Principled Limitations on Self-Representation for Generic Physical Systems
<p>A holographic screen <math display="inline"><semantics> <mi mathvariant="script">B</mi> </semantics></math> separating systems <span class="html-italic">S</span> and <span class="html-italic">E</span> with an interaction <math display="inline"><semantics> <msub> <mi>H</mi> <mrow> <mi>S</mi> <mi>E</mi> </mrow> </msub> </semantics></math> given by Equation (<a href="#FD1-entropy-26-00194" class="html-disp-formula">1</a>) can be realized by an ancillary array of noninteracting qubits that are alternately prepared by <span class="html-italic">S</span> (<span class="html-italic">E</span>) and then measured by <span class="html-italic">E</span> (<span class="html-italic">S</span>). Qubits are depicted as Bloch spheres [<a href="#B25-entropy-26-00194" class="html-bibr">25</a>]. There is no requirement that <span class="html-italic">S</span> and <span class="html-italic">E</span> share preparation and measurement bases, i.e., quantum reference frames as discussed below. Adapted from Ref. [<a href="#B10-entropy-26-00194" class="html-bibr">10</a>], CC-BY license.</p> "> Figure 2
<p>A co-cone diagram (CCD) is a commuting diagram depicting maps (infomorphisms) <math display="inline"><semantics> <msub> <mi>f</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics></math> between classifiers <math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <mi>i</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <mi>j</mi> </msub> </semantics></math>, maps <math display="inline"><semantics> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mi>l</mi> </mrow> </msub> </semantics></math> from the <math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <mi>k</mi> </msub> </semantics></math> to one or more channels <math display="inline"><semantics> <msub> <mi mathvariant="script">C</mi> <mi>l</mi> </msub> </semantics></math> over a subset of the <math display="inline"><semantics> <msub> <mi mathvariant="script">A</mi> <mi>i</mi> </msub> </semantics></math>, and maps <math display="inline"><semantics> <msub> <mi>h</mi> <mi>l</mi> </msub> </semantics></math> from channels <math display="inline"><semantics> <msub> <mi mathvariant="script">C</mi> <mi>l</mi> </msub> </semantics></math> to the colimit <math display="inline"><semantics> <mi mathvariant="bold">C</mi> </semantics></math> (<span class="html-italic">cf.</span> Equation 6.7 of Ref. [<a href="#B35-entropy-26-00194" class="html-bibr">35</a>]). Adapted from Ref. [<a href="#B10-entropy-26-00194" class="html-bibr">10</a>] Figure 3, CC-BY license.</p> ">
Abstract
:1. Introduction
2. Representation of Generic Physical Interactions
3. Quantum Reference Frames and Noncommutativity
4. No-Go Results for Generic Physical Interactions
- S cannot determine, by means of Q, either Q’s dimension , Q’s associated sector dimension , or Q’s complete I/O function.
- S cannot determine, by means of Q, the dimension, associated sector dimension, or I/O function of any other QRF implemented by S.
- S cannot determine, by means of Q, the I/O function or dimension of any QRF implemented by any other system , regardless of the relation of S to , from to , inclusive.
- Let , in which case . Then, cannot determine, by means of a QRF , the I/O function or dimension of any QRF implemented by .
- Any QRF Q accesses, by definition, bits. As shown above, for any Q of interest. No such QRF, therefore, has access to sufficient bits to count its own degrees of freedom, which it must do to specify . Specifying requires specifying Q’s computational architecture, which requires specifying . Specifying Q’s I/O behavior requires specifying .
- Unless , in which case, see above, Q cannot access all of the bits composing and hence cannot measure their states. Therefore, Q cannot determine the I/O function of . With no ability to count the bits in , Q cannot specify . Specifying requires specifying .
- Unless , in which case, see above, S cannot measure the internal state , at least some components of which lie on the other side of the holographic boundary , or determine the internal dynamics . Hence, S can determine nothing about any implemented by .
- As in this case , the above case applies.
5. Examples
5.1. Example: Hawking’s Speculation
5.2. Example: Heisenberg Uncertainty
5.3. Example: Supervised Learning
5.4. Example: Reinforcement Learning
5.5. Example: Self-Editing Systems
5.6. Example: Intrusion Detection
5.7. Example: The Human Narrative Self
5.8. Example: Cognitive Biases and Confabulation
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
CCCD | Cone–Co-Cone Diagram |
CLARION | Connectivist Learning with Adaptive Rule Induction On-line |
CLC | Cognitive Light Cone |
DL | Deep Learning |
FEP | Free Energy Principle |
GAN | Generative Adversarial Network |
GRN | Gene Regulatory Network |
GW | Global Workspace |
HP | Holographic Principle |
HUP | Heisenberg’s Uncertainty Principle |
I/O | Input/Output |
LIDA | Learning Intelligent Distribution Agent |
LISP | List Processing |
MACSi | Motor Adaptive and Cognitive Scaffolding for iCub |
MB | Markov Blanket |
QRF | Quantum Reference Frame |
TAME | Technological Approach to Mind Everywhere |
ToM | Theory of Mind |
References
- Dietrich, E.; Fields, C.; Sullins, J.P.; von Heuveln, B.; Zebrowski, R. Great Philosophical Objections to Artificial Intelligence: The History and Legacy of the AI Wars; Bloomsbury Academic: London, UK, 2021. [Google Scholar]
- Horsman, C.; Stepney, S.; Wagner, R.C.; Kendon, V. When does a physical system compute? Proc. R. Soc. A 2014, 470, 20140182. [Google Scholar] [CrossRef] [PubMed]
- Levin, M. Technological approach to mind everywhere: An experimentally-grounded framework for understanding diverse bodies and minds. Front. Syst. Neurosci. 2022, 16, 768201. [Google Scholar] [CrossRef] [PubMed]
- Clawson, W.; Levin, M. Endless forms most beautiful 2.0: Teleonomy and the bioengineering of chimaeric and synthetic organisms. Biol. J. Linn. Soc. 2023, 139, 457–486. [Google Scholar] [CrossRef]
- Friston, K.J. A free energy principle for a particular physics. arXiv 2019, arXiv:1906.10184. [Google Scholar]
- Ramstead, M.J.; Sakthivadivel, D.A.R.; Heins, C.; Koudahl, M.; Millidge, B.; Da Costa, L.; Klein, B.; Friston, K.J. On Bayesian mechanics: A physics of and by beliefs. Interface Focus 2022, 13, 2923. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Da Costa, L.; Sakthivadivel, D.A.R.; Heins, C.; Pavliotis, G.A.; Ramstead, M.J.; Parr, T. Path integrals, particular kinds, and strange things. Phys. Life Rev. 2023, 47, 35–62. [Google Scholar] [CrossRef]
- Fields, C.; Friston, K.J.; Glazebrook, J.F.; Levin, M. A free energy principle for generic quantum systems. Prog. Biophys. Mol. Biol. 2022, 173, 36–59. [Google Scholar] [CrossRef]
- Fields, C.; Fabrocini, F.; Friston, K.J.; Glazebrook, J.F.; Hazan, H.; Levin, M.; Marcianò, A. Control flow in active inference systems, Part I: Classical and quantum formulations of active inference. IEEE Trans. Mol. Biol. Multi-Scale Comm. 2023, 9, 235–245. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. Representing measurement as a thermodynamic symmetry breaking. Symmetry 2020, 12, 810. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F.; Marcianò, A. Sequential measurements, topological quantum field theories, and topological quantum neural networks. Fortschr. Phys. 2022, 70, 2200104. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F.; Marcianò, A. The physical meaning of the Holographic Principle. Quanta 2022, 11, 72–96. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. Separability, contextuality, and the quantum Frame Problem. Int. J. Theor. Phys. 2023, 62, 159. [Google Scholar] [CrossRef]
- Ashby, W.R. Introduction to Cybernetics; Chapman and Hall: London, UK, 1956. [Google Scholar]
- Rice, H.G. Classes of recursively enumerable sets and their decision problems. Trans. Am. Math. Soc. 1953, 74, 358–366. [Google Scholar] [CrossRef]
- Moore, E.F. Gedankenexperiments on sequential machines. In Autonoma Studies; Shannon, C.W., McCarthy, J., Eds.; Princeton University Press: Princeton, NJ, USA, 1956; pp. 129–155. [Google Scholar]
- Zanardi, P. Virtual quantum subsystems. Phys. Rev. Lett. 2001, 87, 077901. [Google Scholar] [CrossRef] [PubMed]
- Zanardi, P.; Lidar, D.A.; Lloyd, S. Quantum tensor product structures are observable-induced. Phys. Rev. Lett. 2004, 92, 060402. [Google Scholar] [CrossRef] [PubMed]
- Dugić, M.; Jeknić, J. What is “system”: Some decoherence-theory arguments. Int. J. Theor. Phys. 2006, 45, 2215–2225. [Google Scholar] [CrossRef]
- Dugić, M.; Jeknić, J. What is “system”: The information-theoretic arguments. Int. J. Theor. Phys. 2008, 47, 805–813. [Google Scholar] [CrossRef]
- Pegg, D.; Barnett, S.; Jeffers, J. Quantum theory of preparation and measurement. J. Mod. Opt. 2010, 49, 913–924. [Google Scholar] [CrossRef]
- Hooft, G. Dimensional reduction in quantum gravity. In Salamfestschrift; Ali, A., Ellis, J., Randjbar-Daemi, S., Eds.; World Scientific: Singapore, 1993; pp. 284–296. [Google Scholar]
- Susskind, L. The world as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Bousso, R. The holographic principle. Rev. Mod. Phys. 2002, 74, 825–874. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: San Mateo, CA, USA, 1988. [Google Scholar]
- Clark, A. How to knit your own Markov blanket: Resisting the second law with metamorphic minds. In Philosophy and Predictive Processing; Wetzinger, T., Wiese, W., Eds.; Mind Group: Frankfurt/Mainz, Germany, 2017; Volume 3, 17p. [Google Scholar]
- Conway, J.H.; Kochen, S. The strong free will theorem. Not. AMS 2009, 56, 226–232. [Google Scholar]
- Bateson, G. Steps to an Ecology of Mind: Collected Essays in Anthropology, Psychiatry, Evolution, and Epistemology; Jason Aronson: Northvale, NJ, USA, 1972. [Google Scholar]
- Aharonov, Y.; Kaufherr, T. Quantum frames of reference. Phys. Rev. D 1984, 30, 368–385. [Google Scholar] [CrossRef]
- Bartlett, S.D.; Rudolph, T.; Spekkens, R.W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 2007, 79, 555–609. [Google Scholar] [CrossRef]
- Abramsky, S. Contextuality: At the borders of paradox. In Categories for the Working Philosopher; Landry, E., Ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Adlam, E. Contextuality, fine-tuning and teleological explanation. Found. Phys. 2021, 51, 106. [Google Scholar] [CrossRef]
- Hofer-Szabó, G. Two concepts of noncontextuality in quantum mechanics. Stud. Hist. Philos. Sci. 2022, 93, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Fields, C.; Glazebrook, J.F. A mosaic of Chu spaces and Channel Theory I: Category-theoretic concepts and tools. J. Expt. Theor. Artif. Intell. 2019, 31, 177–213. [Google Scholar] [CrossRef]
- Barwise, J.; Seligman, J. Information Flow: The Logic of Distributed Systems; Cambridge Tracts in Theoretical Computer Science 44; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Fields, C.; Glazebrook, J.F. Information flow in context-dependent hierarchical Bayesian inference. J. Expt. Theor. Artif. Intell. 2022, 34, 111–142. [Google Scholar] [CrossRef]
- Shanahan, M. The brain’s connective core and its role in animal cognition. Philos. Trans. R. Soc. B 2012, 367, 2704–2714. [Google Scholar] [CrossRef]
- Wallace, R. Consciousness: A Mathematical Treatment of the Global Neuronal Workspace; Springer: New York, NY, USA, 2005. [Google Scholar]
- Dehaene, S.; Naccache, L. Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition 2001, 79, 1–37. [Google Scholar] [CrossRef]
- Baars, B.J.; Franklin, S. How conscious experience and working memory interact. Trends Cogn. Sci. 2003, 7, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Fields, C.; Glazebrook, J.F.; Levin, M. Minimal physicalism as a scale-free substrate for cognition and consciousness. Neurosci. Conscious. 2021, 7, niab013. [Google Scholar] [CrossRef] [PubMed]
- Dzhafarov, E.N.; Kujala, J.V. Contextuality-by-Default 2.0: Systems with binary random variables. In Lecture Notes in Computer Science; Barros, J.A., Coecke, B., Pothos, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 16–32. [Google Scholar]
- Abramsky, S.; Barbosa, R.S.; Mansfield, S. Contextual fraction as a measure of contextuality. Phys. Rev. Lett. 2017, 119, 050504. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, D.; Finkelstein, S.R. Computational complementarity. Int. J. Theor. Phys. 1983, 22, 753–779. [Google Scholar] [CrossRef]
- Bell, J.S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 1966, 38, 447–452. [Google Scholar] [CrossRef]
- Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 1967, 17, 59–87. [Google Scholar] [CrossRef]
- Mermin, N.D. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 1993, 65, 803–815. [Google Scholar] [CrossRef]
- Fields, C. The free energy principle induces compartmentalization. (in review).
- Turing, A. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 1937, 42, 230–265. [Google Scholar] [CrossRef]
- Hopcroft, J.E.; Ullman, J.D. Introduction to Automata Theory, Languages, and Computation; Addison-Wesley: Boston, MA, USA, 1979. [Google Scholar]
- Quine, W.V.O. Word and Object; MIT Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Chater, N. The Mind Is Flat. The Remarkable Shallowness of the Improvising Brain; Allen Lane: London, UK, 2018. [Google Scholar]
- Fields, C.; Glazebrook, J.F.; Marcianò, A. Communication protocols and quantum error-correcting codes from the perspective of topological quantum field theory. arXiv 2023, arXiv:2303.16461. [Google Scholar]
- Gödel, K. Über formal unentscheidbare sätze der Principia Mathematica und verwandter systeme, I. Monatsh. Math. Phys. 1931, 38, 173–198. [Google Scholar] [CrossRef]
- Hawking, S. Gödel and the End of Physics. Lecture at the Dirac Centennial Celebration. Centre for Mathematical Sciences, University of Cambridge: Cambridge, UK. Available online: https://www.damtp.cam.ac.uk/events/strings02/dirac/hawking.html (accessed on 13 January 2024).
- Wolfram, S. Undecidability and intractability in theoretical physics. Phys. Rev. Lett. 1985, 54, 735–738. [Google Scholar] [CrossRef]
- da Costa, N.C.A.; Doria, F.A. Undecidability and incompleteness in classical mechanics. Int. J. Theor. Phys. 1991, 30, 1041–1073. [Google Scholar] [CrossRef]
- Cubitt, D.S.; Perez-Garcia, D.; Wolf, M.M. Undecidability of the spectal gap. Nature 2015, 528, 207–211. [Google Scholar] [CrossRef]
- Wheeler, J.A. The computer and the universe. Int. J. Theor. Phys. 1982, 21, 557–572. [Google Scholar] [CrossRef]
- von Neumann, J. Mathematische Grundlagen der Quantenmechanik; Springer: Berlin/Heidelberg, Germany, 1932. [Google Scholar]
- Döring, A.; Frembs, M. Contextuality and the fundamental theorems of quantum mechanics. J. Math. Phys. 2022, 63, O72103. [Google Scholar] [CrossRef]
- da Silva, N.; Barbosa, R.M. Contextuality and noncommutative geometry in quantum mechanics. Commun. Math. Phys. 2019, 365, 375–429. [Google Scholar] [CrossRef]
- Wheeler, J.A. Law without law. In Quantum Theory and Measurement; Wheeler, J.A., Zurek, W.H., Eds.; Princeton University Press: Princeton, NJ, USA, 1983; pp. 182–213. [Google Scholar]
- Grinbaum, A. How device-independent approaches change the meaning of physical theory. Stud. Hist. Philos. Mod. Phys. 2017, 58, 22–30. [Google Scholar] [CrossRef]
- Calude, C.S.; Stay, M.A. From Heisenberg to Gödel via Chaitin. Int. J. Theor. Phys. 2007, 46, 2013–2025. [Google Scholar] [CrossRef]
- Calude, C.S. Information and Randomness—An Algorithmic Perspective, 2nd ed.; Sprnger: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Chaitin, G. Algorithmic Information Theory; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Chaitin, G.J. Information-Theoretic Incompleteness; World Scientific: Singapore, 1992. [Google Scholar]
- Chaitin, G.J. Computational complexity and Gödel’s incompleteness theorem. ACM SIGACT News 1971, 9, 11–12. [Google Scholar] [CrossRef]
- Dietrich, E.; Fields, C. Equivalence of the Frame and Halting problems. Algorithms 2020, 13, 175. [Google Scholar] [CrossRef]
- Calude, C.S. Incompleteness and the Halting Problem. Stud. Log. 2021, 109, 1159–1169. [Google Scholar] [CrossRef]
- Jaeger, G. Quantum contextuality and indeterminacy. Entropy 2020, 22, 867. [Google Scholar] [CrossRef] [PubMed]
- Conant, R.C.; Ashby, W.R. Every good regulator of a system must be a model of that system. Int. J. Syst. Sci. 1970, 1, 89–97. [Google Scholar] [CrossRef]
- Beckmann, P.; Köstner, G.; Hipólito, I. Rejecting cognitivism: Computational phenomenology for Deep Learning. arXiv 2023, arXiv:2302.0971v1. [Google Scholar]
- Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C.J.; Müller, K.-R. Explaining deep neural networks and beyond: A review of methods and applications. Proc. IEEE 2021, 109, 247–278. [Google Scholar] [CrossRef]
- Taylor, J.E.T.; Taylor, G.W. Artificial cognition: How experimental psychology can help generate explainable artificial intelligence. Psychon. Bull. Rev. 2020, 28, 454–475. [Google Scholar] [CrossRef]
- Biswas, S.; Manika, S.; Hoel, E.; Levin, M. Gene regulatory networks exhibit several kinds of memory: Quantification of memory in biological and random transcriptional networks. iScience 2021, 24, 102131. [Google Scholar] [CrossRef]
- Biswas, S.; Clawson, W.; Levin, M. Learning in transcriptional network models: Computational discovery of pathway-level memory and effective interventions. Int. J. Mol. Sci. 2022, 24, 285. [Google Scholar] [CrossRef]
- Tanaka, G.; Yamane, T.; Héroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 115, 100–123. [Google Scholar] [CrossRef]
- McCarthy, J. Recursive functions of symbolic expressions and their computation by machine. Commun. ACM 1960, 3, 184–195. [Google Scholar] [CrossRef]
- Sun, R. The importance of cognitive architectures: An analysis based on CLARION. J. Exp. Theor. Artif. Intell. 2007, 19, 159–193. [Google Scholar] [CrossRef]
- Franklin, S.; Madl, T.; D’Mello, S.; Snaider, J. LIDA: A systems-level architecture for cognition, emotion and learning. IEEE Trans. Auton. Ment. Dev. 2014, 6, 19–41. [Google Scholar] [CrossRef]
- Ivaldi, S.; Nguyen, S.M.; Lyubova, N.; Droniou, A.; Padois, V.; Filliat, D.; Oudeyer, P.-Y.; Sigaud, O. Object learning through active exploration. IEEE Trans. Auton. Ment. Dev. 2014, 6, 56–72. [Google Scholar] [CrossRef]
- Kotseruba, I.; Tsotsos, J.K. 40 years of cognitive architectures: Core cognitive abilities and practical applications. Artif. Intell. Rev. 2020, 53, 17–94. [Google Scholar] [CrossRef]
- Levin, M. Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 2021, 184, 1971–1989. [Google Scholar] [CrossRef] [PubMed]
- Riol, A.; Cervera, J.; Levin, M.; Mafe, S. Cell systems bioelectricity: How different intercellular gap junctions could regionalize a multicellular aggregate. Cancers 2021, 13, 5300. [Google Scholar] [CrossRef] [PubMed]
- Jacob, F. Evolution and tinkering. Science 1977, 196, 1161–1166. [Google Scholar] [CrossRef]
- Metzinger, T. Being No One: The Self-Model Theory of Subjectivity; MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Qin, P.; Northoff, G. How is our self related to midline regions and the default-mode network? NeuroImage 2011, 57, 1221–1233. [Google Scholar] [CrossRef]
- Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 2013, 17, 565–573. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.R.; Smallwood, J.; Spreng, R.N. The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 2014, 1316, 29–52. [Google Scholar] [CrossRef]
- Seth, A.K.; Tsakiris, M. Being a beast machine: The somatic basis of selfhood. Trends Cogn. Sci. 2018, 22, 969–981. [Google Scholar] [CrossRef]
- Nadel, L.; Hupbach, A.; Gomez, R.; Newman-Smith, K. Memory formation, consolidation and transformation. Neurosci. Biobehav. Rev. 2012, 36, 1640–1645. [Google Scholar] [CrossRef]
- Schwabe, L.; Nader, K.; Pruessner, J.C. Reconsolidation of human memory: Brain mechanisms and clinical relevance. Biol. Psychiatry 2014, 76, 274–280. [Google Scholar] [CrossRef]
- Solms, M. The hard problem of consciousness and the Free Energy Principle. Front. Psychol. 2019, 9, 2714. [Google Scholar] [CrossRef]
- Csikszentmihályi, M. Flow: The Psychology of Optimal Experience; Harper and Row: New York, NY, USA, 1990. [Google Scholar]
- Bargh, J.A.; Ferguson, M.J. Beyond behaviorism: On the automaticity of higher mental processes. Psychol. Bull. 2000, 126, 925–945. [Google Scholar] [CrossRef]
- Bargh, J.A.; Schwader, K.L.; Hailey, S.E.; Dyer, R.L.; Boothby, E.J. Automaticity in social-cognitive processes. Trends Cogn. Sci. 2012, 16, 593–605. [Google Scholar] [CrossRef]
- Dahl, C.J.; Lutz, A.; Davidson, R.J. Reconstructing and deconstructing the self: Cognitive mechanisms in meditation practice. Trends Cogn. Sci. 2015, 19, 515–523. [Google Scholar] [CrossRef]
- Lindalh, J.R.; Britten, W.B. ‘I have this feeling of not really being here’: Buddhist meditation and changes in sense of self. J. Conscious. Stud. 2019, 26, 157–183. [Google Scholar]
- Nave, O.; Trautwein, F.-M.; Ataria, Y.; Dor-Ziderman, Y.; Schweitzer, Y.; Fulder, S.; Berkovich-Ohana, A. Self-boundary dissolution in meditation: A phenomenological investigation. Brain Sci. 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Letheby, C.; Gerrans, P. Self unbound: Ego dissolution in psychedelic experience. Neurosci. Conscious. 2017, 2017, nix016. [Google Scholar] [CrossRef] [PubMed]
- Amada, N.; Lea, T.; Letheby, C.; Shane, J. Psychedelic experience and the narrative self: An exploratory qualitative study. J. Conscious. Stud. 2020, 27, 6–33. [Google Scholar]
- Millière, R.; Carhart-Harris, R.L.; Roseman, L.; Trautwein, F.-M.; Berkovich-Ohana, A. Psychedelics, meditation, and self-consciousness. Front. Psychol. 2018, 9, 1475. [Google Scholar] [CrossRef] [PubMed]
- Parvizi-Wayne, D.; Sandved-Smith, L.; Pitliya, R.J.; Limanowski, J.; Tufft, M.R.A.; Friston, K.J. Forgetting ourselves in flow: An active inference account of flow states. PsyArXiv 2023. [Google Scholar] [CrossRef]
- Ramstead, M.J.D.; Albarracin, M.; Kiefer, A.; Klein, B.; Fields, C.; Friston, K.; Safron, A. The inner screen model of consciousness: Applying the free energy principle directly to the study of conscious experience. PsyArXiv 2023. [Google Scholar] [CrossRef]
- Henriques, G. The Tree of Knowledge system and the theoretical unification of psychology. Rev. Gen. Psychol. 2003, 7, 150–182. [Google Scholar] [CrossRef]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus, and Giroux: New York, NY, USA, 2011. [Google Scholar]
- Mercier, H.; Sperber, D. Why do humans reason? Arguments for an argumentative theory. Behav. Brain Sci. 2011, 34, 57–111. [Google Scholar] [CrossRef]
- Trivers, R.L. The Folly of Fools: The Logic of Deceit and Self-Deception in Human Life; Basic Books: New York, NY, USA, 2011. [Google Scholar]
- Sopolsky, R. Behave: The Biology of Humans at Our Best and Worst; Penguin Press: New York, NY, USA, 2017. [Google Scholar]
- Nisbett, R.E.; Wilson, T.D. Telling more than we can know: Verbal reports on mental processes. Psychol. Rev. 1977, 84, 231–259. [Google Scholar] [CrossRef]
- Hixon, J.G.; Swann, W.B., Jr. When does introspection bear fruit? Self-reflection, self-insight, and interpersonal choices. J. Personal. Soc. Psychol. 1993, 64, 35–43. [Google Scholar] [CrossRef]
- Stammers, S.; Bortolotti, L. Introduction: Philosophical Perpectives on Confabulation. Topoi 2020, 39, 115–119. [Google Scholar] [CrossRef]
- Barba, G.F.; La Corte, V. A neurophenomenological model for the role of the hippocampus in temporal consciousness. Evidence from confabulation. Front. Behav. Neurosci. 2015, 9, 218. [Google Scholar]
- Keeling, S. Confabulation and rational obligations for self-knowledge. Philos. Psychol. 2018, 31, 1215–1238. [Google Scholar] [CrossRef]
- Spitzer, D.; White, S.J.; Mandy, W.; Burgess, P.W. Confabulation in children with autism. Cortex 2017, 87, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Levin, M. The computational boundary of a “Self”: Developmental bioelectricity drives multicellularity and scale-free cognition. Front. Psychol. 2019, 10, 2688. [Google Scholar] [CrossRef] [PubMed]
- Fields, C.; Levin, M. Competency in navigating arbitrary spaces as an invariant for naalyzing cognition in diverse embodiments. Entropy 2022, 24, 819. [Google Scholar] [CrossRef]
- Fields, C.; Levin, M. Regulative development as a model for origin of life and artificial life studies. BioSystems 2023, 229, 104927. [Google Scholar] [CrossRef]
- Pio-Lopez, L.; Kuchling, F.; Tung, A.; Pezzulo, G.; Levin, M. Active inference, morphogenesis, and computational psychiatry. Front. Comput. Neurosci. 2022, 16, 988977. [Google Scholar] [CrossRef]
- Levin, M. Darwin’s agential materials: Evolutionary implications of multiscale competency in developmental biology. Cell. Mol. Life Sci. 2023, 80, 142. [Google Scholar] [CrossRef]
- Lagasse, E.; Levin, M. Future medicine: From molecular pathways to the collective intelligence of the body. Trends Mol. Med. 2023, 29, 687–710. [Google Scholar] [CrossRef]
- Doctor, T.; Witkowski, O.; Solomonova, E.; Duane, B.; Levin, M. Biology, Buddhism, and AI: Care as the driver of intelligence. Entropy 2022, 24, 710. [Google Scholar] [CrossRef]
- Witkowski, O.; Doctor, T.; Solomonova, E.; Duane, B.; Levin, M. Toward an ethics of autopoietic technology: Stress, care, and intelligence. BioSystems 2023, 231, 104964. [Google Scholar] [CrossRef]
- Brooks, R. Intelligence without representation. Artif. Intell. 1991, 47, 139–159. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Hoffman, D.D.; Singh, M.; Prakash, C. The interface theory of perception. Psychon. Bull. Rev. 2015, 22, 1480–1506. [Google Scholar] [CrossRef]
- Farah, M.J. Neuroethics: The ethical, legal, and societal impact of neuroscience. Annu. Rev. Psychol. 2012, 63, 571–591. [Google Scholar] [CrossRef] [PubMed]
- Jost, J.T.; Federico, C.M.; Napier, J.L. Political ideology: Its structure, functions, and elective affinities. Annu. Rev. Psychol. 2009, 60, 307–337. [Google Scholar] [CrossRef] [PubMed]
- George, L.S.; Park, C.L. Meaning in life as comprehension, purpose, and mattering: Toward integration and new research questions. Rev. Gen. Psychol. 2016, 20, 205–220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fields, C.; Glazebrook, J.F.; Levin, M. Principled Limitations on Self-Representation for Generic Physical Systems. Entropy 2024, 26, 194. https://doi.org/10.3390/e26030194
Fields C, Glazebrook JF, Levin M. Principled Limitations on Self-Representation for Generic Physical Systems. Entropy. 2024; 26(3):194. https://doi.org/10.3390/e26030194
Chicago/Turabian StyleFields, Chris, James F. Glazebrook, and Michael Levin. 2024. "Principled Limitations on Self-Representation for Generic Physical Systems" Entropy 26, no. 3: 194. https://doi.org/10.3390/e26030194
APA StyleFields, C., Glazebrook, J. F., & Levin, M. (2024). Principled Limitations on Self-Representation for Generic Physical Systems. Entropy, 26(3), 194. https://doi.org/10.3390/e26030194