Closed-Form Expressions of Upper Bound for Polarization-MDCSK System
<p>The polarization constellation of (<b>a</b>) <span class="html-italic">M</span> = 4, (<b>b</b>) <span class="html-italic">M</span> = 8, (<b>c</b>) <span class="html-italic">M</span> = 16.</p> "> Figure 2
<p>BER comparison between simulation (sim) and closed expression (lb) in P-MDCSK system over AWGN and multipath Rayleigh fading channels with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>8</mn> <mo>,</mo> <mi>S</mi> <mi>F</mi> <mo>=</mo> <mn>64</mn> <mo>,</mo> <mn>128</mn> <mo>,</mo> <mn>256</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Simulation(sim), upper bound (aub) and closed expression (lb) performance comparisons of P-MDCSK multipath Rayleigh fading channels with <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>F</mi> <mo>=</mo> <mn>128</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. System Model of P-MDCSK
Algorithm 1: P-MDCSK detection algorithm |
Input: , , , Output: .
|
3. Closed Expression over Multipath Rayleigh Fading Channels
4. Numerical Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Closed Expressions of Pjoint
Appendix A.2. Closed Expressions of Ppolarization
References
- Henarejos, P.; Perez-Neira, A.I. Capacity analysis of index modulations over spatial, polarization, and frequency dimensions. IEEE Trans. Commun. 2017, 65, 5280–5292. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Ding, L. Polarization shift keying (PolarSK): System scheme and performance analysis. IEEE Trans. Veh. Technol. 2017, 66, 10139–10155. [Google Scholar] [CrossRef]
- Ibrahim, E.; Nilsson, R.; Van De Beek, J. Binary polarization shift keying with reconfigurable intelligent surfaces. IEEE Wirel. Commun. Lett. 2022, 11, 908–912. [Google Scholar] [CrossRef]
- Henarejos, P.; Perez-Neira, A.I. Dual polarized modulation and reception for next generation mobile satellite communications. IEEE Trans. Commun. 2015, 63, 3803–3812. [Google Scholar] [CrossRef]
- Henarejos, P.; Perez-Neira, A.I. 3D polarized modulation: System analysis and performances. IEEE Trans. Commun. 2018, 66, 5305–5316. [Google Scholar] [CrossRef]
- Guo, C.; Liu, F.; Chen, S.; Feng, C.; Zeng, Z. Advances on exploiting polarization in wireless communications: Channels, technologies, and applications. IEEE Commun. Surv. Tutor. 2017, 19, 125–166. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Q.; Wei, D.; Zhang, M. A secure constellation design for polarized modulation in wireless communications. IEEE Access 2020, 8, 130588–130597. [Google Scholar] [CrossRef]
- Miao, M.; Wang, L.; Rong, Y.; Xu, W. A polarization MDCSK modulation without PDL over multipath Rayleigh fading channels. IEEE Trans. Veh. Technol. 2020, 66, 6813–6817. [Google Scholar] [CrossRef]
- Tao, Y.; Fang, Y.; Ma, H.; Mumtaz, S.; Guizan, M. A survey on DCSK-based communication systems and their application to UWB scenarios. IEEE Trans. Commun. 2022, 70, 3760–3773. [Google Scholar] [CrossRef]
- Liu, S.; Chen, P.; Chen, G. Differential permutation index DCSK modulation for chaotic communication system. IEEE Commun. Lett. 2021, 25, 2029–2033. [Google Scholar] [CrossRef]
- Xie, K.; Cai, G.; Kaddoum, G. Design and performance analysis of RIS-aided DCSK-WPC system with energy buffer. IEEE Trans. Commun. 2023, 71, 1726–1739. [Google Scholar] [CrossRef]
- Cai, G.; Fang, Y.; Han, G. Design of an adaptive multiresolution M-ary DCSK system. IEEE Commun. Lett. 2017, 21, 60–63. [Google Scholar] [CrossRef]
- Wang, L.; Cai, G.; Chen, G. Design and performance analysis of a new multiresolution M-ary differential chaos shift keying communication system. IEEE Trans. Wirel. Commun. 2015, 14, 5197–5208. [Google Scholar] [CrossRef]
- Wang, N.; Blostein, S.D. Approximate minimum BER power allocation for MIMO spatial multiplexing systems. IEEE Trans. Commun. 2007, 55, 180–187. [Google Scholar] [CrossRef]
- Liu, C.; Li, S.; Yuan, W.; Liu, X.; Ng, D.W.K. Predictive Precoder Design for OTFS-Enabled URLLC: A Deep Learning Approach. IEEE J. Sel. Area Commun. 2023, 41, 2245–2260. [Google Scholar] [CrossRef]
- Cai, G.; Song, Y. Closed-Form BER Expressions of M-Ary DCSK Systems Over Multipath Rayleigh Fading Channels. IEEE Commun. Lett. 2020, 24, 1192–1196. [Google Scholar] [CrossRef]
- Kaddoum, G.; Tran, H.; Kong, L.; Atallah, M. Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems. IEEE Trans. Commun. 2017, 65, 431–443. [Google Scholar] [CrossRef]
- Dawa, M.; Kaddoum, G.; Herceg, M. A framework for the lower bound on the BER of DCSK systems over multi-path Nakagami-m fading channels. IEEE Trans. Circuits Syst. II 2020, 67, 1859–1863. [Google Scholar] [CrossRef]
- Dawa, M.; Kaddoum, G.; Sattar, Z. A Generalized lower bound on the bit error rate of DCSK system over multi-path Rayleigh fading channels. IEEE Trans. Circuits Syst. II 2018, 65, 321–325. [Google Scholar] [CrossRef]
- Rugini, L. SEP bounds for MPSK with low SNR. IEEE Commun. Lett. 2020, 24, 2473–2477. [Google Scholar] [CrossRef]
- Chang, S.; Cosman, P.C.; Milstein, L.B. Chernoff-type bounds for the Gaussian error fuction. IEEE Trans. Commun. 2011, 59, 2939–2944. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, M.; Wang, L.; Xu, W. Closed-Form Expressions of Upper Bound for Polarization-MDCSK System. Entropy 2023, 25, 1267. https://doi.org/10.3390/e25091267
Miao M, Wang L, Xu W. Closed-Form Expressions of Upper Bound for Polarization-MDCSK System. Entropy. 2023; 25(9):1267. https://doi.org/10.3390/e25091267
Chicago/Turabian StyleMiao, Meiyuan, Lin Wang, and Weikai Xu. 2023. "Closed-Form Expressions of Upper Bound for Polarization-MDCSK System" Entropy 25, no. 9: 1267. https://doi.org/10.3390/e25091267
APA StyleMiao, M., Wang, L., & Xu, W. (2023). Closed-Form Expressions of Upper Bound for Polarization-MDCSK System. Entropy, 25(9), 1267. https://doi.org/10.3390/e25091267