Adaptive Density Spatial Clustering Method Fusing Chameleon Swarm Algorithm
<p>The anomaly assignment process on the Complex8 dataset.</p> "> Figure 2
<p>Clustering results on Donutcurves dataset.</p> "> Figure 3
<p>Clustering results on Target dataset.</p> "> Figure 4
<p>Clustering results on Twocirclesnoise dataset.</p> "> Figure 5
<p>Clustering results on Pearl dataset.</p> "> Figure 6
<p>Clustering results on Complex8 dataset.</p> "> Figure 7
<p>Clustering results on Complex9 dataset.</p> "> Figure 8
<p>Results of outlier assignment on Twocirclesnoise dataset.</p> "> Figure 9
<p>Results of outlier assignment on Complex8 dataset.</p> "> Figure 10
<p>Results of outlier assignment on Complex9 dataset.</p> "> Figure 11
<p>Comparison of the running time of different algorithms.</p> "> Figure 12
<p>Image segmentation results of different clustering algorithms.</p> ">
Abstract
:1. Introduction
- 1.
- The CSA-DBSCAN method is proposed to realize the parameter adaption of the clustering process and reduce the parameter tuning complexity.
- 2.
- The nearest neighbor mechanism is used to assign the noise points identified by the CSA-DBSCAN method to the nearby clusters, which addresses the issue of assigning the noise points of the DBSCAN algorithm.
- 3.
- Deviation theory is introduced in the nearest neighbor mechanism to further measure the compactness between data points.
- 4.
- The construction of color image superpixel information using the SLIC algorithm increases the clustering performance of the CSA-DBSCAN algorithm in color image segmentation.
2. Research Background
2.1. Density-Based Spatial Clustering of Application with Noise
- Core point: If the quantity of sample points in the Eps neighborhood is greater than MinPts, the points of this type are called core points.
- Border point: The points within the radius Eps are smaller than MinPts. The boundary and some core points within the cluster are mutually contained within the Eps.
- Outlier: A single site that does not satisfy the core point condition or the bounding point condition.
- Direct density reachable: If is within the range of the Eps of , and is a core point, is said to be reachable by the direct density of .
- Density reachable: For points and , if there exists a sequence , where , and is directly density reachable by , we say is density reachable by .
- Density connected: For and , and are called connected by density if the existence of makes both and realizable by the density .
2.2. Chameleon Swarm Algorithm
- Initialization: This method, as with other optimization algorithms, is initialized randomly in the search range.
- Search for prey: At this point, the chameleon begins to search for prey in order to solve the problem of needing food.
- Prey location: The eyes of chameleons move independently, which allows them to skillfully explore spatially and find prey. These eyes can view in two different directions and rotate and focus simultaneously, allowing them to see a sweeping view of their environments.
- Hunting prey: The algorithm determines that the chameleon close to the prey is the best-positioned chameleon. This chameleon attacks its prey with its tongue. Therefore, its position will be slightly updated, since its tongue can extend to twice its original length. The speed of the chameleon’s tongue as it moves toward its prey is defined as:
3. Materials and Methods
3.1. Adaptive Parameter Seeking Strategy
3.2. Noise Point Allocation Mechanism
Algorithm 1 The proposed CSA-DBSCAN method. |
|
4. Results and Discussion
4.1. Evaluation of Clustering Effectiveness
4.2. Performance Evaluation on Synthetic Datasets
4.3. Performance Evaluation on Real-World Datasets
4.4. Performance Test of Outlier Processing after Fusion Deviation Theory
4.5. Comparative Analysis of Algorithm Running Time
4.6. Robustness Analysis of the CSA-DBSCAN Algorithm
4.7. Color Image Segmentation Clustering Applications
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Philip Chen, C.L.; Zhang, C.Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Inf. Sci. 2014, 275, 314–347. [Google Scholar] [CrossRef]
- Zamora, J.; Sublime, J. An Ensemble and Multi-View Clustering Method Based on Kolmogorov Complexity. Entropy 2023, 25, 371. [Google Scholar] [CrossRef]
- Li, M.; Bi, X.; Wang, L.; Xuming, H.; Wang, L.; Zhou, W. Text Similarity Measurement Method and Application of Online Medical Community Based on Density Peak Clustering. J. Organ. End User Comput. 2022, 34, 1–25. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Zhang, X.; Pang, W.; Miao, C.; Tan, A.H.; Zhou, Y. McDPC: Multi-center density peak clustering. Neural. Comput. Appl. 2020, 32, 13465–13478. [Google Scholar] [CrossRef]
- Ji, S.; Zhu, H.; Wang, P.; Ling, X. Image clustering algorithm using superpixel segmentation and non-symmetric gaussian–cauchy mixture model. IET Image Process. 2020, 14, 4132–4143. [Google Scholar] [CrossRef]
- Li, M.; Bi, X.; Wang, L.; Han, X. A method of two-stage clustering learning based on improved DBSCAN and density peak algorithm. Comput. Commun. 2021, 167, 75–84. [Google Scholar] [CrossRef]
- Mújica-Vargas, D.; Matuz-Cruz, M.; García-Aquino, C.; Ramos-Palencia, C. Efficient System for Delimitation of Benign and Malignant Breast Masses. Entropy 2022, 24, 1775. [Google Scholar] [CrossRef]
- Namburu, A.; Samayamantula, S.K.; Edara, S.R. Generalised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentation. IET Image Process. 2017, 11, 777–785. [Google Scholar] [CrossRef]
- Guan, J.; Li, S.; He, X.; Zhu, J.; Chen, J. Fast hierarchical clustering of local density peaks via an association degree transfer method. Neurocomputing 2021, 455, 201–218. [Google Scholar] [CrossRef]
- Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [Google Scholar] [CrossRef]
- Du, M.; Wu, F. Grid-Based Clustering Using Boundary Detection. Entropy 2022, 24, 1606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Brady, M.; Smith, S. Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.K.S.; D’Mello, D.A. DPISCAN: Distributed and parallel architecture with indexing for structural clustering of massive dynamic graphs. Int. J. Data Sci. Anal. 2022, 13, 199–233. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. A K-Means Clustering Algorithm. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Frey, B.J.; Dueck, D. Clustering by Passing Messages between Data Points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, USA, 2–4 August 1996; AAAI Press: Washington, DC, USA, 1996; pp. 226–231. [Google Scholar]
- Zhang, S.; Chen, J. Optimization of energy-efficient dynamic task assignment for wireless sensor networks based on particle swarm algorithm. J. Intell. Fuzzy Syst. 2016, 20, 1–11. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Gandomi, A.H.; Zhang, Z.; Alavi, A.H. Chaotic cuckoo search. Soft Comput. 2016, 20, 3349–3362. [Google Scholar] [CrossRef]
- Meng, X.B.; Gao, X.Z.; Liu, L. A new bio-inspired optimisation algorithm: Bird swarm algorithm. J. Exp. Theor. Artif. Intell. 2015, 28, 673–687. [Google Scholar] [CrossRef]
- Braik, M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl. 2021, 174, 114685. [Google Scholar] [CrossRef]
- Smiti, A.; Eloudi, Z. Soft DBSCAN: Improving DBSCAN clustering method using fuzzy set theory. In Proceedings of the 2013 6th International Conference on Human System Interactions (HSI), Sopot, Poland, 6–8 June 2013; pp. 380–385. [Google Scholar]
- Galán, S.F. Comparative evaluation of region query strategies for DBSCAN clustering. Inf. Sci. 2019, 502, 76–90. [Google Scholar] [CrossRef]
- Bryant, A.; Cios, K. RNN-DBSCAN: A density-based clustering algorithm using reverse nearest neighbor density estimates. IEEE Trans. Knowl. Data Eng. 2018, 30, 1109–1121. [Google Scholar] [CrossRef]
- Hou, J.; Gao, H.; Li, X. DSets-DBSCAN: A parameter-free clustering algorithm. IEEE Trans. Image Process. 2016, 25, 3182–3193. [Google Scholar] [CrossRef]
- Liu, Y.H.; Ma, Z.M.; Yu, F. Adaptive density peaks clustering based on k-nearest neighbors with aggregating strategy. Knowl. Based Syst. 2017, 133, 208–220. [Google Scholar] [CrossRef]
- Shi, B.; Han, L.; Yan, H. Adaptive clustering algorithm based on knn and density. Pattern Recognit. Lett. 2018, 104, 37–44. [Google Scholar] [CrossRef]
- Zhang, W.; Zhi, Y.; Qin, L. DBSCAN Clustering Algorithm Based on Improved Beetle Swarm Optimization. Stat. Decis. 2022, 10, 20–25. [Google Scholar]
- Jin, L.; He, Y.; Wang, H.; Huo, Z.; Xie, X.; Guo, B. Point Cloud Segmentation Algorithm Based on Adaptive Threshold DBSCAN for Roadside LiDAR. Automot. Eng. 2022, 44, 987–996. [Google Scholar]
- Zhu, Q.; Tang, X.; Elahi, A. Application of the novel harmony search optimization algorithm for DBSCAN clustering. Expert Syst. Appl. 2021, 178, 115054. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Han, X.; Zhou, W. A novel adaptive density-based spatial clustering of application with noise based on bird swarm optimization algorithm. Comput. Commun. 2021, 174, 205–214. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Sabine, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Masnou, S.; Chen, L. A Global/Local Affinity Graph for Image Segmentation. IEEE Trans. Image Process. 2015, 24, 1399–1411. [Google Scholar] [CrossRef]
- Zhang, B.; Srihari, S.N. Fast k-nearest neighbor classification using cluster-based trees. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Arbeláez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour Detection and Hierarchical Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 898–916. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Liu, G.; Guo, M.; Liu, X.; Yao, S. Density Peaks Clustering Based on Weighted Local Density Sequence and Nearest Neighbor Assignment. IEEE Access 2019, 7, 34301–34317. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, L.; Han, X.; Parmar, M.; Li, M. A novel density deviation multi-peaks automatic clustering algorithm. Complex Intell. Syst. 2023, 9, 177–211. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, L.; Han, X.; Li, M. A novel deviation density peaks clustering algorithm and its applications of medical image segmentation. IET Image Process. 2022, 16, 3790–3804. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Pantofaru, C.; Hebert, M. Toward Objective Evaluation of Image Segmentation Algorithms. IEEE Comput. Soc. 2007, 29, 929–944. [Google Scholar] [CrossRef] [PubMed]
- Yu, W. A mathematical morphology based method for hierarchical clustering analysis of spatial points on street networks. Appl. Soft Comput. 2019, 85, 105785. [Google Scholar] [CrossRef]
Dataset | Objects | Dimension | Clusters |
---|---|---|---|
Donutcurves | 1000 | 2 | 4 |
Target | 770 | 2 | 6 |
Twocirclesnoise | 610 | 2 | 3 |
Pearl | 1000 | 2 | 2 |
Complex8 | 2551 | 2 | 8 |
Complex9 | 3031 | 2 | 9 |
Seeds | 210 | 7 | 3 |
Thyroid | 215 | 5 | 3 |
Ionosphere | 351 | 30 | 2 |
Glass | 214 | 9 | 6 |
Vehicle | 846 | 18 | 4 |
Iris | 150 | 4 | 3 |
Datasets | Algorithms | Par | NMI | ARI | ACC | FM |
---|---|---|---|---|---|---|
Donutcurves | k-means | 4 | 0.6821 | 0.1525 | 0.5840 | 0.6796 |
AP | −6.4125 | 0.5802 | 0.4085 | 0.5290 | 0.6139 | |
DBSCAN | 0.01/2 | 0.9977 | 0.9987 | 0.9990 | 0.9990 | |
DPC | 3 | 0.9429 | 0.9130 | 0.8810 | 0.9353 | |
DPCSA | - | 0.9428 | 0.9128 | 0.8750 | 0.9351 | |
AmDPC | 3/0.05/0.15/8 | 0.8660 | 0.5551 | 0.7500 | 0.8160 | |
DeDPC | 11/5 | 0.8966 | 0.8240 | 0.7820 | 0.8702 | |
CSA-DBSCAN | 2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Target | k-means | 6 | 0.7507 | 0.1048 | 0.7000 | 0.8306 |
AP | −82.8259 | 0.6905 | 0.6557 | 0.6532 | 0.8055 | |
DBSCAN | 0.3/2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
DPC | 20 | 0.7767 | 0.7020 | 0.7052 | 0.8341 | |
DPCSA | - | 0.6525 | 0.6234 | 0.6351 | 0.7850 | |
AmDPC | 5/1/0.39/0.3 | 0.9771 | 0.9924 | 0.9883 | 0.9961 | |
DeDPC | 8/2 | 0.6698 | 0.6519 | 0.7078 | 0.8031 | |
CSA-DBSCAN | 2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Twocirclesnoise | k-means | 3 | 0.0039 | -0.2200 | 0.3377 | 0.4026 |
AP | −97.4305 | 0.5205 | 0.1860 | 0.2197 | 0.4281 | |
DBSCAN | 0.8/4 | 0.9574 | 0.9835 | 0.9918 | 0.9916 | |
DPC | 8 | 0.4396 | 0.3814 | 0.6262 | 0.6619 | |
DPCSA | - | 0.3574 | 0.2663 | 0.6951 | 0.6456 | |
AmDPC | 3/1.6/1.9/5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
DeDPC | 1/2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
CSA-DBSCAN | 3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Pearl | k-means | 2 | 0.3920 | 0.4511 | 0.8360 | 0.7310 |
AP | −158.3515 | 0.6454 | 0.6067 | 0.6620 | 0.7790 | |
DBSCAN | 0.575/4 | 0.9948 | 0.9980 | 0.9990 | 0.9990 | |
DPC | 8 | 0.7848 | 0.6682 | 0.6860 | 0.8173 | |
DPCSA | - | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
AmDPC | 3/2/2/5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
DeDPC | 17/2 | 0.7556 | 0.6933 | 0.7480 | 0.8325 | |
CSA-DBSCAN | 4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Complex8 | k-means | 8 | 0.6129 | −0.0430 | 0.5214 | 0.4954 |
AP | −6349.1939 | 0.6440 | 0.3936 | 0.4606 | 0.4891 | |
DBSCAN | 15.58/3 | 0.9985 | 0.9996 | 0.9988 | 0.9997 | |
DPC | 5 | 0.7812 | 0.5113 | 0.7327 | 0.7177 | |
DPCSA | - | 0.8405 | 0.7470 | 0.7589 | 0.7907 | |
AmDPC | 3/50/38.6/16 | 0.8574 | 0.7528 | 0.8009 | 0.7955 | |
DeDPC | 20/2 | 0.7458 | 0.6264 | 0.6452 | 0.6876 | |
CSA-DBSCAN | 2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Complex9 | k-means | 9 | 0.6684 | 0.0270 | 0.4985 | 0.3145 |
AP | −2972.5168 | 0.7380 | 0.2845 | 0.3583 | 0.4393 | |
DBSCAN | 15.12/10 | 0.9942 | 0.9975 | 0.9970 | 0.9979 | |
DPC | 3 | 0.7167 | 0.4462 | 0.5737 | 0.5627 | |
DPCSA | - | 0.7199 | 0.4221 | 0.4593 | 0.5188 | |
AmDPC | 3/20/21/50 | 0.9132 | 0.8919 | 0.8746 | 0.9132 | |
DeDPC | 1/2 | 0.7297 | 0.3389 | 0.6457 | 0.6213 | |
CSA-DBSCAN | 8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Datasets | Algorithms | Par | NMI | ARI | ACC | FM |
---|---|---|---|---|---|---|
Seeds | k-means | 3 | 0.6949 | 0.7166 | 0.8952 | 0.8106 |
AP | −61.1525 | 0.7101 | 0.7103 | 0.8905 | 0.8068 | |
DBSCAN | 0.92/4 | 0.4823 | 0.4001 | 0.5952 | 0.6439 | |
DPC | 6 | 0.7188 | 0.7132 | 0.8905 | 0.8093 | |
DPCSA | - | 0.7151 | 0.7236 | 0.8952 | 0.8166 | |
AmDPC | 10/1.5/3/10 | 0.7188 | 0.7132 | 0.8905 | 0.8093 | |
DeDPC | 15/15 | 0.7188 | 0.7132 | 0.8905 | 0.8093 | |
CSA-DBSCAN | 11 | 0.7259 | 0.7321 | 0.9000 | 0.8212 | |
Thyroid | k-means | 3 | 0.4354 | 0.5823 | 0.8558 | 0.8062 |
AP | −15.0333 | 0.4728 | 0.0845 | 0.1535 | 0.3027 | |
DBSCAN | 4.28/1 | 0.5013 | 0.6915 | 0.7209 | 0.8648 | |
DPC | 6 | 0.3764 | 0.3535 | 0.7860 | 0.7828 | |
DPCSA | - | 0.3517 | 0.3185 | 0.7954 | 0.7750 | |
AmDPC | 15/5.8/5/2 | 0.4256 | 0.4114 | 0.8233 | 0.7952 | |
DeDPC | 10/15 | 0.4313 | 0.4240 | 0.8279 | 0.7978 | |
CSA-DBSCAN | 1 | 0.5013 | 0.6915 | 0.7209 | 0.8648 | |
Ionosphere | k-means | 2 | 0.1292 | 0.1681 | 0.7066 | 0.6004 |
AP | −80.4075 | 0.1243 | 0.1634 | 0.7037 | 0.5983 | |
DBSCAN | 1.4/1 | 0.3697 | 0.5112 | 0.6068 | 0.7526 | |
DPC | 2 | 0.2669 | 0.2518 | 0.6581 | 0.6082 | |
DPCSA | - | 0.1224 | 0.1969 | 0.7265 | 0.6335 | |
AmDPC | 3/1.3/0.87/2 | 0.3212 | 0.3927 | 0.8177 | 0.7553 | |
DeDPC | 3/5 | 0.2586 | 0.2612 | 0.7123 | 0.6453 | |
CSA-DBSCAN | 1 | 0.6154 | 0.3736 | 0.5289 | 0.7640 | |
Glass | k-means | 6 | 0.4353 | 0.2389 | 0.4766 | 0.5493 |
AP | −46.6739 | 0.2969 | 0.1750 | 0.4439 | 0.5408 | |
DBSCAN | 0.5/4 | 0.3327 | 0.1771 | 0.4159 | 0.4381 | |
DPC | 1 | 0.3053 | 0.1707 | 0.4579 | 0.4784 | |
DPCSA | - | 0.2971 | 0.1772 | 0.4533 | 0.5384 | |
AmDPC | 4/1.5/3/5 | 0.4008 | 0.1946 | 0.4860 | 0.5700 | |
DeDPC | 18/28 | 0.4540 | 0.2510 | 0.5093 | 0.4938 | |
CSA-DBSCAN | 1 | 0.5269 | 0.2930 | 0.4673 | 0.5570 | |
Vehicle | k-means | 4 | 0.1163 | 0.0783 | 0.3499 | 0.3422 |
AP | −30.7022 | 0.1876 | 0.1165 | 0.3440 | 0.3085 | |
DBSCAN | 0.55/10 | 0.2146 | 0.0602 | 0.4031 | 0.3993 | |
DPC | 2 | 0.1603 | 0.0864 | 0.3723 | 0.4280 | |
DPCSA | - | 0.2021 | 0.1098 | 0.4054 | 0.4074 | |
AmDPC | 5/0.77/0.71/0.8 | 0.1863 | 0.0116 | 0.3759 | 0.4333 | |
DeDPC | 17/5 | 0.1953 | 0.0028 | 0.4054 | 0.4349 | |
CSA-DBSCAN | 4 | 0.2160 | 0.1266 | 0.3410 | 0.3569 | |
Iris | k-means | 3 | 0.7582 | 0.8933 | 0.7302 | 0.8208 |
AP | −34.9374 | 0.7612 | 0.6667 | 0.3705 | 0.7715 | |
DBSCAN | 0.4/5 | 0.7196 | 0.7063 | 0.8067 | 0.7972 | |
DPC | 2 | 0.8058 | 0.7592 | 0.9067 | 0.8407 | |
DPCSA | - | 0.8851 | 0.9038 | 0.9667 | 0.9355 | |
AmDPC | 4/1/1/1 | 0.8705 | 0.8858 | 0.9600 | 0.9234 | |
DeDPC | 5/2 | 0.8058 | 0.7592 | 0.9067 | 0.8407 | |
CSA-DBSCAN | 5 | 0.8705 | 0.8858 | 0.9600 | 0.9234 |
Datasets | Allocation Strategy | NMI | ARI | ACC | FM |
---|---|---|---|---|---|
Twocirclesniose | k = 6 | 0.9827 | 0.9934 | 0.9967 | 0.9967 |
k = 2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Deviation theory | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Complex8 | k = 107 | 0.9986 | 0.9994 | 0.9996 | 0.9995 |
k = 108 | 0.9973 | 0.9987 | 0.9992 | 0.9989 | |
Deviation theory | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Complex9 | k = 80 | 0.9989 | 0.9997 | 0.9997 | 0.9998 |
k = 2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Deviation theory | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Seeds | k = 3 | 0.7101 | 0.7103 | 0.8905 | 0.8068 |
k = 4 | 0.7114 | 0.7298 | 0.9000 | 0.8195 | |
Deviation theory | 0.7259 | 0.7321 | 0.9000 | 0.8212 | |
Vehicle | k = 4 | 0.2149 | 0.1159 | 0.3428 | 0.3595 |
k = 14 | 0.1855 | 0.0970 | 0.3475 | 0.3649 | |
Deviation theory | 0.2160 | 0.1266 | 0.3416 | 0.3569 |
Algorithms | k-Means | AP | DBSCAN | DPC | DPCSA | AmDPC | DeDPC | CSA-DBSCAN |
---|---|---|---|---|---|---|---|---|
Time Complexity |
No. | Datasets | k-Means | AP | DBSCAN | DPC | DPCSA | AmDPC | DeDPC | CSA-DBSCAN |
---|---|---|---|---|---|---|---|---|---|
1 | Donutcurves | 0.4799 | 4.3714 | 0.1511 | 0.8441 | 0.9428 | 0.8927 | 0.9582 | 11.9972 |
2 | Target | 0.4493 | 2.7322 | 0.2713 | 1.2256 | 0.6670 | 0.8741 | 0.9513 | 8.2078 |
3 | Twocirclesnoise | 0.3607 | 1.8038 | 0.2427 | 0.8785 | 0.5524 | 1.0653 | 0.8324 | 3.9055 |
4 | Pearl | 0.4438 | 4.4842 | 0.2799 | 0.9278 | 0.7504 | 1.1395 | 0.8617 | 12.6280 |
5 | Complex8 | 1.4032 | 32.7125 | 0.3798 | 1.4718 | 1.2732 | 2.1808 | 1.2533 | 55.3762 |
6 | Complex9 | 2.4172 | 49.0449 | 0.6496 | 1.7611 | 1.8137 | 2.3449 | 1.2213 | 86.5821 |
7 | Seeds | 0.3289 | 0.7586 | 0.1553 | 0.7071 | 0.3264 | 0.7168 | 0.7937 | 1.6091 |
8 | Thyroid | 0.3285 | 0.8131 | 0.2953 | 0.6746 | 0.2989 | 0.8153 | 0.7843 | 1.5749 |
9 | Ionosphere | 0.1292 | 1.0116 | 0.7109 | 0.7737 | 0.4164 | 0.9375 | 0.8096 | 3.4974 |
10 | Glass | 0.5561 | 0.7568 | 0.2375 | 0.8159 | 0.3957 | 1.3038 | 0.8764 | 1.7904 |
11 | Vehicle | 0.7794 | 3.2929 | 0.2337 | 0.8635 | 0.5084 | 1.3128 | 0.8567 | 11.3781 |
12 | Iris | 0.3983 | 0.6863 | 0.1059 | 0.6982 | 0.3115 | 0.6915 | 0.8273 | 1.0434 |
Datasets I ∈ [50, 500] | NMI | ARI | ACC | FM |
---|---|---|---|---|
Twocirclesnoise | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 |
Pearl | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 |
Complex8 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 |
Glass | 0.5269 ± 0.0000 | 0.2930 ± 0.0000 | 0.4673 ± 0.0000 | 0.5570 ± 0.0000 |
Vehicle | 0.1957 ± 0.0584 | 0.1133 ± 0.0380 | 0.3337 ± 0.0246 | 0.3722 ± 0.0435 |
Iris | 0.8486 ± 0.0461 | 0.7827 ± 0.2173 | 0.9013 ± 0.1237 | 0.8930 ± 0.0641 |
Datasets n ∈ [5, 55] | NMI | ARI | ACC | FM |
---|---|---|---|---|
Twocirclesnoise | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 |
Pearl | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 |
Complex8 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 | 1.0000 ± 0.0000 |
Glass | 0.5269 ± 0.0000 | 0.2930 ± 0.0000 | 0.4673 ± 0.0000 | 0.5570 ± 0.0000 |
Vehicle | 0.2160 ± 0.0000 | 0.1266 ± 0.0000 | 0.3416 ± 0.0000 | 0.3569 ± 0.0000 |
Iris | 0.8705 ± 0.0000 | 0.8858 ± 0.0000 | 0.9600 ± 0.0000 | 0.9234 ± 0.0000 |
Datasets MinPts ∈ [1, 10] | Algorithms | NMI | ARI | ACC | FM |
---|---|---|---|---|---|
Twocirclesniose | DBSCAN | 0.8815 ± 0.1558 | 0.9005 ± 0.1716 | 0.9234 ± 0.1453 | 0.9434 ± 0.0997 |
CSA-DBSCAN | 0.9827 ± 0.0149 | 0.9902 ± 0.0085 | 0.9951 ± 0.0042 | 0.9951 ± 0.0042 | |
Pearl | DBSCAN | 0.9903 ± 0.0076 | 0.9941 ± 0.0028 | 0.9970 ± 0.0014 | 0.9970 ± 0.0014 |
CSA-DBSCAN | 0.9990 ± 0.0032 | 0.9996 ± 0.0013 | 0.9998 ± 0.0006 | 0.9998 ± 0.0006 | |
Complex8 | DBSCAN | 0.9644 ± 0.0488 | 0.9620 ± 0.0635 | 0.9545 ± 0.0656 | 0.9691 ± 0.0514 |
CSA-DBSCAN | 0.9840 ± 0.0181 | 0.9876 ± 0.0172 | 0.9784 ± 0.0242 | 0.9898 ± 0.0142 | |
Glass | DBSCAN | 0.2902 ± 0.1138 | 0.1194 ± 0.0802 | 0.3925 ± 0.0336 | 0.4231 ± 0.0193 |
CSA-DBSCAN | 0.3580 ± 0.0885 | 0.2248 ± 0.0447 | 0.4579± 0.0337 | 0.5474 ± 0.0111 | |
Vehicle | DBSCAN | 0.1658 ± 0.0407 | 0.0561 ± 0.0375 | 0.3369 ± 0.0563 | 0.3529 ± 0.0220 |
CSA-DBSCAN | 0.1878± 0.0481 | 0.1022 ± 0.0202 | 0.3482 ± 0.0175 | 0.3724± 0.0252 | |
Iris | DBSCAN | 0.6710 ± 0.1003 | 0.5889 ± 0.1051 | 0.7427 ± 0.0563 | 0.7198 ± 0.0682 |
CSA-DBSCAN | 0.8023 ± 0.0450 | 0.7219± 0.1921 | 0.8493± 0.1054 | 0.8511 ± 0.0547 |
Datasets MinPts ∈ [1, 10] | NMI | ARI | ACC | FM |
---|---|---|---|---|
Twocirclesnoise | 0.0309 | 0.0630 | 0.0768 | 0.0658 |
Pearl | 0.0002 | 0.0002 | 0.0003 | 0.0002 |
Complex8 | 0.0437 | 0.0640 | 0.0634 | 0.0626 |
Glass | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
Vehicle | 0.1569 | 0.0078 | 0.2147 | 0.0031 |
Iris | 0.0000 | 0.0148 | 0.0091 | 0.0000 |
No. | k-Means | AP | DBSCAN | DPC | DPCSA | AmDPC | DeDPC | CSA-DBSCAN |
---|---|---|---|---|---|---|---|---|
Image 1 | 15.7662 | 19.7150 | 5.0937 | 15.4732 | 8.5149 | 7.4530 | 10.7306 | 4.9178 |
Image 2 | 11.5680 | 14.2134 | 7.6185 | 9.9451 | 9.9451 | 11.2650 | 13.5390 | 7.5544 |
Image 3 | 9.5631 | 12.2107 | 6.7734 | 10.0532 | 7.1654 | 11.9157 | 9.5474 | 6.1981 |
Image 4 | 16.4136 | 16.5830 | 12.5754 | 18.8168 | 11.8731 | 12.0519 | 13.6472 | 11.7218 |
No. | k-Means | AP | DBSCAN | DPC | DPCSA | AmDPC | DeDPC | CSA-DBSCAN |
---|---|---|---|---|---|---|---|---|
Image 1 | 0.6063 | 0.5410 | 0.8875 | 0.6402 | 0.6851 | 0.6757 | 0.6227 | 0.8927 |
Image 2 | 0.8467 | 0.8205 | 0.9047 | 0.8814 | 0.8814 | 0.8657 | 0.8323 | 0.9051 |
Image 3 | 0.8551 | 0.8146 | 0.8934 | 0.8593 | 0.8945 | 0.8252 | 0.5606 | 0.8997 |
Image 4 | 0.7479 | 0.7403 | 0.7887 | 0.7730 | 0.7823 | 0.8083 | 0.7615 | 0.7990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Wang, L.; Han, X.; Wang, Y.; Zhang, Y.; Jia, Z. Adaptive Density Spatial Clustering Method Fusing Chameleon Swarm Algorithm. Entropy 2023, 25, 782. https://doi.org/10.3390/e25050782
Zhou W, Wang L, Han X, Wang Y, Zhang Y, Jia Z. Adaptive Density Spatial Clustering Method Fusing Chameleon Swarm Algorithm. Entropy. 2023; 25(5):782. https://doi.org/10.3390/e25050782
Chicago/Turabian StyleZhou, Wei, Limin Wang, Xuming Han, Yizhang Wang, Yufei Zhang, and Zhiyao Jia. 2023. "Adaptive Density Spatial Clustering Method Fusing Chameleon Swarm Algorithm" Entropy 25, no. 5: 782. https://doi.org/10.3390/e25050782
APA StyleZhou, W., Wang, L., Han, X., Wang, Y., Zhang, Y., & Jia, Z. (2023). Adaptive Density Spatial Clustering Method Fusing Chameleon Swarm Algorithm. Entropy, 25(5), 782. https://doi.org/10.3390/e25050782