box and black box are representative of the abnormal source.</p> "> Figure 15
<p>Clustering methods used to separate the adjacent clusters formed by Euler solutions. The red box and blue box are representative of the abnormal source. (<b>a</b>–<b>c</b>) Contaminated gravity; (<b>d</b>–<b>f</b>) Euler solutions obtained using <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mi>x</mi> </msub> <mo>≡</mo> <msub> <mi>w</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>∼</mo> <mn>15</mn> </mrow> </semantics></math>; (<b>g</b>–<b>i</b>) Euler solutions after rejection by <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>r</mi> </msub> <mo>≤</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>; (<b>j</b>–<b>l</b>) clusters obtained via the K-means clustering algorithm (K-means), where the number of clusters is predetermined by 2; and (<b>m</b>–<b>o</b>) three clusters automatically obtained using the density-based spatial clustering of applications with noise (DBSCAN) algorithm, setting the number of targets in their neighborhood to 1% of the total number of samples. There are 32,362, 42,237, and 48,266 solutions after filtering in (<b>g</b>–<b>i</b>), respectively.</p> "> Figure 16
<p>Probability density isosurfaces obtained using 3D BSSFFT for subset <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </semantics></math> with varied separations L: (<b>a</b>) 4.0 (km); (<b>b</b>) 2.5 (km); and (<b>c</b>) 1.0 (km); <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mn>100</mn> <mo>,</mo> <mn>100</mn> <mo>,</mo> <mn>100</mn> </mfenced> </mrow> </semantics></math>. The red box and blue box are representative of the abnormal source.</p> "> Figure 17
<p>Illustration of the 3D BSSFFT method’s sensitivity to different levels of Gaussian noise. The red box and blue box are representative of the abnormal source. The top, middle, and bottom rows correspond to <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> <mo>=</mo> </mrow> </semantics></math> 0%, 4%, and 8%, respectively; the columns from left to right correspond to noise-corrupted gravity, Euler solutions, Euler solutions filtered by <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>r</mi> </msub> <mo>≤</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>, and the probability density distributions obtained from the BSSFFT with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mn>100</mn> <mo>,</mo> <mn>100</mn> <mo>,</mo> <mn>100</mn> </mfenced> </mrow> </semantics></math>, respectively. <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mi>x</mi> </msub> <mo>≡</mo> <msub> <mi>w</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>∼</mo> <mn>15</mn> </mrow> </semantics></math>. There are 43,258, 42,552, and 48,923 solutions after filtering in (<b>c</b>,<b>g</b>,<b>k</b>), respectively.</p> "> Figure 18
<p>The profiles <math display="inline"><semantics> <msub> <mi>g</mi> <mi>z</mi> </msub> </semantics></math> of single and two anomalous sources at different noise levels (<math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>), respectively.</p> "> Figure 19
<p>Illustration of the 2D Euler deconvolution sensitivity to different levels of Gaussian noise. The red box and green box are representative of the abnormal source. The left (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) and right (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) columns correspond to <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> <mo>=</mo> </mrow> </semantics></math> 0% and 4%, respectively; each row from top to bottom corresponds to the single cube and two cubes with L = 4.0 (km), 2.5 (km), and 1.0 (km), respectively. The density of left and right anomalous sources is 2.36 g/cm<sup>3</sup> and 1.27 g/cm<sup>3</sup>, respectively. <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>10</mn> <mo>∼</mo> <mn>35</mn> </mrow> </semantics></math>.</p> "> Figure 20
<p>Probability density distribution obtained using 2D BSSFFT with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mn>100</mn> <mo>,</mo> <mn>100</mn> </mfenced> </mrow> </semantics></math> for subsets <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </semantics></math> of the single cube and two cubes with L = 4.0 (km), 2.5 (km), and 1.0 (km), respectively. The red box and green box are representative of the abnormal source. The left (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) and right (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) columns correspond to <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> <mo>=</mo> </mrow> </semantics></math> 0% and 4%, respectively.</p> "> Figure 21
<p>The Bishop 5X dataset, (<b>a</b>) topographic map of Basement, (<b>b</b>) magnetic susceptibility, (<b>c</b>) total field magnetic anomaly, <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <msup> <mn>45</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, and (<b>d</b>) total field magnetic anomaly, <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 22
<p>The components (<b>a</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mi>z</mi> </msub> </semantics></math> and first-order derivatives (<b>b</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>z</mi> <mi>x</mi> </mrow> </msub> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>z</mi> <mi>y</mi> </mrow> </msub> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </semantics></math> of the magnetic anomaly (magnetic inclination <math display="inline"><semantics> <msup> <mn>45</mn> <mo>∘</mo> </msup> </semantics></math>) of Bishop 5X data. The red line is the survey line applying the 2D Euler deconvolution.</p> "> Figure 23
<p>The components (<b>a</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mi>z</mi> </msub> </semantics></math> and first-order derivatives (<b>b</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>z</mi> <mi>x</mi> </mrow> </msub> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>z</mi> <mi>y</mi> </mrow> </msub> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </semantics></math> of the magnetic anomaly (magnetic inclination <math display="inline"><semantics> <msup> <mn>90</mn> <mo>∘</mo> </msup> </semantics></math>) of Bishop 5X data. The red line is the survey line applying the 2D Euler deconvolution.</p> "> Figure 24
<p>Illustration of the 2D BSSFFT method for Bishop 5X profile data (<math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <msup> <mn>45</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>). (<b>a</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mi>z</mi> </msub> </semantics></math>, (<b>b</b>) Euler solutions, (<b>c</b>) BSSFFT’s result. The computation time of the 2D Euler deconvolution and BSSFFT is 12.19 and 0.0253 s, respectively. <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>7220</mn> <mo>,</mo> <mi>λ</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mn>100</mn> <mo>,</mo> <mn>100</mn> </mfenced> </mrow> </semantics></math>.</p> "> Figure 25
<p>Illustration of the 2D BSSFFT method for Bishop 5X profile data (<math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>). (<b>a</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mi>z</mi> </msub> </semantics></math>, (<b>b</b>) Euler solutions, (<b>c</b>) BSSFFT’s result. The computation times of the 2D Euler deconvolution and BSSFFT are 11.25 and 0.0372 s, respectively. <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>7019</mn> <mo>,</mo> <mi>λ</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mn>100</mn> <mo>,</mo> <mn>100</mn> </mfenced> </mrow> </semantics></math>.</p> "> Figure 26
<p>The Euler solutions of Bishop 5X (magnetic inclination <math display="inline"><semantics> <msup> <mn>45</mn> <mo>∘</mo> </msup> </semantics></math>).</p> "> Figure 27
<p>The Euler solutions of Bishop 5X (magnetic inclination <math display="inline"><semantics> <msup> <mn>90</mn> <mo>∘</mo> </msup> </semantics></math>).</p> "> Figure 28
<p>Probability density slices of the Euler solution at various depths: (<b>a</b>) 1500, (<b>b</b>) 3000, (<b>c</b>) 4500, (<b>d</b>) 6000, (<b>e</b>) 7500, (<b>f</b>) 9000, (<b>g</b>) 10,500, (<b>h</b>) 12,000, and (<b>i</b>) 13,500 (magnetic inclination <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <msup> <mn>45</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>). A–D are denoted as probability density peaks.</p> "> Figure 29
<p>Probability density slices of the Euler solution corresponding to (<b>a</b>) 1500, (<b>b</b>) 3000, (<b>c</b>) 4500, (<b>d</b>) 6000, (<b>e</b>) 7500, (<b>f</b>) 9000, (<b>g</b>) 10,500, (<b>h</b>) 12,000, and (<b>i</b>) 13,500 (magnetic inclination <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>). A–D are denoted as probability density peaks.</p> "> Figure 30
<p>Probability density isosurfaces derived from Bishop 5X magnetic data (<math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <msup> <mn>45</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>) in (<b>a</b>) the perspective view and (<b>b</b>) the plane view (from bottom to top). A–D are denoted as probability density peaks.</p> "> Figure 31
<p>Probability density isosurfaces derived from Bishop 5X magnetic data (<math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <msup> <mn>90</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>) in (<b>a</b>) the perspective view and (<b>b</b>) the plane view (from bottom to top). A–D are denoted as probability density peaks.</p> ">
Abstract
:1. Introduction
2. Theory
2.1. Principle of Gravity Euler Deconvolution
2.2. Principle of BSS for Euler Solutions
2.3. Principle of BSSFFT
3. Algorithm Verification
4. Model Experiment
4.1. Single Cubic Model
4.2. Synthetic Model
4.3. Sensitivity of 3D BSSFFT to Separations
4.4. Sensitivity of 3D BSSFFT to Gaussian Noise
4.5. Sensitivity of 2D Euler Deconvolution to Gaussian Noise
5. Bishop Model
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KDDE | kernel density derivative estimation |
BSS | B-spline probability density estimation method |
BSSFFT | B-spline probability density estimation method based on fast Fourier transform |
KS | Gaussian kernel smoothing estimation |
FFT | fast Fourier transform |
probability density function | |
DBSCAN | density-based spatial clustering of applications with noise |
K-means | k-means clustering algorithm |
FCM | fuzzy C-means clustering algorithm |
References
- Smellie, D. Elementary approximations in aeromagnetic interpretation. Geophysics 1956, 21, 1021–1040. [Google Scholar] [CrossRef]
- Hood, P. Gradient measurements in aeromagnetic surveying. Geophysics 1965, 30, 891–902. [Google Scholar] [CrossRef]
- Choudhury, S.; Amaravadi, R. The Direct Approach to Magnetic Interpretation and Its Practical Application; discussion and reply. Geophysics 1972, 37, 181–182. [Google Scholar] [CrossRef]
- Thompson, D. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 1982, 47, 31–37. [Google Scholar] [CrossRef]
- Reid, A.; Allsop, J.; Granser, H.; Millett, A.; Somerton, I. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 1990, 55, 80–91. [Google Scholar] [CrossRef]
- Gerovska, D.; Araúzo-Bravo, M.J. Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index. Comput. Geosci. 2003, 29, 949–960. [Google Scholar] [CrossRef]
- FitzGerald, D.; Reid, A.; McInerney, P. New discrimination techniques for Euler deconvolution. Comput. Geosci. 2004, 30, 461–469. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Li, C.F.; Feng, J. Ratio-Euler deconvolution and its applications. Geophys. Prospect. 2022, 70, 1016–1032. [Google Scholar] [CrossRef]
- Farrelly, B. What is Wrong with Euler Deconvolution? In Proceedings of the 59th EAGE Conference & Exhibition, Geneva, Switzerland, 26–30 May 1997; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 1997; pp. 1–2. [Google Scholar] [CrossRef]
- Melo, F.F.; Barbosa, V.C. Reliable Euler deconvolution estimates throughout the vertical derivatives of the total-field anomaly. Comput. Geosci. 2020, 138, 104436. [Google Scholar] [CrossRef]
- Beiki, M. TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters: An example from the Åsele area, Sweden. J. Appl. Geophys. 2013, 90, 82–91. [Google Scholar] [CrossRef]
- FitzGerald, D.; Milligan, P. Defining a deep fault network for Australia, using 3D “worming”. ASEG Ext. Abstr. 2013, 2013, 1–4. [Google Scholar] [CrossRef]
- Agarwal, B.; Srivastava, S. Analyses of self-potential anomalies by conventional and extended Euler deconvolution techniques. Comput. Geosci. 2009, 35, 2231–2238. [Google Scholar] [CrossRef]
- Keating, P.; Pilkington, M. Euler deconvolution of the analytic signal and its application to magnetic interpretation. Geophys. Prospect. 2004, 52, 165–182. [Google Scholar] [CrossRef]
- Mikhailov, V.; Galdeano, A.; Diament, M.; Gvishiani, A.; Agayan, S.; Bogoutdinov, S.; Graeva, E.; Sailhac, P. Application of artificial intelligence for Euler solutions clustering. Geophysics 2003, 68, 168–180. [Google Scholar] [CrossRef]
- Goussev, S.A.; Peirce, J.W. Magnetic basement: Gravity-guided magnetic source depth analysis and interpretation. Geophys. Prospect. 2010, 58, 321–334. [Google Scholar] [CrossRef]
- Cao, S.; Zhu, Z.; Lu, G. Gravity tensor Euler Deconvolution solutions based on adaptive fuzzy cluster analysis. J. Central South Univ. 2012, 43, 1033–1039. (In Chinese) [Google Scholar]
- Zhang, H.; Wang, Q.; Shi, W.; Hao, M. A Novel Adaptive Fuzzy Local Information C -Means Clustering Algorithm for Remotely Sensed Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5057–5068. [Google Scholar] [CrossRef]
- Husson, E.; Guillén, A.; Séranne, M.; Courrioux, G.; Couëffé, R. 3D Geological modelling and gravity inversion of a structurally complex carbonate area: Application for karstified massif localization. Basin Res. 2018, 30, 766–782. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.H.; Chung, C.W. Multi-dimensional selectivity estimation using compressed histogram information. SIGMOD Rec. 1999, 28, 205–214. [Google Scholar] [CrossRef]
- Cao, S.; Deng, Y.; Yang, B.; Lu, G.; Zhu, Z.; Chen, P.; Xie, J.; Chen, X. 3D Probability Density Imaging of Euler Solutions using Gravity Data: A Case Study of Mount Milligan. Acta Geophys. 2024, 1, 1–21. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Chen, Q.; Song, X.; Wang, H. Vessel sailing route extraction and analysis from satellite-based AIS data using density clustering and probability algorithms. Ocean Eng. 2023, 280, 114627. [Google Scholar] [CrossRef]
- Peng, J.; Wang, X.; Zhao, H.; Dong, Z. Single-sample unmixing and parametric end-member modelling of grain-size distributions with transformed probability density functions and their performance comparison using aeolian sediments. Sediment. Geol. 2023, 445, 106328. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, J.; Chen, L.; Cai, Z. An isogeometric BEM using PB-spline for 3-D linear elasticity problem. Eng. Anal. Bound. Elem. 2015, 56, 154–161. [Google Scholar] [CrossRef]
- Eilers, P.H.; Marx, B.D. Flexible smoothing with B-splines and penalties. Stat. Sci. 1996, 11, 89–121. [Google Scholar] [CrossRef]
- Faenza, L.; Marzocchi, W.; Boschi, E. A non-parametric hazard model to characterize the spatio-temporal occurrence of large earthquakes; an application to the Italian catalogue. Geophys. J. Int. 2003, 155, 521–531. [Google Scholar] [CrossRef]
- Liao, J.; Liu, H.; Li, W.; Guo, Z.; Wang, L.; Wang, H.; Peng, S.; Hursthouse, A.S. 3-D Butterworth Filtering for 3-D High-density Onshore Seismic Field Data. J. Environ. Eng. Geophys. 2018, 23, 223–233. [Google Scholar] [CrossRef]
- Xiao, W.; Ma, H.; Zhou, L.; Li, H. Adaptive Fuzzy Fixed-Time Formation-Containment Control for Euler-Lagrange Systems. IEEE Trans. Fuzzy Syst. 2023, 31, 3700–3709. [Google Scholar] [CrossRef]
- Mautz, R.; Ping, J.; Heki, K.; Schaffrin, B.; Shum, C.; Potts, L. Efficient spatial and temporal representations of global ionosphere maps over Japan using B-spline wavelets. J. Geod. 2005, 78, 662–667. [Google Scholar] [CrossRef]
- Herrmann, F.J.; Hennenfent, G. Non-parametric seismic data recovery with curvelet frames. Geophys. J. Int. 2008, 173, 233–248. [Google Scholar] [CrossRef]
- Li, C.; Wen, X.; Liu, X.; Zu, S. Simultaneous Seismic Data Interpolation and Denoising Based on Nonsubsampled Contourlet Transform Integrating With Two-Step Iterative Log Thresholding Algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Wand, M. Fast computation of multivariate kernel estimators. J. Comput. Graph. Stat. 1994, 3, 433–445. [Google Scholar] [CrossRef]
- Raykar, V.C.; Duraiswami, R.; Zhao, L.H. Fast Computation of Kernel Estimators. J. Comput. Graph. Stat. 2010, 19, 205–220. [Google Scholar] [CrossRef]
- Wang, B.; Krebes, E.S.; Ravat, D. High-precision potential-field and gradient-component transformations and derivative computations using cubic B-splines. Geophysics 2008, 73, I35–I42. [Google Scholar] [CrossRef]
- Togbenou, K.; Xiang, H.Y.; Li, Y.; Chen, N. Improved Spectral Representation Method for the Simulation of Stochastic Wind Velocity Field Based on FFT Algorithm and Polynomial Decomposition. J. Eng. Mech. 2018, 144, 04017171. [Google Scholar] [CrossRef]
- Fang, B.; Chen, S.; Dong, Z. Density Distillation for Fast Nonparametric Density Estimation. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 9424–9438. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Deng, Y.; Yang, B.; Lu, G.; Hu, X.; Mao, Y.; Hu, S.; Zhu, Z. Kernel Density Derivative Estimation of Euler Solutions. Appl. Sci. 2023, 13, 1784. [Google Scholar] [CrossRef]
- Harfouche, L.; Zougab, N.; Adjabi, S. Multivariate generalised gamma kernel density estimators and application to non-negative data. Int. J. Comput. Sci. Math. 2020, 11, 137–157. [Google Scholar] [CrossRef]
- Reid, A.B. Euler deconvolution: Past, present and future—A review. SEG Tech. Prog. Expand. Abstr. 1995, 03, 272–273. [Google Scholar] [CrossRef]
- Ravat, D. Analysis of the Euler method and its applicability in environmental magnetic investigations. J. Environ. Eng. Geophys. 1996, 1, 229–238. [Google Scholar] [CrossRef]
- Melo, F.F.; Barbosa, V.C. Correct structural index in Euler deconvolution via base-level estimates. Geophysics 2018, 83, J87–J98. [Google Scholar] [CrossRef]
- Reid, A.B.; Thurston, J.B. The structural index in gravity and magnetic interpretation: Errors, uses, and abuses. Geophysics 2014, 79, J61–J66. [Google Scholar] [CrossRef]
- Barbosa, V.C.; Silva, J.B.; Medeiros, W.E. Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics 1999, 64, 48–60. [Google Scholar] [CrossRef]
- Ugalde, H.; Morris, W.A. Cluster analysis of Euler deconvolution solutions: New filtering techniques and geologic strike determination. Geophysics 2010, 75, L61–L70. [Google Scholar] [CrossRef]
- Pan, Q.; Liu, D.; Feng, S.; Feng, M.; Fang, H. Euler deconvolution of the analytic signals of the gravity gradient tensor for the horizontal pipeline of finite length by horizontal cylinder calculation. J. Geophys. Eng. 2017, 14, 316–330. [Google Scholar] [CrossRef]
- Gehringer, K.R.; Redner, R.A. Nonparametric probability density estimation using normalized b-splines. Commun. Stat. Simul. C 1992, 21, 849–878. [Google Scholar] [CrossRef]
- Schumaker, L. Spline Functions: Basic Theory; Cambridge University Press: Cambridge, UK, 2007; pp. 35–42. [Google Scholar] [CrossRef]
- Gramacki, A.; Gramacki, J. FFT-based fast computation of multivariate kernel density estimators with unconstrained bandwidth matrices. J. Comput. Graph. Stat. 2017, 26, 459–462. [Google Scholar] [CrossRef]
- Chacón, J.E.; Duong, T. Multivariate Kernel Smoothing and Its Applications; CRC Press: Boca Raton, FL, USA, 2018; pp. 34–37. [Google Scholar] [CrossRef]
- Rao, S. Interpolation Models. In The Finite Element Method in Engineering, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2017; Section 3; pp. 81–127. [Google Scholar] [CrossRef]
- Teukolsky, S.A.; Flannery, B.P.; Press, W.H.; Vetterling, W.T. Numerical Recipes in C: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1992; pp. 100–135. [Google Scholar] [CrossRef]
- Arndt, J. Matters Computational: Ideas, Algorithms, Source Code; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2010; pp. 153–170. [Google Scholar] [CrossRef]
- Odland, T. tommyod/KDEpy: Kernel density estimation in python. Zenodo 2018, 8, 45–48. [Google Scholar] [CrossRef]
- Raykar, V.C.; Duraiswami, R. Fast optimal bandwidth selection for kernel density estimation. In Proceedings of the 2006 SIAM International Conference on Data Mining, Bethesda, MD, USA, 20–22 April 2006; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2006; pp. 524–528. [Google Scholar] [CrossRef]
- Duong, T. ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 2007, 21, 1–16. [Google Scholar] [CrossRef]
- Botev, Z.I.; Grotowski, J.F.; Kroese, D.P. Kernel density estimation via diffusion. Anal. Stat. 2010, 38, 2916–2957. [Google Scholar] [CrossRef]
- Xu, J.C.; Li, W.Y.; Liu, Y.X. Application of euler deconvolution method in airborne gravity exploration. Prog. Phys. 2016, 31, 390–395. (In Chinese) [Google Scholar]
- Li, Y.; Oldenburg, D.W. 3-D inversion of gravity data. Geophysics 1998, 63, 109–119. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Mikhailov, V.O.; Agayan, S.M.; Bogoutdinov, S.R.; Graeva, E.M.; Diament, M.; Galdeano, A. Artificial intelligence algorithms for magnetic anomaly clustering. Izvestiya Phys. Solid Earth 2002, 38, 545–559. [Google Scholar]
- Williams, S.E.; Fairhead, J.D.; Flanagan, G. Comparison of grid Euler deconvolution with and without 2D constraints using a realistic 3D magnetic basement model. Geophysics 2005, 70, L13–L21. [Google Scholar] [CrossRef]
- Fairhead, J.D.; Williams, S.E.; Flanagan, G. Testing Magnetic Local Wavenumber Depth Estimation Methods using a Complex 3D Test Model. SEG Tech. Prog. Expand. Abstr. 2004, 10, 742–745. [Google Scholar] [CrossRef]
- Florio, G. ITRESC: A fast and efficient method to recover the basement morphology from potential fields data. SEG Tech. Prog. Expand. Abstr. 2018, 08, 1415–1419. [Google Scholar] [CrossRef]
- Florio, G. Mapping the Depth to Basement by Iterative Rescaling of Gravity or Magnetic Data. J. Geophys. Res. Solid Earth 2018, 123, 9101–9120. [Google Scholar] [CrossRef]
- Salem, A.; Green, C.; Campbell, S.; Fairhead, J. A Practical Approach to 3D Inversion of Pseudo-gravity for Depth to Basement Mapping—A Test Using the Bishop Model. In Proceedings of the 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, Copenhagen, Denmark, 4–7 June 2012; p. P338. [Google Scholar] [CrossRef]
- Reid, A. Hybrid Euler magnetic basement depth estimation: Bishop 3D tests. SEG Tech. Prog. Expand. Abstr. 2005, 24, 6–11. [Google Scholar] [CrossRef]
- Gerovska, D.; Araúzo-Bravo, M.J.; Whaler, K.A.; Stavrev, P.; Reid, A.B. Three-dimensional interpretation of magnetic and gravity anomalies using the finite-difference similarity transform. Geophysics 2010, 75, 1JA–Z98. [Google Scholar] [CrossRef]
- Dwivedi, D.D.; Chamoli, A. Source Edge Detection of Potential Field Data Using Wavelet Decomposition. Pure Appl. Geophys. 2021, 178, 919–938. [Google Scholar] [CrossRef]
- Salem, A.; Williams, S.E.; Fairhead, D.J.; Smith, R.S.; Ravat, D. Interpretation of magnetic data using tilt-angle derivatives. Geophysics 2008, 73, 1–10. [Google Scholar] [CrossRef]
- Zhou, W.; Nan, Z.Y.; Li, J. Self-Constrained Euler Deconvolution Using Potential Field Data of Different Altitudes. Pure Appl. Geophys. 2016, 173, 2073–2085. [Google Scholar] [CrossRef]
- Li, X. Terracing gravity and magnetic data using edge-preserving smoothing filters. Geophysics 2016, 81, G37–G43. [Google Scholar] [CrossRef]
- Ekinci, Y.L.; Yigitbas, E. A geophysical approach to the igneous rocks in the Biga Peninsula (NW Turkey) based on airborne magnetic anomalies: Geological implications. Geodin. Acta 2012, 25, 267–285. [Google Scholar] [CrossRef]
- Baranov, V. A new method for interpretation of aeromagnetic maps: Pseudo-gravimetric anomalies. Geophysics 1957, 22, 359–382. [Google Scholar] [CrossRef]
- Oni, O.A.; Aizebeokhai, A.P. Aeromagnetic data processing using MATLAB. IOP Conf. Ser. Earth Environ. Sci. 2022, 993, 012017. [Google Scholar] [CrossRef]
- Hildenbrand, T.G. FFTFIL; a Filtering Program Based on Two-Dimensional Fourier Analysis of Geophysical Data; U.S. Geological Survey: Reston, VA, USA, 1983; pp. 23–37. [CrossRef]
- Grauch, V. Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data. Geophysics 1987, 52, 118–121. [Google Scholar] [CrossRef]
- Bott, M.H.P.; Smith, R.A.L.; Stacey, R.A. Estimation of the direction of magnetization of a body causing a magnetic anomaly using a pseudo-gravity transformation. Geophysics 1966, 31, 803–811. [Google Scholar] [CrossRef]
- Salem, A.; Green, C.M.; Cheyney, S.; Fairhead, J.D.; Aboud, E.; Campbell, S. Mapping the depth to magnetic basement using inversion of pseudogravity: Application to the Bishop model and the Stord Basin, northern North Sea. Interpretation 2014, 2, 1M–T127. [Google Scholar] [CrossRef]
- Pratt, D.A.; Shi, Z. An improved pseudo-gravity magnetic transform technique for investigation of deep magnetic source rocks. ASEG Ext. Abstr. 2004, 2004, 1–4. [Google Scholar] [CrossRef]
- Zeng, H.; Xu, D.; Tan, H. A model study for estimating optimum upward-continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China. Geophysics 2007, 72, I45–I50. [Google Scholar] [CrossRef]
- Montaj, G. The Core Software Platform for Working with Large Volume Gravity and Magnetic Spatial Data; Geosoft Inc.: Toronto, ON, Canada, 2008. [Google Scholar]
- Setiadi, I.; Marjiyono; Nainggolan, T.B. Gravity data analysis based on optimum upward continuation filter and 3D inverse modelling (Case study at sedimentary basin in volcanic region Malang and its surrounding area, East Java). IOP Conf. Ser. Earth Environ. Sci. 2021, 873, 012008. [Google Scholar] [CrossRef]
- Mickus, K.L.; Hinojosa, J.H. The complete gravity gradient tensor derived from the vertical component of gravity: A Fourier transform technique. J. Appl. Geophys. 2001, 46, 159–174. [Google Scholar] [CrossRef]
- Zhang, C.; Mushayandebvu, M.F.; Reid, A.B.; Fairhead, J.D.; Odegard, M.E. Euler deconvolution of gravity tensor gradient data. Geophysics 2000, 65, 512–520. [Google Scholar] [CrossRef]
- Reid, A.B.; Ebbing, J.; Webb, S.J. Avoidable Euler errors—The use and abuse of Euler deconvolution applied to potential fields. Geophys. Prospect. 2014, 62, 1162–1168. [Google Scholar] [CrossRef]
- Pašteka, R.; Richter, F.; Karcol, R.; Brazda, K.; Hajach, M. Regularized derivatives of potential fields and their role in semi-automated interpretation methods. Geophys. Prospect. 2009, 57, 507–516. [Google Scholar] [CrossRef]
- Duong, T.; Cowling, A.; Koch, I.; Wand, M.P. Feature significance for multivariate kernel density estimation. Comput. Stat. Data Anal. 2008, 52, 4225–4242. [Google Scholar] [CrossRef]
Cube 1 () | Cube 2 () | |||||||
---|---|---|---|---|---|---|---|---|
1D Subset | ||||||||
Theoretical values | −1500 | −1500 | 2000 | 2 | 1500 | 1500 | 2000 | 2 |
BSS results | −1632 | −1731 | 1051 | 1.33 | 1634 | 1631 | 1051 | 1.33 |
BSSFFT’s results | −1731 | −1731 | 1051 | 1.40 | 1634 | 1668 | 1052 | 1.40 |
2D Subset | ||||||
---|---|---|---|---|---|---|
BSS results for Cube 1 | * | |||||
BSS results for Cube 2 | * | |||||
BSSFFT results for Cube 1 | ||||||
BSSFFT results for Cube 2 |
Cube 1 | ||||
Cube 2 |
Separation L | Centroid of Left Cube | Centroid of Right Cube |
---|---|---|
4000 | ||
2500 | ||
1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Chen, P.; Lu, G.; Ma, Z.; Yang, B.; Chen, X. FFT-Based Probability Density Imaging of Euler Solutions. Entropy 2024, 26, 517. https://doi.org/10.3390/e26060517
Cao S, Chen P, Lu G, Ma Z, Yang B, Chen X. FFT-Based Probability Density Imaging of Euler Solutions. Entropy. 2024; 26(6):517. https://doi.org/10.3390/e26060517
Chicago/Turabian StyleCao, Shujin, Peng Chen, Guangyin Lu, Zhiyuan Ma, Bo Yang, and Xinyue Chen. 2024. "FFT-Based Probability Density Imaging of Euler Solutions" Entropy 26, no. 6: 517. https://doi.org/10.3390/e26060517
APA StyleCao, S., Chen, P., Lu, G., Ma, Z., Yang, B., & Chen, X. (2024). FFT-Based Probability Density Imaging of Euler Solutions. Entropy, 26(6), 517. https://doi.org/10.3390/e26060517