IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs
<p>The architecture of IMR. We take the 2-hop path search as an example. The black and red arrows denote time-aware exponentially weighted sampling and pruning based on the scores of paths, respectively (<a href="#sec4dot2-entropy-25-00666" class="html-sec">Section 4.2</a>). The blue arrows denote the calculation of the rest of the questions for each path (<a href="#sec4dot3-entropy-25-00666" class="html-sec">Section 4.3</a>). (Sub, Rel, ?, Time) is regarded as the original question, which can be denoted as <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>r</mi> <mi>q</mi> </msub> <mo>,</mo> <mo>?</mo> <mo>,</mo> <msub> <mi>t</mi> <mi>q</mi> </msub> </mrow> </mfenced> </semantics></math>. The searched two paths are [(Sub,R1,Obj1,Time1)] and [(Sub,R1,Obj1,Time1),(Obj1,R5,Obj5,Time5)], which can be denoted as <math display="inline"><semantics> <mfenced open="[" close="]"> <mfenced separators="" open="(" close=")"> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>r</mi> <msub> <mi>p</mi> <mfenced open="(" close=")"> <mn>1</mn> </mfenced> </msub> </msub> <mo>,</mo> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mfenced> </mfenced> </semantics></math> and <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <mrow> <mfenced separators="" open="(" close=")"> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>r</mi> <msub> <mi>p</mi> <mfenced open="(" close=")"> <mn>1</mn> </mfenced> </msub> </msub> <mo>,</mo> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mfenced> <mo>,</mo> <mfenced separators="" open="(" close=")"> <mrow> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>r</mi> <msub> <mi>p</mi> <mfenced open="(" close=")"> <mn>2</mn> </mfenced> </msub> </msub> <mo>,</mo> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mfenced> </mrow> </mfenced> </semantics></math>, respectively. (Sub’, Rel’, ?, Time) and (Sub”, Rel”, ?, Time) denote the remaining questions after the 1-hop and 2-hop path, which can be taken as <math display="inline"><semantics> <mrow> <mfenced separators="" open="(" close=")"> <mrow> <msub> <mi>e</mi> <msub> <mi>s</mi> <mfenced open="(" close=")"> <mn>1</mn> </mfenced> </msub> </msub> <mo>,</mo> <msub> <mi>r</mi> <msub> <mi>q</mi> <mfenced open="(" close=")"> <mn>1</mn> </mfenced> </msub> </msub> <mo>,</mo> <mo>?</mo> <mo>,</mo> <msub> <mi>t</mi> <mi>q</mi> </msub> </mrow> </mfenced> <mo>,</mo> <mfenced separators="" open="(" close=")"> <mrow> <msub> <mi>e</mi> <msub> <mi>s</mi> <mfenced open="(" close=")"> <mn>2</mn> </mfenced> </msub> </msub> <mo>,</mo> <msub> <mi>r</mi> <msub> <mi>q</mi> <mfenced open="(" close=")"> <mn>2</mn> </mfenced> </msub> </msub> <mo>,</mo> <mo>?</mo> <mo>,</mo> <msub> <mi>t</mi> <mi>q</mi> </msub> </mrow> </mfenced> </mrow> </semantics></math>, respectively.</p> "> Figure 2
<p>A brief illustration of the path scoring module.</p> "> Figure 3
<p>Comparison of the performance of paths with different maximum hops on four datasets. We average the output of four experiments with different random seeds and fixed hyperparameters.</p> "> Figure A1
<p>The relation between path confidence and time distance. The questions and paths corresponding to each polyline are shown in (<b>a</b>,<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Related Work
3. Preliminaries
4. IMR: Interpretable Multi-Hop Reasoning
4.1. Framework Overview
4.2. Path Searching Module
4.3. Query Updating Module
4.3.1. Entity Representation
4.3.2. Question Updating
4.4. Path Scoring Module
4.4.1. Question Matching Degree
4.4.2. Answer Completion Level
4.4.3. Path Confidence
4.4.4. Combination of Scores
4.5. Learning
5. Experiments
5.1. Datasets and Baselines
5.2. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Case Studies and Interpretability
Question: | John Kerry | Make a Visit | Oman | 2014-11-11 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Path-ID | Reasoning Path | Score | ||||||||||
Combined Score | ||||||||||||
path 1-1 | John Kerry | Make a visit | Oman | 2014-11-09 | - | - | - | - | 0 | 74 | 74 | 137 |
path 1-2 | John Kerry | Express intent to meet or negotiate | Oman | 2014-11-09 | - | - | - | - | 26 | 74 | 69 | 169 |
path 1-3 | John Kerry | (Reversed) Host a visit | Oman | 2014-11-09 | - | - | - | - | 27 | 74 | 76 | 178 |
path 1-4 | John Kerry | Meet at a ’third’ location | Catherine Ashton | 2014-11-10 | Catherine Ashton | Make a visit | Oman | 2014-11-09 | 38 | 74 | 90 | 206 |
path 1-5 | John Kerry | Consult | Mohammad Javad Zarif | 2014-11-10 | Mohammad Javad Zarif | Consult | Oman | 2014-11-09 | 73 | 74 | 107 | 254 |
path 2-1 | John Kerry | Express intent to meet or negotiate | Oman | 2014-11-10 | - | - | - | - | 26 | 47 | 41 | 119 |
path 2-2 | John Kerry | Express intent to meet or negotiate | Oman | 2014-11-09 | - | - | - | - | 26 | 74 | 69 | 170 |
path 2-3 | John Kerry | Express intent to meet or negotiate | Oman | 2014-11-05 | - | - | - | - | 26 | 89 | 83 | 196 |
path 2-4 | John Kerry | Express intent to meet or negotiate | Oman | 2014-11-02 | - | - | - | - | 26 | 90 | 82 | 197 |
path 2-5 | John Kerry | Reversed Meet at a ’third’ location | Catherine Ashton | 2014-11-10 | Catherine Ashton | Express intent to meet or negotiate | Oman | 2014-11-03 | 49 | 91 | 101 | 246 |
path 2-6 | John Kerry | Reversed Meet at a ’third’ location | Catherine Ashton | 2014-11-10 | Catherine Ashton | Express intent to meet or negotiate | Oman | 2014-11-05 | 49 | 89 | 100 | 242 |
path 2-7 | John Kerry | Make a visit | China | 2014-11-05 | - | - | - | - | 0 | 88 | 88 | 162 |
path 2-8 | John Kerry | Make a visit | North Atlantic Treaty Organization | 2014-06-25 | - | - | - | - | 0 | 87 | 87 | 160 |
path 2-9 | John Kerry | Make a visit | Canada | 2014-10-27 | - | - | - | - | 0 | 85 | 85 | 157 |
path 3-1 | John Kerry | Reversed Meet at a ’third’ location | Catherine Ashton | 2014-11-10 | - | - | - | - | 53 | 46 | 40 | 155 |
path 3-2 | John Kerry | Express intent to meet or negotiate | Oman | 2014-11-09 | - | - | - | - | 26 | 74 | 69 | 169 |
path 3-3 | John Kerry | Make a visit | Afghanistan | 2014-07-21 | - | - | - | - | 0 | 88 | 88 | 162 |
path 3-4 | John Kerry | Make a visit | Afghanistan | 2014-07-21 | Afghanistan | Reversed Make statement | Barack Obama | 2014-07-18 | 34 | 94 | 104 | 241 |
path 3-5 | John Kerry | Make a visit | Angola | 2014-08-05 | Angola | (Reversed) Make statement | Anthony Foxx | 2014-08-04 | 35 | 93 | 105 | 241 |
path 3-6 | John Kerry | (Reversed) Make a visit | Catherine Ashton | 2014-11-10 | Catherine Ashton | Make a visit | Oman | 2014-11-09 | 33 | 74 | 85 | 197 |
Query: | Citizen (Nigeria) | Use Unconventional Violence | Secretariat (Nigeria) | 8016 | ||||
---|---|---|---|---|---|---|---|---|
Path-ID | Reasoning Path | Score | ||||||
Combined Score | ||||||||
path 4-1 | Citizen (Nigeria) | Use unconventional violence | Militant (Nigeria) | 7968 | 0 | 162 | 162 | 215 |
path 4-1 | Citizen (Nigeria) | Use unconventional violence | Militant (Nigeria) | 7728 | 0 | 185 | 185 | 245 |
path 5-2 | Citizen (Nigeria) | Reversed Use unconventional violence | Terrorist (Boko Haram) | 7824 | 72 | 204 | 199 | 359 |
path 5-3 | Citizen (Nigeria) | Reversed Use unconventional violence | Terrorist (Boko Haram) | 7776 | 72 | 174 | 168 | 319 |
path 5-4 | Citizen (Nigeria) | Reversed Use unconventional violence | Militant (Boko Haram) | 7872 | 72 | 206 | 202 | 363 |
path 5-5 | Citizen (Nigeria) | Reversed Use unconventional violence | Militant (Boko Haram) | 7776 | 72 | 173 | 166 | 317 |
path 5-6 | Citizen (Nigeria) | Reversed Use unconventional violence | Militant (Boko Haram) | 7752 | 72 | 175 | 167 | 319 |
Path 6-1 | Citizen (Nigeria) | Reversed fight with small arms and light weapons | Boko Haram | 7992 | 73 | 95 | 95 | 220 |
path 6-2 | Citizen (Nigeria) | Reversed fight with small arms and light weapons | Boko Haram | 7872 | 73 | 174 | 168 | 321 |
path 6-3 | Citizen (Nigeria) | Reversed fight with small arms and light weapons | Boko Haram | 7848 | 73 | 177 | 171 | 324 |
path 6-4 | Citizen (Nigeria) | Reversed fight with small arms and light weapons | Boko Haram | 7824 | 73 | 178 | 171 | 325 |
path 6-5 | Citizen (Nigeria) | Reversed fight with small arms and light weapons | Boko Haram | 7680 | 73 | 180 | 173 | 328 |
path 7-1 | Citizen (Nigeria) | Reversed fight with small arms and light weapons | Boko Haram | 7848 | 73 | 177 | 171 | 324 |
path 7-2 | Citizen (Nigeria) | Make an appeal or request | Government (Nigeria) | 7848 | 78 | 167 | 158 | 315 |
path 7-3 | Citizen (Nigeria) | Reversed fight with small arms and light weapons | Boko Haram | 7848 | 73 | 177 | 171 | 324 |
path 7-4 | Citizen (Nigeria) | Reversed Make an appeal or request | Tony Momoh | 7848 | 80 | 207 | 205 | 377 |
path 7-5 | Citizen (Nigeria) | Reversed Express intent to meet or negotiate | South Africa | 7848 | 85 | 169 | 165 | 330 |
path 7-6 | Citizen (Nigeria) | Reversed Bring lawsuit against | Fessehaye Yohannes | 7848 | 80 | 210 | 206 | 379 |
Appendix A.2. Details on IMR-RotatE and IMR-ComplEx
Appendix A.2.1. IMR-RotatE
Appendix A.2.2. IMR-ComplEx
Appendix A.3. Entity Representation
Dataset | Ent-Time-Specific | Non-Ent-Time-Specific | Memory Increment |
---|---|---|---|
ICEWS14 | 45.21 G | 39.84 G | 5.37 G |
ICEWS18 | 61.45 G | 46.00 G | 15.37 G |
WIKI | 54.39 G | 21.36 G | 33.03 G |
YAGO | 38.40 G | 26.60 G | 11.80 G |
Appendix A.4. Combination of Indicators
Dataset | YAGO | ICEWS14 | ||||||
---|---|---|---|---|---|---|---|---|
Indicator | Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | MRR |
87.32 | 92.53 | 92.76 | 89.87 | 22.61 | 39.20 | 55.32 | 33.48 | |
87.79 | 92.67 | 92.78 | 90.18 | 31.67 | 46.02 | 59.21 | 41.05 | |
87.74 | 92.67 | 92.77 | 90.15 | 25.65 | 43.03 | 58.25 | 36.63 | |
87.95 | 92.67 | 92.77 | 90.26 | 34.91 | 49.26 | 61.12 | 43.82 | |
87.74 | 92.67 | 92.75 | 90.15 | 25.64 | 43.16 | 58.30 | 36.63 | |
87.91 | 92.65 | 92.77 | 90.24 | 34.81 | 49.02 | 61.15 | 43.74 | |
88.31 | 92.66 | 92.77 | 90.48 | 34.96 | 49.27 | 61.09 | 43.89 | |
Distance to the best | 0 | 0.01 | 0 | 0 | 0 | 0 | 0.06 | 0 |
Dataset | WIKI | ICEWS18 | ||||||
---|---|---|---|---|---|---|---|---|
Indicator | Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | MRR |
70.75 | 83.39 | 85.87 | 77.12 | 12.76 | 26.47 | 43.75 | 22.66 | |
- | - | - | - | 20.41 | 33.50 | 47.48 | 29.45 | |
70.72 | 83.35 | 85.31 | 77.00 | 14.92 | 29.00 | 45.58 | 24.82 | |
76.12 | 84.90 | 85.94 | 80.46 | 23.05 | 36.20 | 49.47 | 31.84 | |
73.85 | 84.12 | 85.65 | 78.99 | 13.10 | 26.38 | 43.27 | 22.75 | |
76.04 | 84.91 | 85.95 | 80.41 | 23.04 | 36.10 | 49.46 | 31.83 | |
76.09 | 84.92 | 85.96 | 80.44 | 23.15 | 36.12 | 49.52 | 31.89 | |
Distance to the best | 0.03 | 0 | 0 | 0.02 | 0 | 0.08 | 0 | 0 |
Appendix A.5. Correlation between IMR and Other Models
Appendix A.6. Correlation between Path Confidence and Time Distance in IMR-TransE
Appendix A.7. The Offsetting Property in Question Updating
References
- Bordes, A.; Usunier, N.; García-Durán, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data. In Proceedings of the NIPS 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013. [Google Scholar]
- Suchanek, F.M.; Kasneci, G.; Weikum, G. Yago: A large ontology from wikipedia and wordnet. J. Web Semant. 2008, 6, 203–217. [Google Scholar] [CrossRef]
- Li, Z.; Jin, X.; Guan, S.; Li, W.; Guo, J.; Wang, Y.; Cheng, X. Search from History and Reason for Future: Two-stage Reasoning on Temporal Knowledge Graphs. In Proceedings of the ACL/IJCNLP (1), Virtual Event, 1–6 August 2021; pp. 4732–4743. [Google Scholar]
- Jin, W.; Zhang, C.; Szekely, P.A.; Ren, X. Recurrent Event Network for Reasoning over Temporal Knowledge Graphs. arXiv 2019, arXiv:1904.05530. [Google Scholar]
- Xu, C.; Nayyeri, M.; Alkhoury, F.; Yazdi, H.S.; Lehmann, J. Temporal Knowledge Graph Completion Based on Time Series Gaussian Embedding. In Proceedings of the ISWC (1), Athens, Greece, 2–6 November 2020; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2020; Volume 12506, pp. 654–671. [Google Scholar]
- Jung, J.; Jung, J.; Kang, U. Learning to Walk across Time for Interpretable Temporal Knowledge Graph Completion. In Proceedings of the KDD, Singapore, 14–18 August 2021; ACM: New York, NY, USA, 2021; pp. 786–795. [Google Scholar]
- Han, Z.; Chen, P.; Ma, Y.; Tresp, V. Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs. In Proceedings of the ICLR, OpenReview.net, Vienna, Austria, 4 May 2021. [Google Scholar]
- Wu, J.; Cao, M.; Cheung, J.C.K.; Hamilton, W.L. TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion. In Proceedings of the EMNLP (1), Online, 16–20 November 2020; pp. 5730–5746. [Google Scholar]
- Pavlović, A.; Sallinger, E. ExpressivE: A Spatio-Functional Embedding For Knowledge Graph Completion. arXiv 2022, arXiv:2206.04192. [Google Scholar]
- Wang, X.; Chen, J.; Wu, F.; Wang, J. Exploiting Global Semantic Similarities in Knowledge Graphs by Relational Prototype Entities. arXiv 2022, arXiv:2206.08021. [Google Scholar]
- Zhu, C.; Chen, M.; Fan, C.; Cheng, G.; Zhan, Y. Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks. arXiv 2020, arXiv:2012.08492. [Google Scholar] [CrossRef]
- Nayyeri, M.; Vahdati, S.; Khan, M.T.; Alam, M.M.; Wenige, L.; Behrend, A.; Lehmann, J. Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion. In Proceedings of the Semantic Web—19th International Conference, ESWC 2022, Hersonissos, Crete, Greece, 29 May–2 June 2022; Lecture Notes in Computer Science. Groth, P., Vidal, M., Suchanek, F.M., Szekely, P.A., Kapanipathi, P., Pesquita, C., Skaf-Molli, H., Tamper, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; Volume 13261, pp. 253–269. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Li, Y.; Li, A. Rotateqvs: Representing temporal information as rotations in quaternion vector space for temporal knowledge graph completion. arXiv 2022, arXiv:2203.07993. [Google Scholar]
- Sun, H.; Zhong, J.; Ma, Y.; Han, Z.; He, K. TimeTraveler: Reinforcement Learning for Temporal Knowledge Graph Forecasting. In Proceedings of the EMNLP, Virtual, 7–9 November 2021. [Google Scholar]
- Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex Embeddings for Simple Link Prediction. In Proceedings of the ICML, New York, NY, USA, 19–24 June 2016. [Google Scholar]
- Yang, B.; Yih, W.T.; He, X.; Gao, J.; Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. arXiv 2015, arXiv:1412.6575. [Google Scholar]
- Sun, Z.; Deng, Z.; Nie, J.Y.; Tang, J. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. arXiv 2019, arXiv:1902.10197. [Google Scholar]
- Nickel, M.; Tresp, V.; Kriegel, H. A Three-Way Model for Collective Learning on Multi-Relational Data. In Proceedings of the ICML, Bellevue, WA, USA, 28 June–2 July 2011. [Google Scholar]
- Zhou, M.; Huang, M.; Zhu, X. An Interpretable Reasoning Network for Multi-Relation Question Answering. In Proceedings of the COLING, Santa Fe, NM, USA, 20–26 August 2018; pp. 2010–2022. [Google Scholar]
- Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge Graph Embedding by Translating on Hyperplanes. In Proceedings of the AAAI, Québec City, QC, Canada, 27–31 July 2014. [Google Scholar]
- Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings of the AAAI, Austin, TX, USA, 14–18 November 2015. [Google Scholar]
- Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge Graph Embedding via Dynamic Mapping Matrix. In Proceedings of the ACL, Beijing, China, 26–31 July 2015. [Google Scholar]
- Balazevic, I.; Allen, C.; Hospedales, T.M. TuckER: Tensor Factorization for Knowledge Graph Completion. arXiv 2019, arXiv:1901.09590. [Google Scholar]
- Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2D Knowledge Graph Embeddings. In Proceedings of the AAAI, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Nguyen, D.Q.; Nguyen, T.; Nguyen, D.Q.; Phung, D.Q. A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network. arXiv 2018, arXiv:1712.02121. [Google Scholar]
- Nguyen, D.Q.; Vu, T.; Nguyen, T.; Nguyen, D.Q.; Phung, D.Q. A Capsule Network-based Embedding Model for Knowledge Graph Completion and Search Personalization. arXiv 2019, arXiv:1808.04122. [Google Scholar]
- Vashishth, S.; Sanyal, S.; Nitin, V.; Talukdar, P. Composition-based Multi-Relational Graph Convolutional Networks. arXiv 2020, arXiv:1911.03082. [Google Scholar]
- Li, R.; Cheng, X. DIVINE: A Generative Adversarial Imitation Learning Framework for Knowledge Graph Reasoning. In Proceedings of the EMNLP/IJCNLP (1), Hong Kong, China, 3–7 November 2019; pp. 2642–2651. [Google Scholar]
- Wang, H.; Li, S.; Pan, R.; Mao, M. Incorporating Graph Attention Mechanism into Knowledge Graph Reasoning Based on Deep Reinforcement Learning. In Proceedings of the EMNLP/IJCNLP (1), Hong Kong, China, 3–7 November 2019; pp. 2623–2631. [Google Scholar]
- García-Durán, A.; Dumancic, S.; Niepert, M. Learning Sequence Encoders for Temporal Knowledge Graph Completion. In Proceedings of the EMNLP, Brussels, Belgium, 31 October–4 November 2018. [Google Scholar]
- Messner, J.; Abboud, R.; Ceylan, İ.İ. Temporal Knowledge Graph Completion Using Box Embeddings. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, the Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022, Virtual Event, 22 February–1 March 2022; pp. 7779–7787. [Google Scholar]
- Lacroix, T.; Obozinski, G.; Usunier, N. Tensor Decompositions for temporal knowledge base completion. arXiv 2020, arXiv:2004.04926. [Google Scholar]
- Boschee, E.; Lautenschlager, J.; O’Brien, S.; Shellman, S.; Starz, J.; Ward, M. Icews Coded Event Data; Harvard Dataverse: Cambridge, MA, USA, 2015; Volume 12. [Google Scholar]
- Leblay, J.; Chekol, M. Deriving Validity Time in Knowledge Graph. In Proceedings of the Web Conference 2018, Lyon, France, 23–27 April 2018. [Google Scholar]
- Mahdisoltani, F.; Biega, J.; Suchanek, F.M. YAGO3: A Knowledge Base from Multilingual Wikipedias. In Proceedings of the CIDR, Asilomar, CA, USA, 4–7 January 2015. [Google Scholar]
- Miller, G.A. WordNet: A Lexical Database for English. Commun. ACM 1995, 38, 39–41. [Google Scholar] [CrossRef]
- Dasgupta, S.S.; Ray, S.N.; Talukdar, P.P. HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding. In Proceedings of the EMNLP, Brussels, Belgium, 31 October–4 November 2018; pp. 2001–2011. [Google Scholar]
- Jin, W.; Qu, M.; Jin, X.; Ren, X. Recurrent Event Network: Autoregressive Structure Inference over Temporal Knowledge Graphs. In Proceedings of the EMNLP, Online, 16–20 November 2020. [Google Scholar]
- Goel, R.; Kazemi, S.M.; Brubaker, M.A.; Poupart, P. Diachronic Embedding for Temporal Knowledge Graph Completion. arXiv 2020, arXiv:1907.03143. [Google Scholar] [CrossRef]
- Ding, Z.; Han, Z.; Ma, Y.; Tresp, V. Temporal Knowledge Graph Forecasting with Neural ODE. arXiv 2021, arXiv:2101.05151. [Google Scholar]
- Xu, D.; Ruan, C.; Körpeoglu, E.; Kumar, S.; Achan, K. Inductive Representation Learning on Temporal Graphs. arXiv 2020, arXiv:2002.07962. [Google Scholar]
Dataset | ICEWS14 | ICEWS18 | WIKI | YAGO |
---|---|---|---|---|
entity | 7128 | 23,033 | 12,554 | 10,623 |
relation | 230 | 256 | 24 | 10 |
timestamp | 365 | 304 | 232 | 189 |
training | 63,685 | 373,018 | 539,286 | 161,540 |
validation | 13,823 | 45,995 | 67,538 | 19,523 |
test | 13,222 | 49,545 | 63,110 | 20,026 |
ICEWS14 | ICEWS18 | |||||||
---|---|---|---|---|---|---|---|---|
MRR | Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | |
TTransE | 13.43 | 3.11 | 17.32 | 34.55 | 8.31 | 1.92 | 8.56 | 21.89 |
TA-DistMult | 26.47 | 17.09 | 30.22 | 45.41 | 16.75 | 8.61 | 18.41 | 33.59 |
DE-SimplE | 32.67 | 24.43 | 35.69 | 49.11 | 19.30 | 11.53 | 21.86 | 34.80 |
TNTComplEx | 32.12 | 23.35 | 36.03 | 49.13 | 27.54 | 19.52 | 30.80 | 42.869 |
CyGNet | 32.73 | 23.69 | 36.31 | 50.67 | 24.93 | 15.90 | 28.28 | 42.61 |
RE-NET | 38.28 | 28.68 | 41.34 | 54.52 | 28.81 | 19.05 | 32.44 | 47.51 |
xERTE | 40.79 | 32.70 | 45.67 | 57.30 | 29.31 | 21.03 | 33.51 | 46.488 |
TANGO-Tucker | – | – | – | – | 28.68 | 19.35 | 32.17 | 47.04 |
TANGO-DistMult | – | – | – | – | 26.75 | 17.92 | 30.08 | 44.09 |
TITer | 41.73 | 32.74 | 46.46 | 58.44 | 29.98 | 22.05 | 33.46 | |
IMR-TransE | 44.76 | 35.64 | 49.49 | 62.30 | 32.45 | 22.97 | 36.05 | 49.36 |
IMR-RotatE | 44.21 | 35.13 | 48.72 | 62.04 | 32.67 | 23.53 | 36.76 | 50.67 |
IMR-ComplEx | 44.03 | 34.55 | 49.21 | 62.11 | 33.33 | 24.07 | 37.65 | 51.51 |
WIKI | YAGO | |||||||
---|---|---|---|---|---|---|---|---|
MRR | Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | |
TTransE | 29.27 | 21.67 | 34.43 | 42.39 | 31.19 | 18.12 | 40.91 | 51.21 |
TA-DistMult | 44.53 | 39.92 | 48.73 | 51.71 | 54.92 | 48.15 | 59.61 | 66.71 |
DE-SimplE | 45.43 | 42.6 | 47.71 | 49.55 | 54.91 | 51.64 | 57.30 | 60.17 |
TNTComplEx | 45.03 | 40.04 | 49.31 | 52.03 | 57.98 | 52.92 | 61.33 | 66.69 |
CyGNet | 33.89 | 29.06 | 36.10 | 41.86 | 52.07 | 45.36 | 56.12 | 63.77 |
RE-NET | 49.66 | 46.88 | 51.19 | 53.48 | 58.02 | 53.06 | 61.08 | 66.29 |
xERTE | 71.14 | 68.05 | 76.11 | 79.01 | 84.19 | 80.09 | 88.02 | 89.78 |
TANGO-Tucker | 50.43 | 48.52 | 51.47 | 53.58 | 57.83 | 53.05 | 60.78 | 65.85 |
TANGO-DistMult | 51.15 | 49.66 | 52.16 | 53.35 | 62.70 | 59.18 | 60.31 | 67.90 |
TITer | 75.50 | 72.96 | 77.49 | 79.02 | 87.47 | 84.89 | 89.96 | 90.27 |
IMR-TransE | 80.41 | 76.04 | 84.91 | 85.95 | 90.24 | 87.91 | 92.65 | 92.77 |
IMR-RotatE | 79.43 | 74.36 | 84.59 | 85.79 | 90.34 | 88.10 | 92.69 | 92.78 |
IMR-ComplEx | 80.54 | 76.12 | 84.98 | 85.97 | 90.19 | 87.80 | 92.71 | 92.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Qu, L.; Liang, Z.; Huang, K.; Cui, L.; Gao, Z. IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs. Entropy 2023, 25, 666. https://doi.org/10.3390/e25040666
Du Z, Qu L, Liang Z, Huang K, Cui L, Gao Z. IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs. Entropy. 2023; 25(4):666. https://doi.org/10.3390/e25040666
Chicago/Turabian StyleDu, Zhenyu, Lingzhi Qu, Zongwei Liang, Keju Huang, Lin Cui, and Zhiyang Gao. 2023. "IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs" Entropy 25, no. 4: 666. https://doi.org/10.3390/e25040666
APA StyleDu, Z., Qu, L., Liang, Z., Huang, K., Cui, L., & Gao, Z. (2023). IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs. Entropy, 25(4), 666. https://doi.org/10.3390/e25040666