Airborne Quantum Key Distribution Performance Analysis under Supersonic Boundary Layer
<p>Schematic diagram of airborne QKD downlink.</p> "> Figure 2
<p>Two-dimensional schematic diagram of the ray tracing method.</p> "> Figure 3
<p>The sectional drawing of refractive index field of (<b>a</b>) the airfoil boundary layer and (<b>b</b>) the supersonic boundary layer. The coordinate axis represents the size of the boundary layer, in millimeters. The incident points are respectively (x = 340 mm, y = 0) and (x = 9 mm, y = 0). And the color represents the refractive index distribution.</p> "> Figure 4
<p>(<b>a</b>) The deflection angle of transmitted photons. (<b>b</b>) The drifted offset of the beam, which reaches to the ground station. The speed of airborne is 0.7 Ma.</p> "> Figure 5
<p>(<b>a</b>) The deflection angle of transmitted photons. (<b>b</b>) The drifted offset of the beam, which via the supersonic boundary layer and reaches the ground station.</p> "> Figure 6
<p>(<b>a</b>) The photons distribution probability when the photons via the supersonic BL or not, which are denoted by a red triangle and blue point respectively. (<b>b</b>) The photons distribution probability when the photons via the supersonic BL. The azimuth angle is 10°.</p> "> Figure 7
<p>The receiving photons distribution probability ratio over the azimuth angle, when the photon via the supersonic BL.</p> "> Figure 8
<p>(<b>a</b>) The receiving photons distribution when the azimuth angle is 10° with and without the effect of supersonic BL, which are denoted by a red triangle and blue point respectively. (<b>b</b>) The receiving photons distribution when the azimuth angle is 20° with and without the effect of supersonic BL. The green dotted line indicates the aperture of the receiving telescope.</p> "> Figure 9
<p>The photons distribution probability with different azimuth when the photon via the boundary layer or not. (<b>a</b>–<b>c</b>) show the photons distribution probability of the Gaussian beam without BL. (<b>d</b>–<b>f</b>) show the photons distribution probability of the Gaussian beam that passes through the BL. (<b>a</b>,<b>d</b>) show the situation when the azimuth angle is 10°. (<b>b</b>,<b>e</b>) show the situation that the azimuth angle is 30°. (<b>c</b>,<b>f</b>) show the situation the azimuth angle is 50°.</p> "> Figure 10
<p>The secure key rate over the azimuth angle when the photon via subsonic BL, supersonic BL, or not.</p> ">
Abstract
:1. Introduction
2. Method
2.1. Background
2.2. Photon Scattering under the Boundary Layer
2.3. Transmission Efficiency Analysis
2.4. Secure Key Rate Estimation
3. Evaluation Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arbekov, I.M.; Molotkov, S.N. Secret keys agreement in communication networks with quantum key distribution and trusted nodes. Laser Phys. Lett. 2020, 17, 055202. [Google Scholar] [CrossRef]
- Erven, C.; Heim, B.; Meyer-Scott, E.; Bourgoin, J.P.; Laflamme, R.; Weihs, G.; Jennewein, T. Studying free-space transmission statistics and improving free-space quantum key distribution in the turbulent atmosphere. New J. Phys. 2012, 14, 123018. [Google Scholar] [CrossRef]
- Kaur, E.; Wilde, M.M.; Winter, A. Fundamental limits on key rates in device-independent quantum key distribution. New J. Phys. 2020, 22, 023039. [Google Scholar] [CrossRef]
- Lütkenhaus, N.; Shields, A.J. Focus on Quantum Cryptography: Theory and Practice. New J. Phys. 2009, 11, 045005. [Google Scholar] [CrossRef]
- Stucki, D.; Legré, M.; Buntschu, F.; Clausen, B.; Felber, N.; Gisin, N.; Henzen, L.; Junod, P.; Litzistorf, G.; Monbaron, P.; et al. Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 2011, 13, 123001. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Tang, B.; Li, Z.; Liu, B.; Sun, S. Field demonstration of time-bin reference-frame-independent quantum key distribution via an intracity free-space link. Opt. Lett. 2020, 45, 3022–3025. [Google Scholar] [CrossRef]
- Xue, Y.; Shi, L.; Chen, W.; Yin, Z.; Fan-Yuan, G.-j.; Fu, H.; Lu, Q.; Wei, J. Improving the performance of reference-frame-independent quantum key distribution through a turbulent atmosphere. Phys. Rev. A 2020, 102, 062602. [Google Scholar] [CrossRef]
- Chen, W.; Han, Z.; Zhang, T.; Wen, H.; Yin, Z.; Xu, F.; Wu, Q.; Liu, Y.; Zhang, Y.; Mo, X.; et al. Field Experiment on a “Star Type” Metropolitan Quantum Key Distribution Network. IEEE Photonics Technol. Lett. 2009, 21, 575–577. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Yin, Z.-Q.; He, D.-Y.; Hui, C.; Hao, P.-L.; Fan-Yuan, G.-J.; Wang, C.; Zhang, L.-J.; Kuang, J.; et al. Practical gigahertz quantum key distribution robust against channel disturbance. Opt. Lett. 2018, 43, 2030–2033. [Google Scholar] [CrossRef]
- Wang, X.-B.; Yu, Z.-W.; Hu, X.-L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 2018, 98, 062323. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, W.; Wehner, S. Towards Large-Scale Quantum Networks. In Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication, Dublin, Ireland, 25–27 September 2019; p. 3. [Google Scholar]
- Hughes, R.J.; Nordholt, J.E. Quantum space race heats up. Nat. Photonics 2017, 11, 456–458. [Google Scholar] [CrossRef]
- Hughes, R.J.; Nordholt, J.E.; Derkacs, D.; Peterson, C.G. Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 2002, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Bedington, R.; Arrazola, J.M.; Ling, A. Progress in satellite quantum key distribution. npj Quantum Inf. 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.-K.; Cai, W.-Q.; Handsteiner, J.; Liu, B.; Yin, J.; Zhang, L.; Rauch, D.; Fink, M.; Ren, J.-G.; Liu, W.-Y.; et al. Satellite-Relayed Intercontinental Quantum Network. Phys. Rev. Lett. 2018, 120, 030501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt-Manderbach, T.; Weier, H.; Fürst, M.; Ursin, R.; Tiefenbacher, F.; Scheidl, T.; Perdigues, J.; Sodnik, Z.; Kurtsiefer, C.; Rarity, J.G.; et al. Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km. Phys. Rev. Lett. 2007, 98, 010504. [Google Scholar] [CrossRef] [PubMed]
- Vallone, G.; Bacco, D.; Dequal, D.; Gaiarin, S.; Luceri, V.; Bianco, G.; Villoresi, P. Experimental Satellite Quantum Communications. Phys. Rev. Lett. 2015, 115, 040502. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.-L.; Chen, T.-Y.; Yu, Z.-W.; Liu, H.; You, L.-X.; Zhou, Y.-H.; Chen, S.-J.; Mao, Y.; Huang, M.-Q.; Zhang, W.-J.; et al. Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. Phys. Rev. Lett. 2016, 117, 190501. [Google Scholar] [CrossRef] [Green Version]
- Calderaro, L.; Agnesi, C.; Dequal, D.; Vedovato, F.; Schiavon, M.; Santamato, A.; Luceri, V.; Bianco, G.; Vallone, G.; Villoresi, P. Towards quantum communication from global navigation satellite system. Quantum Sci. Technol. 2018, 4, 015012. [Google Scholar] [CrossRef] [Green Version]
- Nauerth, S.; Moll, F.; Rau, M.; Fuchs, C.; Horwath, J.; Frick, S.; Weinfurter, H. Air-to-ground quantum communication. Nat. Photonics 2013, 7, 382–386. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Tian, X.-H.; Gu, C.; Fan, P.; Ni, X.; Yang, R.; Zhang, J.-N.; Hu, M.; Guo, J.; Cao, X.; et al. Optical-Relayed Entanglement Distribution Using Drones as Mobile Nodes. Phys. Rev. Lett. 2021, 126, 020503. [Google Scholar] [CrossRef]
- Pugh, C.J.; Kaiser, S.; Bourgoin, J.-P.; Jin, J.; Sultana, N.; Agne, S.; Anisimova, E.; Makarov, V.; Choi, E.; Higgins, B.L.; et al. Airborne demonstration of a quantum key distribution receiver payload. Quantum Sci. Technol. 2017, 2, 024009. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Tian, X.-H.; Gu, C.; Fan, P.; Ni, X.; Yang, R.; Zhang, J.-N.; Hu, M.; Guo, J.; Cao, X.; et al. Drone-based entanglement distribution towards mobile quantum networks. Natl. Sci. Rev. 2020, 7, 921–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCesare, A.; Snyder, R.; Carvalho, D.; Miller, W.; Alsing, P.; Ahn, D. Toward mobile free-space optical QKD: Characterization of a polarization-based receiver. In Proceedings of the SPIE Defense + Commercial Sensing, Virtual, 27 April–9 May 2020; Volume 11391. [Google Scholar]
- Zhang, M.; Zhang, L.; Wu, J.; Yang, S.; Wan, X.; He, Z.; Jia, J.; Citrin, D.S.; Wang, J. Detection and compensation of basis deviation in satellite-to-ground quantum communications. Opt. Express 2014, 22, 9871–9886. [Google Scholar] [CrossRef]
- Moll, F.; Botter, T.; Marquardt, C.; Pusey, D.; Shrestha, A.; Reeves, A.; Jaksch, K.; Gunthner, K.; Bayraktar, O.; Mueller-Hirschkorn, C.; et al. Stratospheric QKD: Feasibility analysis and free-space optics system concept. In Proceedings of the SPIE Security + Defence, Strasbourg, France, 9–12 September 2019; Volume 11167. [Google Scholar]
- Xue, Y.; Chen, W.; Wang, S.; Yin, Z.; Shi, L.; Han, Z. Airborne quantum key distribution: A review. Chin Opt Lett. 2021, 19, 122702. [Google Scholar] [CrossRef]
- Gordeyev, S.; Rennie, M.R.; Cain, A.B.; Hayden, T. Aero-optical measurements of high-Mach supersonic boundary layers. In Proceedings of the 46th AIAA Plasmadynamics and Lasers Conference, Dallas, TX, USA, 22–26 June 2015; p. 3246. [Google Scholar]
- Yu, H.-C.; Tang, B.-Y.; Chen, H.; Xue, Y.; Tang, J.; Yu, W.-R.; Liu, B.; Shi, L. Airborne quantum key distribution with boundary layer effects. EPJ Quantum Technol. 2021, 8, 26. [Google Scholar] [CrossRef]
- Guo, G.; Liu, H.; Zhang, B. Aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space. Appl. Opt. 2016, 55, 4741–4751. [Google Scholar] [CrossRef] [PubMed]
- Neumann, S.P.; Joshi, S.K.; Fink, M.; Scheidl, T.; Blach, R.; Scharlemann, C.; Abouagaga, S.; Bambery, D.; Kerstel, E.; Barthelemy, M.; et al. Q3Sat: Quantum communications uplink to a 3U CubeSat—Feasibility & design. EPJ Quantum Technol. 2018, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Ross, T.S. Limitations and applicability of the Maréchal approximation. Appl. Opt. 2009, 48, 1812–1818. [Google Scholar] [CrossRef]
- Ma, X.; Qi, B.; Zhao, Y.; Lo, H.-K. Practical decoy state for quantum key distribution. Phys. Rev. A 2005, 72, 012326. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Yi, S.; Zhu, Y.; He, L. Experimental investigation on aero-optics of supersonic turbulent boundary layers. Appl. Opt. 2017, 56, 7604–7610. [Google Scholar] [CrossRef] [PubMed]
Symbol | Parameter | Value | |
---|---|---|---|
Aircraft | v | Flight speed | 0.7 Ma |
h | Relative flying height (h = hT − hR) | 10 km | |
ρh | Air density | 0.41271 kg/m3 | |
d | The shortest projection distance to the ground of the aircraft and the ground station | 10 km | |
Source | hT | Altitude of the aircraft | 11 km |
DT | Transmitter telescope diameter | 0.1 m | |
δT | Transmitter pointing precision | 2.4 μrad | |
λ | Transmitter wavelength | 1550 mm | |
ω0 | Waist radius | 0.0316 m | |
Ground station | hR | Altitude of the ground station | 1 km |
DR | Receiver telescope diameter | 0.3 m | |
ed | Detection error rate | 1% | |
pd | Dark count | 2 × 10−6 | |
ηd | Detector efficiency | 15% | |
ηs | Receiving optical module efficiency | 60% | |
Protocols | μ | Expected photon number of signal states | 0.1 |
ν | Expected photon number of decoy states | 0.05 | |
N | System repetition rate | 100 MHz | |
Ps | Sent Probability of signal states | 50% | |
Pd | Sent Probability of decoy states | 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Tang, B.; Ding, H.; Xue, Y.; Tang, J.; Wang, X.; Liu, B.; Shi, L. Airborne Quantum Key Distribution Performance Analysis under Supersonic Boundary Layer. Entropy 2023, 25, 472. https://doi.org/10.3390/e25030472
Yu H, Tang B, Ding H, Xue Y, Tang J, Wang X, Liu B, Shi L. Airborne Quantum Key Distribution Performance Analysis under Supersonic Boundary Layer. Entropy. 2023; 25(3):472. https://doi.org/10.3390/e25030472
Chicago/Turabian StyleYu, Huicun, Bangying Tang, Haolin Ding, Yang Xue, Jie Tang, Xingyu Wang, Bo Liu, and Lei Shi. 2023. "Airborne Quantum Key Distribution Performance Analysis under Supersonic Boundary Layer" Entropy 25, no. 3: 472. https://doi.org/10.3390/e25030472
APA StyleYu, H., Tang, B., Ding, H., Xue, Y., Tang, J., Wang, X., Liu, B., & Shi, L. (2023). Airborne Quantum Key Distribution Performance Analysis under Supersonic Boundary Layer. Entropy, 25(3), 472. https://doi.org/10.3390/e25030472