An n-Dimensional Chaotic Map with Application in Reversible Data Hiding for Medical Images
<p>Bifurcation diagrams of (<b>a</b>) logistic; (<b>c</b>) sine; (<b>e</b>) fraction; (<b>g</b>) ICMIC maps; LEs of (<b>b</b>) logistic; (<b>d</b>) sine; (<b>f</b>) fraction; (<b>h</b>) ICMIC maps.</p> "> Figure 1 Cont.
<p>Bifurcation diagrams of (<b>a</b>) logistic; (<b>c</b>) sine; (<b>e</b>) fraction; (<b>g</b>) ICMIC maps; LEs of (<b>b</b>) logistic; (<b>d</b>) sine; (<b>f</b>) fraction; (<b>h</b>) ICMIC maps.</p> "> Figure 2
<p>2D trajectories for different 2D chaotic maps: (<b>a</b>) 2D-LSM; (<b>b</b>) 2D-SIM; (<b>c</b>) 2D-SFM; (<b>d</b>) 2D-LSCM; (<b>e</b>) 2D-LSMCL; (<b>f</b>) 2D-LACM.</p> "> Figure 2 Cont.
<p>2D trajectories for different 2D chaotic maps: (<b>a</b>) 2D-LSM; (<b>b</b>) 2D-SIM; (<b>c</b>) 2D-SFM; (<b>d</b>) 2D-LSCM; (<b>e</b>) 2D-LSMCL; (<b>f</b>) 2D-LACM.</p> "> Figure 3
<p>Bifurcation diagram for different 2D chaotic maps: (<b>a</b>) 2D-LSM; (<b>b</b>) 2D-SIM; (<b>c</b>) 2D-SFM.</p> "> Figure 4
<p>Two LEs for different 2D chaotic maps: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> <mi>E</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> of 2D-LSM; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> <mi>E</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> of 2D-SIM; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> <mi>E</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> of 2D-SFM; (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> <mi>E</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> of 2D-LSM; (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> <mi>E</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> of 2D-SIM; (<b>f</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> <mi>E</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> of 2D-SFM.</p> "> Figure 5
<p>MLE of different chaotic maps.</p> "> Figure 6
<p>PEs of different chaotic maps.</p> "> Figure 7
<p>The flow chart of the proposed data-hiding algorithm.</p> "> Figure 8
<p>Segmentation mask generation process.</p> "> Figure 9
<p>Reversible data-hiding results: (<b>a</b>) test1 image; (<b>b</b>) test2 image; (<b>c</b>) test3 image; (<b>d</b>) test4 image; (<b>e</b>) Mask of test1; (<b>f</b>) Mask of test2; (<b>g</b>) Mask of test3; (<b>h</b>) Mask of test4; (<b>i</b>) QR of test1; (<b>j</b>) QR of test2; (<b>k</b>) QR of test3; (<b>l</b>) QR of test4; (<b>m</b>) result of test1; (<b>n</b>) result of test2; (<b>o</b>) result of test3; (<b>p</b>) result of test4.</p> "> Figure 10
<p>Decoding result: (<b>a</b>) test1 image; (<b>b</b>) test2 image; (<b>c</b>) test3 image; (<b>d</b>) test4 image; (<b>e</b>) QR of test1; (<b>f</b>) QR of test2; (<b>g</b>) QR of test3; (<b>h</b>) QR of test4; (<b>i</b>) authentication image of test1; (<b>j</b>) authentication image of test2; (<b>k</b>) authentication image of test3; (<b>l</b>) authentication image of test4; (<b>m</b>) PCE of test1; (<b>n</b>) PCE of test2; (<b>o</b>) PCE of test3; (<b>p</b>) PCE of test4.</p> "> Figure 11
<p>Histogram analysis: (<b>a</b>) histogram of test1; (<b>b</b>) histogram of encoded test1; (<b>c</b>) histogram of test2; (<b>d</b>) histogram of encoded test2; (<b>e</b>) histogram of test3; (<b>f</b>) histogram of encoded test3; (<b>g</b>) histogram of test4; (<b>h</b>) histogram of encoded test4.</p> "> Figure 11 Cont.
<p>Histogram analysis: (<b>a</b>) histogram of test1; (<b>b</b>) histogram of encoded test1; (<b>c</b>) histogram of test2; (<b>d</b>) histogram of encoded test2; (<b>e</b>) histogram of test3; (<b>f</b>) histogram of encoded test3; (<b>g</b>) histogram of test4; (<b>h</b>) histogram of encoded test4.</p> "> Figure 12
<p>Correlation analysis: (<b>a</b>) test1-HVPS; (<b>b</b>) encoded test1-HVPS; (<b>c</b>) test2-HVPS; (<b>d</b>) encoded test2-HVPS; (<b>e</b>) test3-HVPS; (<b>f</b>) encoded test3-HVPS; (<b>g</b>) test4-HVPS; (<b>h</b>) encoded test4-HVPS.</p> "> Figure 12 Cont.
<p>Correlation analysis: (<b>a</b>) test1-HVPS; (<b>b</b>) encoded test1-HVPS; (<b>c</b>) test2-HVPS; (<b>d</b>) encoded test2-HVPS; (<b>e</b>) test3-HVPS; (<b>f</b>) encoded test3-HVPS; (<b>g</b>) test4-HVPS; (<b>h</b>) encoded test4-HVPS.</p> "> Figure 13
<p>Encoded pixel ratio.</p> ">
Abstract
:1. Introduction
1.1. Chaotic Systems-Related Work
1.2. Data Hiding-Related Work
1.3. Contribution of This Work
- A simple and practical n-dimensional cosine-transform-based chaotic system (nD-CTBCS) chaotic coupling framework is proposed for generating arbitrary dimensional chaotic maps.
- Apply multiple 1D chaotic maps to nD-CTBCS to generate three 2D chaotic maps. The performance is evaluated in theory and experiment, and the proposed chaotic map is compared with the most advanced chaotic map, showing excellent performance.
- A reversible data hiding scheme is proposed for the secure communication of medical images, and the security analysis shows the remarkable performance of the scheme.
2. n-Dimensional Chaotic Model
2.1. nD-CTBCS
- An efficient and straightforward chaotic generation model is the suggested nD-CTBCS model. By merging different seed chaotic maps, users can create chaotic maps in any dimension with flexibility. By switching the positions of the seed chaotic systems, several nD-CTBCS chaotic systems can be formed during the generation process.
- The newly generated nD-CTBCS chaotic map can overcome the shortcomings of the existing chaotic interval discontinuity and uneven signal distribution.
- are introduced as the control parameters of the nD-CTBCS chaotic system to expand the parameter space, and the system can exhibit chaos in a large parameter range, while most existing chaotic systems only exhibit chaos in a very narrow parameter range.
2.2. Examples of 2D Chaotic Map
2.2.1. 2D Logistic–Sine Map
2.2.2. 2D Sine–ICMIC Map
2.2.3. 2D Sine–Fraction Map
2.3. Performance Evaluations
2.3.1. Phase Diagram
2.3.2. Bifurcation Diagram
2.3.3. Lyapunov Exponents
2.3.4. Permutation Entropy
2.3.5. NIST SP800-22 Tests
3. Reversible Data Hiding
3.1. Stereo Image Segmentation
3.2. Key and Chaotic Sequence Generation
3.3. Image Authentication
3.4. EMR Authentication
3.5. Data Hiding
Algorithm 1 Embedded region partitioning algorithm | |
Input:. Output:. | |
1: | ; |
2: | ; |
3: | ; |
4: | ; |
5: | ; |
6: | ; |
7: | . |
4. Experiments for Simulation
4.1. Visual Security Analysis
4.2. Key Space Analysis
4.3. Information Entropy Analysis
4.4. Histogram Analysis
4.5. Correlation Analysis
4.6. Embedded Capacity Analysis
4.7. Encoded Pixel Ratio Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
nD-CTBCS | n-dimensional cosine-transform-based chaotic system |
1-DCMA | One-dimensional chaotic mapping amplifier |
DH | Data hiding |
RDH | Reversible data hiding |
RDWT | Redundant discrete wavelet transform |
NSST | Non-subsampled shear wave transform |
LM | Logistic map |
ICMIC | Iterative chaotic map with infinite collapse |
LE | Lyapunov exponents |
MLE | Maximum Lyapunov exponent |
PE | Permutation entropy |
2D-LSM | Two-dimensional Logistics–sine mapping |
2D-SFM | Two-dimensional Sine–fraction mapping |
2D-SIM | Two-dimensional Sine–ICMIC mapping |
2D-LSCM | Two-dimensional Logistic–Sine–Cosine map |
2D-LSMCL | Two-dimensional Logistic-modulated–Sine-coupling–Logistic chaotic map |
2D-LACM | Two-dimensional Logistic-Adjusted-Chebyshev map |
ROI | Region of interest |
DRPE | Double random phase coding |
EMR | Electronic medical record |
MED | Median edge detector |
PSNR | Peak signal-to-noise ratio |
MSE | Mean square error |
PCE | Peak-to-correlation energy |
ER | Embedded rates |
EC | Embedded capacity |
AL | Auxiliary information |
References
- Ding, D.; Wang, W.; Yang, Z.; Hu, Y.; Wang, J.; Wang, M.; Niu, Y.; Zhu, H. An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption. Chaos Solitons Fractals 2023, 174, 113841. [Google Scholar] [CrossRef]
- Cao, W.; Cai, H.; Hua, Z. n-Dimensional Chaotic Map with application in secure communication. Chaos Solitons Fractals 2022, 163, 112519. [Google Scholar] [CrossRef]
- Wu, R.; Gao, S.; Wang, X.; Liu, S.; Li, Q.; Erkan, U.; Tang, X. AEA-NCS: An audio encryption algorithm based on a nested chaotic system. Chaos Solitons Fractals 2022, 165, 112770. [Google Scholar] [CrossRef]
- Kumar, A.; Dua, M. Audio encryption using two chaotic map based dynamic diffusion and double DNA encoding. Appl. Acoust. 2023, 203, 109196. [Google Scholar] [CrossRef]
- Teng, L.; Wang, X.; Xian, Y. Image encryption algorithm based on a 2D-CLSS hyperchaotic map using simultaneous permutation and diffusion. Inf. Sci. 2022, 605, 71–85. [Google Scholar] [CrossRef]
- Feng, J.; Wang, J.; Zhu, Y.; Han, K. A Hybrid Chaotic Encryption ASIC with Dynamic Precision for Internet of Things. IEEE Internet Things J. 2024, 11, 1148–1163. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, H.; Sun, J.; Zhang, H. An efficient multi-level encryption scheme for stereoscopic medical images based on coupled chaotic system and Otsu threshold segmentation. Comput. Biol. Med. 2022, 146, 105542. [Google Scholar] [CrossRef]
- Tan, T.; Zhang, L.; Zhang, M.; Wang, S.; Wang, L.; Zhang, Z.; Liu, S.; Wang, P. Commutative encryption and watermarking algorithm based on compound chaotic systems and zero-watermarking for vector map. Comput. Geosci. 2024, 184, 105530. [Google Scholar] [CrossRef]
- Khallaf, F.; El-Shafai, W.; El-Rabaie, E.S.M.; Soliman, N.F.; El-Samie, F.E.A. A novel hybrid cryptosystem based on DQFrFT watermarking and 3D-CLM encryption for healthcare services. Front. Inf. Technol. Electron. Eng. 2023, 24, 1045–1061. [Google Scholar] [CrossRef]
- Yin, Z.; Xiang, Y.; Zhang, X. Reversible data hiding in encrypted images based on multi-MSB prediction and Huffman coding. IEEE Trans. Multimed. 2019, 22, 874–884. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, X.; Li, G.; Zhan, S.; Tang, Z. Reversible data hiding with adaptive difference recovery for encrypted images. Inf. Sci. 2022, 584, 89–110. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, X.; Zhang, X.; Li, G.; Tang, Z. Reversible data hiding with hierarchical embedding for encrypted images. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 451–466. [Google Scholar] [CrossRef]
- Hua, Z.; Chen, Y.; Bao, H.; Zhou, Y. Two-dimensional parametric polynomial chaotic system. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 4402–4414. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Di, X. A novel exponential one-dimensional chaotic map enhancer and its application in an image encryption scheme using modified ZigZag transform. J. Inf. Secur. Appl. 2022, 69, 103304. [Google Scholar] [CrossRef]
- Hu, G.; Li, B. A uniform chaotic system with extended parameter range for image encryption. Nonlinear Dyn. 2021, 103, 2819–2840. [Google Scholar] [CrossRef]
- Mansouri, A.; Wang, X. A novel one-dimensional chaotic map generator and its application in a new index representation-based image encryption scheme. Inf. Sci. 2021, 563, 91–110. [Google Scholar] [CrossRef]
- Prasad, S.; Pal, A.K.; Mukherjee, S. An RGB Color Image Steganography Scheme by Binary Lower Triangular Matrix. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6865–6873. [Google Scholar] [CrossRef]
- Anand, A.; Singh, A.K.; Zhou, H. ViMDH: Visible-imperceptible medical data hiding for internet of medical things. IEEE Trans. Ind. Inform. 2022, 19, 849–856. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, X.; Qin, C.; Tang, Z. Reversible data hiding in encrypted images with secret sharing and hybrid coding. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 6443–6458. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, R.; Xiang, S. PVO-Based Reversible Data Hiding Using Global Sorting and Fixed 2D Mapping Modification. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 618–631. [Google Scholar] [CrossRef]
- He, D.; Parthasarathy, R.; Li, H.; Geng, Z. A Fast Image Encryption Algorithm based on Logistic Mapping and Hyperchaotic Lorenz System for Clear Text Correlation. IEEE Access 2023, 11, 91441–91453. [Google Scholar] [CrossRef]
- Peng, Y.; Lan, Z.; Sun, K.; Xu, W. A simple color image encryption algorithm based on a discrete memristive hyperchaotic map and time-controllable operation. Opt. Laser Technol. 2023, 165, 109543. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Zhao, X. Image encryption algorithm based on improved iterative chaotic map with infinite collapses and Gray code. Phys. Scr. 2024, 99, 025232. [Google Scholar] [CrossRef]
- Huang, H. Novel scheme for image encryption combining 2d logistic-sine-cosine map and double random-phase encoding. IEEE Access 2019, 7, 177988–177996. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, Y.; Song, Y. 2D logistic-modulated-sine-coupling-logistic chaotic map for image encryption. IEEE Access 2019, 7, 14081–14098. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, D.; Wang, X.; Rong, X.; Zhang, R. 2d logistic-adjusted-chebyshev map for visual color image encryption. J. Inf. Secur. Appl. 2021, 60, 102854. [Google Scholar] [CrossRef]
- Erkan, U.; Toktas, A.; Toktas, F.; Alenezi, F. 2D eπ-map for image encryption. Inf. Sci. 2022, 589, 770–789. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Nan, S.X.; Feng, X.F.; Wu, Y.F.; Zhang, H. Remote sensing image compression and encryption based on block compressive sensing and 2D-LCCCM. Nonlinear Dyn. 2022, 108, 2705–2729. [Google Scholar] [CrossRef]
- Zhou, K.; Fan, J.; Fan, H.; Li, M. Secure image encryption scheme using double random-phase encoding and compressed sensing. Opt. Laser Technol. 2020, 121, 105769. [Google Scholar] [CrossRef]
- Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y. Multiple medical image encryption algorithm based on scrambling of region of interest and diffusion of odd-even interleaved points. Expert Syst. Appl. 2023, 213, 118924. [Google Scholar] [CrossRef]
- Gao, X.; Mou, J.; Banerjee, S.; Cao, Y.; Xiong, L.; Chen, X. An effective multiple-image encryption algorithm based on 3D cube and hyperchaotic map. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1535–1551. [Google Scholar] [CrossRef]
NIST Test Items | 2D-LSM | 2D-SIM | 2D-SFM | |||
---|---|---|---|---|---|---|
Monobit frequency test | 0.3859 | 0.1063 | 0.1181 | 0.3708 | 0.4231 | 0.5399 |
Frequency within block test | 0.0865 | 0.7964 | 0.8398 | 0.8273 | 0.8312 | 0.9453 |
Runs test | 0.5463 | 0.5732 | 0.9318 | 0.0129 | 0.1297 | 0.3399 |
Longest-run-ones in a block test | 0.1988 | 0.1868 | 0.9880 | 0.1327 | 0.1808 | 0.9067 |
Binary matrix rank test | 0.0371 | 0.2693 | 0.1616 | 0.0271 | 0.0352 | 0.0408 |
Discrete Fourier transform test | 0.0422 | 0.1313 | 0.7496 | 0.7277 | 0.1240 | 0.5617 |
Non-overlapping template matching test | 0.7323 | 0.6000 | 0.0562 | 0.2462 | 0.9697 | 0.3925 |
Overlapping template matching | 0.9628 | 0.7664 | 0.0140 | 0.5182 | 0.0748 | 0.6554 |
Maurer’s universal statistical test | 0.0536 | 0.4385 | 0.6654 | 0.8898 | 0.1186 | 0.3053 |
Linear complexity test | 0.7108 | 0.1199 | 0.7434 | 0.3913 | 0.1876 | 0.5400 |
Serial test | 0.1211 | 0.0544 | 0.4558 | 0.1086 | 0.0956 | 0.5779 |
Approximate entropy test | 0.4136 | 0.0268 | 0.7791 | 0.6569 | 0.6032 | 0.3886 |
Cumulative sums test | 0.0977 | 0.9716 | 0.9838 | 0.4371 | 0.9074 | 0.2756 |
Random excursion test | 0.6382 | 0.6945 | 0.5854 | 0.6647 | 0.6414 | 0.6415 |
Random excursion variant test | 0.4871 | 0.4065 | 0.5606 | 0.6500 | 0.3938 | 0.5142 |
Image | MSE | PSNR | PCE |
---|---|---|---|
test1 | 0.0000 | Inf | 0.026538 |
test2 | 0.0000 | Inf | 0.026686 |
test3 | 0.0000 | Inf | 0.010429 |
test4 | 0.0000 | Inf | 0.030029 |
Image | Original | Encoded | Decoded |
---|---|---|---|
test1 | 7.0260 | 7.9998 | 7.0260 |
test2 | 7.0551 | 7.9998 | 7.0551 |
test3 | 7.0912 | 7.9999 | 7.0912 |
test4 | 7.0134 | 7.9999 | 7.0134 |
Ref. [33] | - | 7.9993 | - |
Image | Original | Encoded | Decoded |
---|---|---|---|
test1 | 3.5545 × 106 | 264.6750 | 3.5545 × 106 |
test2 | 3.4451 × 106 | 238.8966 | 3.4451 × 106 |
test3 | 3.3803 × 106 | 235.7004 | 3.3803 × 106 |
test4 | 3.6059 × 106 | 242.6068 | 3.6059 × 106 |
Ref. [34] | 1.3506 × 107 | 262.5808 | - |
Image | H | V | P | S |
---|---|---|---|---|
test1-plain | 0.9622 | 0.9724 | 0.9498 | 0.9365 |
test1-encoded | 0.0483 | −0.0020 | 0.0022 | 0.0112 |
test2-plain | 0.9600 | 0.9792 | 0.9539 | 0.9573 |
test2- encoded | 0.0060 | −0.0013 | −0.0088 | −0.0076 |
test3-plain | 0.9694 | 0.9761 | 0.9418 | 0.9507 |
test3- encoded | −0.0048 | −0.0038 | −0.0128 | −0.0063 |
test4-plain | 0.9646 | 0.9832 | 0.9545 | 0.9531 |
test4- encoded | 0.0107 | 0.0061 | 0.0093 | 0.0048 |
Ref. [33] | 0.0066 | −0.0049 | 0.0158 | - |
Image | Total EC (bits) | AL (bits) | Net Payload (bits) | ||
---|---|---|---|---|---|
test1 | 3985339 | 3209151 | 773743 | 3.9933 | 0.77774 |
test2 | 4119227 | 3387921 | 731306 | 3.9055 | 0.69336 |
test3 | 4395109 | 3665554 | 729555 | 3.8389 | 0.63722 |
test4 | 3925913 | 3151256 | 774657 | 4.0056 | 0.79039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chang, R.; Feng, X.; Li, P.; Chen, Y.; Zhang, H. An n-Dimensional Chaotic Map with Application in Reversible Data Hiding for Medical Images. Entropy 2024, 26, 254. https://doi.org/10.3390/e26030254
Yang Y, Chang R, Feng X, Li P, Chen Y, Zhang H. An n-Dimensional Chaotic Map with Application in Reversible Data Hiding for Medical Images. Entropy. 2024; 26(3):254. https://doi.org/10.3390/e26030254
Chicago/Turabian StyleYang, Yuli, Ruiyun Chang, Xiufang Feng, Peizhen Li, Yongle Chen, and Hao Zhang. 2024. "An n-Dimensional Chaotic Map with Application in Reversible Data Hiding for Medical Images" Entropy 26, no. 3: 254. https://doi.org/10.3390/e26030254
APA StyleYang, Y., Chang, R., Feng, X., Li, P., Chen, Y., & Zhang, H. (2024). An n-Dimensional Chaotic Map with Application in Reversible Data Hiding for Medical Images. Entropy, 26(3), 254. https://doi.org/10.3390/e26030254