Thermodynamic Entropy-Based Fatigue Life Assessment Method for Nickel-Based Superalloy GH4169 at Elevated Temperature Considering Cyclic Viscoplasticity
<p>Diagram to obtain Young’s modulus <span class="html-italic">E</span> and the value of <span class="html-italic">k</span><sub>0</sub> in the first cyclic curve.</p> "> Figure 2
<p>Irreversible thermodynamic failure mechanism of a material system during the fatigue process.</p> "> Figure 3
<p>Diagram for indicting intrinsic dissipation. (<b>a</b>) Different dissipation components in the stress-inelastic strain curve; (<b>b</b>) hysteresis loop for indicating intrinsic dissipation.</p> "> Figure 4
<p>Flowchart of the MATLAB program for calculating cyclic stress–strain response.</p> "> Figure 5
<p>Comparison of the stress–strain hysteresis loops from simulations and experiments undergoing cyclic strain loading at 650 °C. (<b>a</b>) The first loading cycle. (<b>b</b>) The stable cyclic hysteresis loops [<a href="#B43-entropy-26-00391" class="html-bibr">43</a>].</p> "> Figure 6
<p>Diagram for the calculation of entropy generation accumulation in fatigue process.</p> "> Figure 7
<p>The linear relationship for normalized entropy generation (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>S</mi> </mrow> <mrow> <mi>g</mi> </mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </msubsup> <mo>/</mo> <msubsup> <mrow> <mi>S</mi> </mrow> <mrow> <mi>g</mi> </mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </msubsup> </mrow> </semantics></math>) and life consumption (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> <mo>/</mo> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </semantics></math>) in the entire fatigue process with test validations.</p> "> Figure 8
<p>Entropy generation analysis. (<b>a</b>) Trend in cyclic entropy generation rate at different strain amplitudes for GH4169 at 650 °C. (<b>b</b>) Values of FFE versus different strain amplitudes at 650 °C.</p> "> Figure 9
<p>Entropy generation analysis considering different load ratios. (<b>a</b>) Evolution of cyclic entropy generation rate with various strain amplitudes. (<b>b</b>) Schematic diagram of the size evolution of the hysteresis loops from initiation to stabilization.</p> "> Figure 10
<p>Relationship between damage parameter <span class="html-italic">D<sub>R</sub></span> and load ratio parameter (1 − <span class="html-italic">R<sub>load</sub></span>).</p> "> Figure 11
<p>Experimental results versus predicted lives based on life model without load ratio effects and proposed thermodynamic entropy-based model (<span class="html-italic">R<sub>load</sub></span> = 0 and 0.1) [<a href="#B51-entropy-26-00391" class="html-bibr">51</a>,<a href="#B52-entropy-26-00391" class="html-bibr">52</a>,<a href="#B53-entropy-26-00391" class="html-bibr">53</a>].</p> "> Figure 12
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mrow> <mo>∆</mo> <mi>ε</mi> </mrow> </mrow> <mrow> <mi>a</mi> </mrow> </msub> <mrow> <mo>−</mo> <mi>N</mi> </mrow> </mrow> </semantics></math> curves and scatter bands for the comparison between predicted fatigue lives and experimental data from fatigue tests. (<b>a</b>,<b>b</b>): <span class="html-italic">R<sub>load</sub></span> = −1 [<a href="#B51-entropy-26-00391" class="html-bibr">51</a>,<a href="#B52-entropy-26-00391" class="html-bibr">52</a>,<a href="#B57-entropy-26-00391" class="html-bibr">57</a>]. (<b>c</b>,<b>d</b>): <span class="html-italic">R<sub>load</sub></span> = 0 [<a href="#B53-entropy-26-00391" class="html-bibr">53</a>]. (<b>e</b>,<b>f</b>): <span class="html-italic">R<sub>load</sub></span> = 0.1 [<a href="#B51-entropy-26-00391" class="html-bibr">51</a>,<a href="#B52-entropy-26-00391" class="html-bibr">52</a>].</p> ">
Abstract
:1. Introduction
2. Theory and Formulation
2.1. The Viscoplastic Constitutive Model
2.2. Thermodynamic Analysis of Fatigue
3. Entropy Generation Modeling in Viscoplastic Framework
3.1. Entropy Generation Rate Model
3.2. Entropy Generation Accumulation
4. Proposed Thermodynamic Entropy-Based Life Assessment Framework
4.1. Cyclic Viscoplasticity Numerical Algorithm
4.2. Entropy Generation Calculation and Life Assessment Method
5. Results and Discussion
5.1. Entropy Generation Accumulation Analysis in Fatigue Process
5.2. Influence of Load Ratio on Entropy Generation
5.3. Proposed Life Model Based on Thermodynamic Entropy Generation
6. Conclusions
- (1)
- The cyclic entropy generation rate is approximately a constant value when the cyclic stress–strain response is stable. The entropy generation accumulation during fatigue life, called fatigue fracture entropy FFE (), can be calculated with the stable cyclic entropy generation rate and estimated by a piecewise FFE model related to the applied strain in the LCF category.
- (2)
- Entropy generation under different loading ratios was investigated, and the initial cyclic entropy generation rate is the main difference. A damage parameter DR based on was defined to represent this difference and introduce the effect of load ratio in LCF.
- (3)
- A thermodynamic entropy-based model with the damage parameter DR was proposed to estimate fatigue life. The predicted results from the proposed model show good concordance with the experimental results. Compared with the classical models, such as Manson–Coffin, Ostergren, Walker strain, and SWT, the results indicated that the proposed model can provide better prediction accuracy with higher R2 and smaller dispersion.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Yuan, H. Cyclic plasticity modeling of nickel-based superalloy Inconel 718 under multi-axial thermo-mechanical fatigue loading conditions. Int. J. Fatigue 2019, 119, 89–101. [Google Scholar] [CrossRef]
- Lu, R.S.; Tan, J.P.; Yang, J.; Wang, J.; Shlyannikov, V.; Wang, R.Z.; Zhang, X.C.; Tu, S.T. A new creep-fatigue crack growth model and a correlation of the creep-fatigue crack growth rate with unified constraint parameter. Int. J. Fatigue 2023, 166, 10724. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Xu, D.K.; Lin, Y.; Chen, X. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C. Mater. Sci. Eng. A Struct. 2016, 655, 175–182. [Google Scholar] [CrossRef]
- Liu, Y.M.; Wang, L.; Chen, G.; Li, B.B.; Wang, X.H. Investigation on ratcheting-fatigue behavior and damage mechanism of GH4169 at 650 °C. Mater. Sci. Eng. A Struct. 2019, 743, 314–321. [Google Scholar] [CrossRef]
- Chaboche, J.L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 1989, 5, 247–302. [Google Scholar] [CrossRef]
- Chaboche, J.L.; Rousselier, G. On the plastic and viscoplastic constitutive equations part 1: Rules developed with internal variable concept. Int. J. Pres. Ves. Tech. 1983, 105, 153–158. [Google Scholar] [CrossRef]
- Chaboche, J.L. Time-independent constitutive theories for cyclic plasticity. Int. J. Plast. 1986, 2, 149–188. [Google Scholar] [CrossRef]
- Lemaitre, J.; Chaboche, J.L. Mechanics of Solid Materials; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Armstrong, P.J.; Frederick, C.O. A Mathematical Representation of the Multiaxial Bauschinger Effect; CEGB Report RD/B/N731; Berkeley Nuclear Laboratory: Berkeley, CA, USA, 1966. [Google Scholar]
- Bernhart, G.; Moulinier, G.; Brucelle, O.; Delagnes, D. High temperature low cycle fatigue behaviour of a martensitic forging tool steel. Int. J. Fatigue 1999, 21, 179–186. [Google Scholar] [CrossRef]
- Li, D.H.; Shang, D.G.; Li, Z.G.; Wang, J.J.; Hui, J.; Liu, X.D.; Tao, Z.Q.; Zhang, C.C.; Chen, B. Unified viscoplastic constitutive model under axial-torsional thermo-mechanical cyclic loading. Int. J. Mech. Sci. 2019, 150, 90–102. [Google Scholar] [CrossRef]
- Hu, X.A.; Yang, X.G.; Shi, D.Q.; Yu, H.C.; Ren, T.T. Constitutive modeling of a directionally solidified nickel-based superalloy DZ125 subjected to thermal mechanical creep fatigue loadings. Rare Met. 2019, 38, 922–936. [Google Scholar] [CrossRef]
- Manson, S.S. Behavior of Materials under Conditions of Thermal Stress; Nation Advisory Committee for Aeronautics: Washington, DC, USA, 1954; Volume 7, pp. 661–665.
- Ostergren, W.J. A damage function and associated failure equation for predicting hold time and frequency effects in elevated temperature low-cycle fatigue. J. Test. Eval. 1976, 4, 327–339. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, G.; Gao, Q. Stress-based fatigue failure models for uniaxial ratchetting–fatigue interaction. Int. J. Fatigue 2008, 30, 1065–1073. [Google Scholar] [CrossRef]
- Chaboche, J.L.; Lesne, P.M. A nonlinear continuous fatigue damage model. Fatigue Fract. Eng. Mater. Struct. 1988, 11, 1–17. [Google Scholar] [CrossRef]
- Duyi, Y.; Zhenlin, W. A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue. Int. J. Fatigue 2001, 23, 679–687. [Google Scholar] [CrossRef]
- Coffin, L.F., Jr. A study of the effects of cyclic thermal stresses on a ductile metal. J. Fluid. Eng. Trans. ASME 1954, 76, 931–949. [Google Scholar] [CrossRef]
- Morrow, J.D. Fatigue Design Handbook-Advances in Engineering; Society of Automotive Engineers: Warrendale, PA, USA, 1968; Volume 4, pp. 21–29. [Google Scholar]
- Walker, K. The Effects of Stress Ratio During Crack Propagation and fatigue for 2024-T3 and 7075-T6 Aluminum. In Effect of Environment and Complex Load History on Fatigue Life; Testing and Materials: West Conshohocken, PA, USA, 1970; pp. 1–14. [Google Scholar]
- Smith, R.N.; Watson, P.; Topper, T.H. A stress-strain parameter for the fatigue of metals. J. Mater. 1970, 5, 767–778. [Google Scholar]
- Liu, K. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. Advances in multiaxial fatigue. ASTM Spec. Tech. Publ. 1993, 1191, 67. [Google Scholar]
- Basquin, O.H. The exponential law of endurance tests. Proc. Am. Soc. Test. Mater. 1910, 10, 625–630. [Google Scholar]
- Rider, R.J.; Harvey, S.J.; Chandler, H.D. Fatigue and ratchetting interactions. Int. J. Fatigue 1995, 17, 507–511. [Google Scholar] [CrossRef]
- Xia, Z.; Kujawki, D.; Ellyin, F. Effect of mean stress and ratchetting strain on fatigue life of steel. Int. J. Fatigue 1996, 18, 335–341. [Google Scholar] [CrossRef]
- Araújo, L.M.; Ferreira, G.V.; Neves, R.S.; Malcher, L. Fatigue analysis for the aluminum alloy 7050–T7451 performed by a two scale continuum damage mechanics model. Theor. Appl. Fract. Mech. 2020, 105, 102439. [Google Scholar] [CrossRef]
- Pandey, V.B.; Singh, I.V.; Mishra, B.K.; Ahmad, S.; Rao, A.V.; Kumar, V. A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth simulations. Eng. Fract. Mech. 2019, 206, 172–200. [Google Scholar] [CrossRef]
- Liu, N.; Cui, X.; Xiao, J.; Lua, J.; Phan, N. A simplified continuum damage mechanics based modeling strategy for cumulative fatigue damage assessment of metallic bolted joints. Int. J. Fatigue 2020, 131, 105302. [Google Scholar] [CrossRef]
- Bryant, M.D.; Khonsari, M.M.; Ling, F.F. On the thermodynamics of degradation. Proc. R. Soc. A Math. Phys. Eng. Sci. 2008, 464, 2001–2014. [Google Scholar] [CrossRef]
- Naderi, M.; Amiri, M.; Khonsari, M.M. On the thermodynamic entropy of fatigue fracture. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 423–438. [Google Scholar] [CrossRef]
- Long, X.; Guo, Y.; Su, Y.; Siow, K.S.; Chen, C. Unveiling the damage evolution of SAC305 during fatigue by entropy generation. Int. J. Mech. Sci. 2023, 244, 108087. [Google Scholar] [CrossRef]
- Basaran, C.; Nie, S. An irreversible thermodynamics theory for damage mechanics of solids. Int. J. Damage Mech. 2004, 13, 205–223. [Google Scholar] [CrossRef]
- Wang, J.; Yao, Y. An entropy-based failure prediction model for the creep and fatigue of metallic materials. Entropy 2019, 21, 1104. [Google Scholar] [CrossRef]
- Amiri, M.; Khonsari, M.M. On the role of entropy generation in processes involving fatigue. Entropy 2011, 14, 24–31. [Google Scholar] [CrossRef]
- Naderi, M.; Khonsari, M.M. A comprehensive fatigue failure criterion based on thermodynamic approach. J. Compos. Mater. 2012, 46, 437–447. [Google Scholar] [CrossRef]
- Liakat, M.; Khonsari, M.M. On the anelasticity and fatigue fracture entropy in high-cycle metal fatigue. Mater. Design 2015, 82, 18–27. [Google Scholar] [CrossRef]
- Liakat, M.; Khonsari, M.M. Entropic characterization of metal fatigue with stress concentration. Int. J. Fatigue 2015, 70, 223–234. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Khonsari, M.M. On the application of fracture fatigue entropy to multiaxial loading. Int. J. Fatigue 2021, 150, 106321. [Google Scholar] [CrossRef]
- Leonid, A.; Sergei, S. Mechanothermodynamic entropy and analysis of damage state of complex systems. Entropy 2016, 18, 268. [Google Scholar] [CrossRef]
- Leonid, A.; Sergei, S. A model of mechanothermodynamic entropy in Tribology. Entropy 2017, 19, 115. [Google Scholar] [CrossRef]
- Norton, F.H. The Creep of Steel at High Temperature; McGraw-Hill: New York, NY, USA, 1929. [Google Scholar]
- Tong, J.; Zhan, Z.L.; Vermeulen, B. Modelling of cyclic plasticity and viscoplasticity of a nickel-based alloy using Chaboche constitutive equations. Int. J. Fatigue 2004, 26, 829–837. [Google Scholar] [CrossRef]
- Liu, L.F. Research on Thermomechanical Fatigue Behavior and Life Prediction Approaches of Nickel-Based Superalloy. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2019. (In Chinese). [Google Scholar]
- Boltzmann, L. Lectures on Gas Theory; University of California Press: Berkeley, CA, USA, 1898. [Google Scholar]
- Amooie, M.A.; Khonsari, M.M. On the effect of environmental temperature on fracture fatigue entropy. Int. J. Fatigue 2023, 168, 107411. [Google Scholar] [CrossRef]
- Naderi, M.; Khonsari, M.M. On the role of damage energy in the fatigue degradation characterization of a composite laminate. Compos. Part B Eng. 2013, 45, 528–537. [Google Scholar] [CrossRef]
- Adair, B.S.; Johnson, W.S.; Antolovich, S.D.; Staroselsky, A. Identification of fatigue crack growth mechanisms in IN100 superalloy as a function of temperature and frequency. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 217–227. [Google Scholar] [CrossRef]
- Haghshenas, A.; Jang, J.Y.; Khonsari, M.M. On the intrinsic dissipation and fracture fatigue entropy of metals. Mech. Mater. 2021, 155, 103734. [Google Scholar] [CrossRef]
- Torabi, M.; Zhang, K.; Karimi, N.; Peterson, G. Entropy generation in thermal systems with solid structures—A concise review. Int. J. Heat Mass Transf. 2016, 97, 917–931. [Google Scholar] [CrossRef]
- Siyuan, C.; Dasheng, W.; Jialiang, W.; Yanrong, W.A.N.G.; Jiang, X. A new fatigue life prediction model considering the creep-fatigue interaction effect based on the Walker total strain equation. Chin. J. Aeronaut. 2020, 33, 2382–2394. [Google Scholar]
- Wei, D.S.; Shi, L.; Wang, Y.R. Experimental study of the cyclic mechanical behaviour of two Ni-based superalloys at evaluated temperature. Mat. Sci. Eng. A 2013, 569, 124–131. [Google Scholar] [CrossRef]
- Wang, R.Z.; Wang, J.; Gong, J.G.; Zhang, X.C.; Tu, S.T.; Zhang, C.C. Creep-fatigue behaviors and life assessments in two nickel-based superalloys. J. Press. Vess. T ASME 2018, 140, 031405. [Google Scholar] [CrossRef]
- Branco, R.; Prates, P.; Costa, J.D.; Cruces, A.; Lopez-Crespo, P.; Berto, F. On the applicability of the cumulative strain energy density for notch fatigue analysis under multiaxial loading. Theor. Appl. Fract. Mech. 2022, 120, 103405. [Google Scholar] [CrossRef]
- Jang, J.Y.; Khonsari, M.M. Experimentally validated thermodynamic theory of metal fatigue. Mech. Mater. 2021, 160, 103927. [Google Scholar] [CrossRef]
- Ontiveros, V.; Amiri, M.; Kahirdeh, A.; Modarres, M. Thermodynamic entropy generation in the course of the fatigue crack initiation. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 423–434. [Google Scholar] [CrossRef]
- Zhong, Z. China Superalloys Handbook; China Standards Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Cheng, L.Y.; Wang, R.Z.; Wang, J.; Zhu, S.P.; Zhao, P.C.; Miura, H.; Zhang, X.C.; Tu, S.T. Cycle-dependent creep-fatigue deformation and life predictions in a nickel-based superalloy at elevated temperature. Int. J. Mech. Sci. 2021, 206, 106628. [Google Scholar] [CrossRef]
Viscoplastic | Z = 893 MPa∙s1/n′ | n′ = 3.9 | k0 = 678 MPa |
Elastic | E = 171.6 GPa | ||
Isotropic hardening | Q = −380 MPa | b = 13.2 | |
Kinematic hardening | C1 = 495 | a1 = 179 MPa | |
C2 = 350 | a2 = 187 MPa |
(%) | Fatigue Failure Life Nf (Cycles) |
---|---|
1.50% | 104 |
1.20% | 213 |
1.00% | 295 |
279 | |
231 | |
354 | |
0.85% | 395 |
378 | |
0.80% | 541 |
471 | |
426 | |
0.75% | 589 |
0.70% | 592 |
0.65% | 837 |
934 | |
0.60% | 1036 |
1194 | |
0.575% | 2027 |
0.50% | 3976 |
0.45% | 15,497 |
0.40% | 130,585 |
Life Prediction Models | Parameters Fitting from Test Data in Table 2 | |||
---|---|---|---|---|
Manson–Coffin model | c | b | ||
0.5771 | −0.727 | 1423 | −0.079 | |
Ostergren energy model | M | C | ||
0.538 | 170.65 | |||
Walker strain model | m | u | v | |
0.8020 | 0.0477 | 0.2130 | ||
SWT model | c | b | ||
0.5771 | −0.727 | 1423 | −0.079 | |
Thermodynamic entropy-based model | A | |||
3338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Xia, S.; Li, Z.; Zhou, H.; Bao, S.; Li, B.; Li, G. Thermodynamic Entropy-Based Fatigue Life Assessment Method for Nickel-Based Superalloy GH4169 at Elevated Temperature Considering Cyclic Viscoplasticity. Entropy 2024, 26, 391. https://doi.org/10.3390/e26050391
Ding S, Xia S, Li Z, Zhou H, Bao S, Li B, Li G. Thermodynamic Entropy-Based Fatigue Life Assessment Method for Nickel-Based Superalloy GH4169 at Elevated Temperature Considering Cyclic Viscoplasticity. Entropy. 2024; 26(5):391. https://doi.org/10.3390/e26050391
Chicago/Turabian StyleDing, Shuiting, Shuyang Xia, Zhenlei Li, Huimin Zhou, Shaochen Bao, Bolin Li, and Guo Li. 2024. "Thermodynamic Entropy-Based Fatigue Life Assessment Method for Nickel-Based Superalloy GH4169 at Elevated Temperature Considering Cyclic Viscoplasticity" Entropy 26, no. 5: 391. https://doi.org/10.3390/e26050391
APA StyleDing, S., Xia, S., Li, Z., Zhou, H., Bao, S., Li, B., & Li, G. (2024). Thermodynamic Entropy-Based Fatigue Life Assessment Method for Nickel-Based Superalloy GH4169 at Elevated Temperature Considering Cyclic Viscoplasticity. Entropy, 26(5), 391. https://doi.org/10.3390/e26050391