A Novel Evidence Combination Method Based on Improved Pignistic Probability
<p>The flow graph of the proposed method.</p> "> Figure 2
<p>Fusion results of multi-subset proposition conflicting examples.</p> "> Figure 3
<p>Fusion results chart of a comparison of different methods of fusion of several pieces of single-subset proposition evidence.</p> "> Figure 4
<p>Fusion results of multi-subset proposition conflict.</p> "> Figure 5
<p>Fusion results chart of a comparison of different methods on the fusion of several pieces of multi-subset proposition evidence.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dempster Rule
- (1)
- ;
- (2)
- .
2.2. Improved Pignistic Probability Function
2.3. Evidence Support Based on the Manhattan Distance
2.4. Evidence Similarity Based on Evidence Angle
2.5. Evidence Uncertainty Based on Entropy
2.6. Evidence Fusion Based on the Dempster Rule
3. Results
3.1. An Example of Single-Subset Proposition Conflicting Evidence
3.1.1. Improved Pignistic Probability Function
3.1.2. Calculate Fusion Coefficient
3.1.3. Evidence Fusion Based on the Dempster Rule
3.2. An Example of Multi-Subset Proposition Conflicting Evidence
3.2.1. Improved Pignistic Probability Function
3.2.2. Calculate Fusion Coefficient
3.2.3. Evidence Fusion Based on the Dempster Rule
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPA | basic probability assignment |
References
- Dempster, A.P. Upper and Lower Probabilities Induce by a Multiplicand Mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976; Volume 25, pp. 10–40. [Google Scholar]
- Dou, Z.; Xu, X.; Lin, Y.; Zhou, R. Application of D-S evidence fusion method in the fault detection of temperature sensor. Math. Probl. Eng. 2014, 2014, 395057. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Hu, Y.; Deng, Y.; Mahadevan, S. Supplier selection using AHP methodology extended by D numbers. Expert Syst. Appl. 2014, 41, 156–167. [Google Scholar] [CrossRef]
- Xu, X.; Li, S.; Song, X.; Wen, C.; Xu, D. Te optimal design of industrial alarm systems based on evidence theory. Control. Eng. Pract. 2016, 46, 142–156. [Google Scholar] [CrossRef]
- Chen, Y.; Cremers, A.B.; Cao, Z. Interactive color image segmentation via iterative evidential labeling. Inf. Fusion 2014, 20, 292–304. [Google Scholar] [CrossRef]
- Suh, D.; Yook, J. A method to determine basic probability assignment in context awareness of a moving object. Int. J. Distrib. Sens. Netw. 2013, 9, 972641. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Mag. 1986, 7, 85–90. [Google Scholar]
- Leung, Y.; Ji, N.-N.; Ma, J.-H. An integrated information fusion approach based on the theory of evidence and group decision-making. Inf. Fusion 2013, 14, 410–422. [Google Scholar] [CrossRef]
- Khamseh, S.A.; Sedigh, A.K.; Moshiri, B.; Fatehi, A. Control performance assessment based on sensor fusion techniques. Control. Eng. Pract. 2016, 49, 14–28. [Google Scholar] [CrossRef]
- Niu, D.; Wei, Y.; Shi, Y.; Karimi, H.R. A novel evaluation model for hybrid power system based on vague set and Dempster-Shafer evidence theory. Math. Probl. Eng. 2012, 2012, 784389. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhou, H.; Zhou, Q.; Yang, F.; Luo, L.; Li, T. Structural damage detection based on posteriori probability support vector machine and Dempster-Shafer evidence theory. Appl. Soft Comput. 2015, 36, 368–374. [Google Scholar] [CrossRef]
- Xu, J.; Zhong, Z.; Xu, L. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system. Int. J. Syst. Sci. 2015, 46, 2287–2302. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, Y.; Zhou, D. An improved genetic algorithm with initial population strategy for symmetric TSP. Math. Probl. Eng. 2015, 2015, 212794. [Google Scholar] [CrossRef] [Green Version]
- Du, W.-B.; Gao, Y.; Liu, C.; Zheng, Z.; Wang, Z. Adequate is better: Particle swarm optimization with limited-information. Appl. Math. Comput. 2015, 268, 832–838. [Google Scholar] [CrossRef]
- Deng, X.; Jiang, W. On the negation of a Dempster-Shafer belief structure based on maximum uncertainty allocation. Inf. Sci. 2020, 516, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Ye, X.Q.; Gu, W.-K. A New Combination Rules of Evidence Theory. ACTA Electron. Sin. 2000, 28, 117. [Google Scholar]
- Yang, J.; Xu, D. Evidential reasoning rule for evidence combination. Artif. Intell. 2013, 205, 1–29. [Google Scholar] [CrossRef]
- Deng, Y. Generalized evidence theory. Appl. Intell. 2015, 43, 530–543. [Google Scholar] [CrossRef] [Green Version]
- Smets, P.; Kennes, R. The transferable belief model. Artif. Intell. 1994, 66, 191–234. [Google Scholar] [CrossRef]
- Jousselme, A.L.; Grenier, D.; Bossé, E. A new distance between two bodies of evidence. Inf. Fusion 2001, 2, 91–101. [Google Scholar] [CrossRef]
- Murphy, C.K. Combining belief functions when evidence conflicts. Decis. Support Syst. 2000, 29, 1–9. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, D.; Xu, S. A Weighted Belief Entropy-based Uncertainty Measure for Multi-sensor Data Fusion. Sensors 2017, 17, 928. [Google Scholar] [CrossRef] [Green Version]
- Smets, P. The combination of evidence in the transferable belief model. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 447–458. [Google Scholar] [CrossRef]
- Jousselme, A.L.; Maupin, P. Distances in evidence theory: Comprehensive survey and generalizations. Int. J. Approx. Reason. 2012, 53, 118–145. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.F.; Zhang, G.D.L.; Wang, L. Measurement of evidence conflict based on overlapping degree. Control. Decis. 2017, 32, 293–298. [Google Scholar]
- Chen, L.; Diao, L.; Sang, J. A New Method to Handle Conflict when Combining Evidences Using Entropy Function and Evidence Angle with an Effective Application in Fault Diagnosis. Math. Probl. Eng. 2020, 2020, 3564365. [Google Scholar] [CrossRef]
- Wang, X.; Di, P.; Yin, D. Conflict Evidence Fusion Method Based on Lance Distance and Credibility Entropy. Syst. Eng. Electron. 2022, 44, 592–602. [Google Scholar]
- Deng, Y.; Shi, W.-K.; Zhu, Z.-F. Efficient combination approach of conflict evidence. J. Infrared Millim. Waves 2004, 23, 27–32. [Google Scholar]
- Lei, C.; Ling, D.; Jun, S. Weighted Evidence Combination Rule Based on Evidence Distance and Uncertainty Measure: An Application in Fault Diagnosis. Math. Probl. Eng. 2018, 2018, 1–10. [Google Scholar]
- Xiao, F. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 2018, 46, 23–32. [Google Scholar] [CrossRef]
- Zhao, K.Y.; Sun, R.T.; Li, L. An improved evidence fusion algorithm in multi-sensor systems. Appl. Intell. 2021, 51, 7614–7624. [Google Scholar] [CrossRef]
Evidence | |||
---|---|---|---|
0.90 | 0 | 0.10 | |
0 | 0.01 | 0.99 | |
0.50 | 0.20 | 0.30 | |
0.98 | 0.01 | 0.01 | |
0.90 | 0.05 | 0.05 |
Fusion Times | |||
---|---|---|---|
First | 0.9758 | 0.0051 | 0.0191 |
Second | 0.9969 | 0.0004 | 0.0027 |
Third | 0.9996 | 0.0000 | 0.0004 |
Fourth | 0.9999 | 0.0000 | 0.0001 |
Approach | Fusion Result | ||||
---|---|---|---|---|---|
BPA | |||||
0 | 0 | 0 | 0 | ||
Dempster-Shafer | 0 | 0 | 0 | 0 | |
1 | 1 | 1 | 1 | ||
0.4054 | 0.5055 | 0.8930 | 0.9834 | ||
Murphy [22] | 0.0001 | 0.0000 | 0.0001 | 0.0000 | |
0.5946 | 0.4945 | 0.1069 | 0.0166 | ||
0.4054 | 0.7211 | 0.9910 | 0.9996 | ||
Deng [29] | 0.0001 | 0.0040 | 0.0001 | 0.0000 | |
0.5946 | 0.2749 | 0.0089 | 0.0003 | ||
0.5745 | 0.8382 | 0.9558 | 0.9968 | ||
Wang [28] | 0.0033 | 0.0142 | 0.0010 | 0.0001 | |
0.4223 | 0.1476 | 0.0431 | 0.0031 | ||
0.4054 | 0.7211 | 0.9910 | 0.9996 | ||
Chen [30] | 0.0001 | 0.0040 | 0.0001 | 0.0000 | |
0.5946 | 0.2749 | 0.0089 | 0.0003 | ||
0.2790 | 0.5763 | 0.9397 | 0.9963 | ||
Xiao [31] | 0.0001 | 0.0065 | 0.0004 | 0.0000 | |
0.7210 | 0.4173 | 0.0599 | 0.0037 | ||
0.4571 | 0.7178 | 0.9792 | 0.9991 | ||
Zhao [32] | 0.0000 | 0.0046 | 0.0001 | 0.0000 | |
0.5429 | 0.2775 | 0.0207 | 0.0009 | ||
0.5784 | 0.8406 | 0.9962 | 0.9999 | ||
Ours | 0.0000 | 0.0187 | 0.0002 | 0.0000 | |
0.4216 | 0.1407 | 0.0036 | 0.0001 |
Evidence | ||||
---|---|---|---|---|
0.41 | 0.29 | 0.30 | 0.00 | |
0.00 | 0.90 | 0.10 | 0.00 | |
0.58 | 0.07 | 0.00 | 0.35 | |
0.55 | 0.10 | 0.00 | 0.35 | |
0.60 | 0.00 | 0.10 | 0.30 |
Evidence | |||
---|---|---|---|
0.41 | 0.29 | 0.30 | |
0.00 | 0.90 | 0.10 | |
0.93 | 0.07 | 0.00 | |
0.90 | 0.10 | 0.00 | |
0.8571 | 0.00 | 0.1429 |
Coefficient | |||||
---|---|---|---|---|---|
0.0440 | 0.0221 | 0.2924 | 0.3212 | 0.3203 | |
0.2352 | 0.0629 | 0.2336 | 0.2376 | 0.2307 | |
4.7894 | 1.5984 | 1.4470 | 1.5984 | 1.8072 | |
0.1221 | 0.0054 | 0.2433 | 0.3004 | 0.3287 |
Fusion Times | |||
---|---|---|---|
First | 0.9790 | 0.0109 | 0.0101 |
Second | 0.9978 | 0.0012 | 0.0010 |
Third | 0.9998 | 0.0001 | 0.0001 |
Fourth | 1.0000 | 0.0000 | 0.0000 |
Approach | Fusion Result | ||||
---|---|---|---|---|---|
BPA | |||||
0 | 0 | 0 | 0 | ||
Dempster-Shafer | 0.8969 | 0.6350 | 0.3320 | 0 | |
0.1031 | 0.3650 | 0.6680 | 1 | ||
0.0964 | 0.4939 | 0.8362 | 0.9613 | ||
Murphy [22] | 0.8119 | 0.4180 | 0.1147 | 0.0147 | |
0.0917 | 0.0792 | 0.0410 | 0.0166 | ||
0.0000 | 0.0090 | 0.0081 | 0.0032 | ||
0.0000 | 0.6019 | 0.9329 | 0.9802 | ||
Deng [29] | 0.8969 | 0.2908 | 0.0225 | 0.0009 | |
0.1031 | 0.0991 | 0.0354 | 0.0154 | ||
0.0000 | 0.0082 | 0.0092 | 0.0035 | ||
0.0000 | 0.7985 | 0.9629 | 0.9855 | ||
Chen [30] | 0.8969 | 0.1060 | 0.0043 | 0.0001 | |
0.1031 | 0.0752 | 0.0190 | 0.0096 | ||
0.0000 | 0.0203 | 0.0139 | 0.0048 | ||
0.1420 | 0.6391 | 0.9400 | 0.9816 | ||
Xiao [31] | 0.7412 | 0.2462 | 0.0165 | 0.0006 | |
0.1168 | 0.1072 | 0.0341 | 0.0141 | ||
0.0000 | 0.0075 | 0.0093 | 0.0037 | ||
0.1046 | 0.6945 | 0.9355 | 0.9817 | ||
Zhao [32] | 0.7989 | 0.1902 | 0.0163 | 0.0000 | |
0.0965 | 0.1062 | 0.0409 | 0.0147 | ||
0.0000 | 0.0091 | 0.0073 | 0.0036 | ||
0.2678 | 0.6714 | 0.9983 | 1.0000 | ||
Ours | 0.5551 | 0.2205 | 0.0015 | 0.0000 | |
0.1771 | 0.1080 | 0.0001 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Liang, F.; Qin, P.; Yu, L.; He, G. A Novel Evidence Combination Method Based on Improved Pignistic Probability. Entropy 2023, 25, 948. https://doi.org/10.3390/e25060948
Shi X, Liang F, Qin P, Yu L, He G. A Novel Evidence Combination Method Based on Improved Pignistic Probability. Entropy. 2023; 25(6):948. https://doi.org/10.3390/e25060948
Chicago/Turabian StyleShi, Xin, Fei Liang, Pengjie Qin, Liang Yu, and Gaojie He. 2023. "A Novel Evidence Combination Method Based on Improved Pignistic Probability" Entropy 25, no. 6: 948. https://doi.org/10.3390/e25060948
APA StyleShi, X., Liang, F., Qin, P., Yu, L., & He, G. (2023). A Novel Evidence Combination Method Based on Improved Pignistic Probability. Entropy, 25(6), 948. https://doi.org/10.3390/e25060948