Efficient Video Watermarking Algorithm Based on Convolutional Neural Networks with Entropy-Based Information Mapper
<p>Watermarking diagram.</p> "> Figure 2
<p>Block diagram of the ISGAN model—reprinted from [<a href="#B40-entropy-25-00284" class="html-bibr">40</a>].</p> "> Figure 3
<p>Block diagram of the proposed model.</p> "> Figure 4
<p>Block diagram of the encoder.</p> "> Figure 5
<p>Block diagram of the decoder.</p> "> Figure 6
<p>Encoder in symbolic notation.</p> "> Figure 7
<p>Decoder in symbolic notation.</p> "> Figure 8
<p>Discriminator in symbolic notation.</p> "> Figure 9
<p>Diagram of the information mapper.</p> "> Figure 10
<p>Conversion of a binary signature to a mosaic divided into squares.</p> "> Figure 11
<p>The idea behind the algorithm is that it assigns pixel values to individual bit symbols.</p> "> Figure 12
<p>Diagram of the information demapper.</p> "> Figure 13
<p>Three different examples of watermark signatures after decoding with various artifacts visible, and the results of averaging the pixel values during the decoding process to remove artifacts and error-free decoding.</p> "> Figure 14
<p>Examples of generated watermarks for all tested values of <span class="html-italic">N</span> and <span class="html-italic">n</span>.</p> "> Figure 15
<p>Failure to embed 32,768 bits. The following images show the cover, watermark, watermarked image, decoded watermark, visualization of decoded signature, and the picture of the difference between cover and watermarked images (Residual).</p> "> Figure 16
<p>Failure to embed 64 bits when encoding one symbol using 4 bits.</p> "> Figure 17
<p>Comparison of SSIM metric values.</p> "> Figure 18
<p>Comparison of PSNR metric values.</p> "> Figure 19
<p>Comparison of BER metric values.</p> "> Figure 20
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 4, <span class="html-italic">n</span> = 1.</p> "> Figure 21
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 16, <span class="html-italic">n</span> = 1.</p> "> Figure 22
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 64, <span class="html-italic">n</span> = 1.</p> "> Figure 23
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 256, <span class="html-italic">n</span> = 1.</p> "> Figure 24
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 1024, <span class="html-italic">n</span> = 1.</p> "> Figure 25
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 4096, <span class="html-italic">n</span> = 1.</p> "> Figure 26
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 16384, <span class="html-italic">n</span> = 1.</p> "> Figure 27
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 32, <span class="html-italic">n</span> = 2.</p> "> Figure 28
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 128, <span class="html-italic">n</span> = 2.</p> "> Figure 29
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 512, <span class="html-italic">n</span> = 2.</p> "> Figure 30
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 2048, <span class="html-italic">n</span> = 2.</p> "> Figure 31
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 8192, <span class="html-italic">n</span> = 2.</p> "> Figure 32
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 192, <span class="html-italic">n</span> = 3.</p> "> Figure 33
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 768, <span class="html-italic">n</span> = 3.</p> "> Figure 34
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 3072, <span class="html-italic">n</span> = 3.</p> "> Figure 35
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 12,288, <span class="html-italic">n</span> = 3.</p> "> Figure 36
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 256, <span class="html-italic">n</span> = 4.</p> "> Figure 37
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 1024, <span class="html-italic">n</span> = 4.</p> "> Figure 38
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 4096, <span class="html-italic">n</span> = 4.</p> "> Figure 39
<p>Visualization of the algorithm for the binary signature variant <span class="html-italic">N</span> = 16,384, <span class="html-italic">n</span> = 4.</p> ">
Abstract
:1. Introduction
- Transparency, i.e., the invisibility of the watermark to the human visual system (HVS) [7]. The video viewer usually does not have access to the original video (without the watermark), so seeing minor modifications is impossible, but despite this, the watermark may not significantly affect the quality of the video, which is verified in a measurable way based on metrics [8].
2. Related Works
3. Proposed Method
3.1. General Architecture of the Model
- The processing of high-definition video frames is dedicated mainly to television broadcast applications; therefore, conversion to the appropriate color space should be performed in accordance with the International Communication Union (ITU) guidelines, which are described in the BT.709-6 standard. For this reason, there are two variants of the transformation matrix defined below. For standard definition:
- 2.
- For high definition (according to the BT.709-6 standard):
- For standard definition:
- 2.
- For high definition (according to the BT.709-6 standard):
- For the encoder:
- 2.
- For the decoder:
- 3.
- For the discriminator:
3.2. Mapper and Demapper of Information
3.3. Algorithm Training Procedure
4. Results and Discussion
4.1. Metrics
- Luminance comparison function: x and y represent the two images being compared, while μ represents the average value. C1 is the stability constant when the denominator is 0, calculated as C1 = 0.012:
- Contrast comparison function: σ is the standard deviation for a given image, while C2 is a constant value, equal in calculations to C2 = 0.032:
- Structure comparison function: C3 is a constant whose value in the calculations was assumed to be equal to C3 = C2/2:
- SSIM—structural similarity index: coefficients α, β, and γ are weighting factors for each defined function; α = β = γ = 1 was assumed in the calculations:
- MSE—mean square error: m and n are the row and column numbers in the image:
- PSNR—Peak Signal-to-Noise Ratio: in the calculations, the value R2 = 2 was assumed:
- BER—bit error rate: the ratio of the number of bits decoded incorrectly biterr to all decoded bits bitall:
4.2. Results
4.3. Comparison with Other Algorithms
4.4. Discussion
4.5. Visualization of the Operation of the Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Danaher, B.; Smith, M.D.; Telang, R. Piracy and Copyright Enforcement Mechanisms. Innov. Policy Econ. 2021, 14, 26–61. [Google Scholar] [CrossRef]
- Borja, K.; Dieringer, S.; Daw, J. The effect of music streaming services on music piracy among college students. Comput. Hum. Behav. 2015, 45, 69–76. [Google Scholar] [CrossRef]
- Greenberg, M. The Economics of Video Piracy. PIT J. 2015, 6. [Google Scholar]
- Thomas, T.; Emmanuel, S.; Subramanyam, A.V.; Kankanhalli, M.S. Joint Watermarking Scheme for Multiparty Multilevel DRM Architecture. IEEE Trans. Inf. Secur. 2009, 4, 758–767. [Google Scholar] [CrossRef]
- Macq, B.; Dittmann, J.; Delp, E.J. Benchmarking of image watermarking algorithms for digital rights management. Proc. IEEE 2004, 92, 971–984. [Google Scholar] [CrossRef]
- Wolf, P.; Steinebach, M.; Diener, K. Complementing DRM with digital watermarking: Mark, search, retrieve. Online Inf. Rev. 2007, 31, 10–21. [Google Scholar] [CrossRef]
- Stein, T.; Kaiser, D.; Fahrenfort, J.J.; van Gaal, S. The human visual system differentially represents subjectively and objectively invisible stimuli. PLoS Biol. 2021, 19, e3001241. [Google Scholar] [CrossRef]
- Nguyen, P.B.; Luong, M.; Beghdadi, A. Statistical Analysis of Image Quality Metrics for Watermark Transparency Assessment. In Advances in Multimedia Information Processing—PCM 2010; Lecture Notes in Computer Science; Qiu, G., Lam, K.M., Kiya, H., Xue, X.Y., Kuo, C.C.J., Lew, M.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6297, pp. 685–696. [Google Scholar] [CrossRef]
- Nasir, M.N.; Hisham, S.I.; Razak, M.F.A. An Improved Mapping Pattern for Digital Watermarking using Hilbert-Peano Pattern. In Proceedings of the 6th International Conference on Software Engineering & Computer Systems, Pahang, Malaysia, 25–27 September 2019. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Lu, H.; Liu, F. Image fragile watermarking algorithm based on deneighbourhood mapping. IET Image Process. 2022, 16, 2652–2664. [Google Scholar] [CrossRef]
- Thuneibat, S.; Al Issa, H.; Ijjeh, A. A Simplified Model of Bit Error Rate Calculation. Comput. Inf. Sci. 2016, 9, 41–46. [Google Scholar] [CrossRef]
- Lancini, R.; Mapelli, F.; Tubaro, S. A robust video watermarking technique in the spatial domain. In Proceedings of the International Symposium on VIPromCom Video/Image Processing and Multimedia Communications, Zadar, Croatia, 16–19 June 2002; pp. 251–256. [Google Scholar] [CrossRef]
- Abraham, J.; Paul, V. An imperceptible spatial domain color image watermarking scheme. J. King Saud Univ.—Comput. Inf. Sci. 2019, 31, 125–133. [Google Scholar] [CrossRef]
- Chen, G.; Kang, C.; Wang, D.S.; Zhao, X.; Huang, Y. A Robust Video Watermarking Algorithm Based on Spatial Domain. In Proceedings of the 2018 7th International Conference on Energy and Environmental Protection (ICEEP 2018), Shenzhen, China, 14–15 July 2018; pp. 412–419. [Google Scholar] [CrossRef]
- Carli, M.; Mazzeo, R.; Neri, A. Video watermarking in 3D DCT domain. In Proceedings of the 2006 14th European Signal Processing Conference, Florence, Italy, 4–8 September 2006; pp. 1–5. [Google Scholar]
- Campisi, P.; Neri, A. Video watermarking in the 3D-DWT domain using perceptual masking. In Proceedings of the IEEE International Conference on Image Processing 2005, Genova, Italy, 14 September 2005; pp. 1–997. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Jung, H.S.; Lee, S.U. 3D DFT-based video watermarking using perceptual models. In Proceedings of the 2003 46th Midwest Symposium on Circuits and Systems, Cairo, Egypt, 27–30 December 2003; pp. 1579–1582. [Google Scholar] [CrossRef]
- Kulkarni, T.S.; Dewan, J.H. Digital video watermarking using Hybrid wavelet transform with Cosine, Haar, Kekre, Walsh, Slant and Sine transforms. In Proceedings of the 2016 International Conference on Computing Communication Control and automation (ICCUBEA), Pune, India, 12–13 August 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Panyavaraporn, J.; Horkaew, P. DWT/DCT-based Invisible Digital Watermarking Scheme for Video Stream. In Proceedings of the 2018 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 31 January–3 February 2018; pp. 154–157. [Google Scholar] [CrossRef]
- Ding, H.; Tao, R.; Sun, J.; Liu, J.; Zhang, F.; Jiang, X.; Li, J. A Compressed-Domain Robust Video Watermarking Against Recompression Attack. IEEE Access 2021, 9, 35324–35337. [Google Scholar] [CrossRef]
- Lee, M.J.; Im, D.H.; Lee, H.Y.; Kim, K.S.; Lee, H.K. Real-time video watermarking system on the compressed domain for high-definition video contents: Practical issues. Digit. Signal Process. 2012, 22, 190–198. [Google Scholar] [CrossRef]
- El'arbi, M.; Amar, C.B.; Nicolas, H. Video Watermarking Based on Neural Networks. In Proceedings of the 2006 IEEE International Conference on Multimedia and Expo, Toronto, Canada, 9–12 July 2006; pp. 1577–1580. [Google Scholar] [CrossRef] [Green Version]
- Bistron, M.; Piotrowski, Z. Artificial Intelligence Applications in Military Systems and Their Influence on Sense of Security of Citizens. Electronics 2021, 10, 871. [Google Scholar] [CrossRef]
- Orponen, P. Computational complexity of neural networks: A survey. Nord. J. Comput. 1994, 1, 94–110. [Google Scholar]
- Li, Y.; Wang, H.; Barni, M. A survey of deep neural network watermarking techniques. Neurocomputing 2021, 461, 171–193. [Google Scholar] [CrossRef]
- Courville, A.; Goodfellow, I.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Hu, X.; Lian, X.; Chen, L.; Zheng, Y. Robust blind watermark algorithm of color image based on neural network. In Proceedings of the 2008 International Conference on Neural Networks and Signal Processing, Nanjing, China, 7–11 June 2008; pp. 430–433. [Google Scholar] [CrossRef]
- Grossi, R.; Vitter, J.S.; Xu, B. Wavelet Trees: From Theory to Practice. In Proceedings of the 2011 First International Conference on Data Compression, Communications and Processing, Palinuro, Italy, 21–24 June 2011; pp. 210–221. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J. A novel blind watermarking scheme based on neural networks for image. In Proceedings of the 2010 IEEE International Conference on Information Theory and Information Security, Bejing, China, 17–19 December 2010; pp. 548–552. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J.; Deng, W.; He, D. Arnold Transformation Algorithm and Anti-Arnold Transformation Algorithm. In Proceedings of the 2009 First International Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009; pp. 1164–1167. [Google Scholar] [CrossRef]
- Ye, J.; Deng, X.; Zhang, A.; Yu, H. A Novel Image Encryption Algorithm Based on Improved Arnold Transform and Chaotic Pulse-Coupled Neural Network. Entropy 2022, 24, 1103. [Google Scholar] [CrossRef] [PubMed]
- Sidorenko, V.; Li, W.; Günlü, O.; Kramer, G. Skew Convolutional Codes. Entropy 2020, 22, 1364. [Google Scholar] [CrossRef] [PubMed]
- Baluja, S. Hiding Images in Plain Sight: Deep Steganography. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 24 January 2018. [Google Scholar]
- Zhang, K.A.; Xu, L.; Cuesta-Infante, A.; Veeramachaneni, K. Robust Invisible Video Watermarking with Attention. arXiv 2019, arXiv:1909.01285. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Hao, K.; Feng, G.; Zhang, X. Robust image watermarking based on generative adversarial network. China Commun. 2020, 17, 131–140. [Google Scholar] [CrossRef]
- Lee, J.-E.; Kang, J.-W.; Kim, W.-S.; Kim, J.-K.; Seo, Y.-H.; Kim, D.-W. Digital Image Watermarking Processor Based on Deep Learning. Electronics 2021, 10, 1183. [Google Scholar] [CrossRef]
- Bai, R.; Li, L.; Zhang, S.; Lu, J.; Chang, C.-C. SSDeN: Framework for Screen-Shooting Resilient Watermarking via Deep Networks in the Frequency Domain. Appl. Sci. 2022, 12, 9780. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Generative Models. In Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Zhang, R.; Dong, S.; Liu, J. Invisible Steganography via Generative Adversarial Networks. arXiv 2018, arXiv:1807.08571. [Google Scholar] [CrossRef]
- Skarbek, W. Symbolic Tensor Neural Networks for Digital Media: From Tensor Processing via BNF Graph Rules to CREAMS Applications. Fundam. Inform. 2019, 168, 89–184. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Y.; Yang, C.; Li, W. Information Entropy Used in Digital Watermarking. In Proceedings of the 2012 Symposium on Photonics and Optoelectronics, Shanghai, China, 21–23 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Watson, A.B.; Borthwick, R.; Taylor, M. Image quality and entropy masking. In Proceedings of the SPIE Conference on Human Vision and Electronic Imaging, San Jose, CA, USA, 3 June 1997; pp. 2–12. [Google Scholar] [CrossRef]
- Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
Number of Binary Signature Bits N | Number of Bits to Encode One Symbol n | Value of Weighting Factor λb | Value of Weighting Factor λd | Number of Epochs |
---|---|---|---|---|
4 | 1 | 0.8 | 0.7 | 25 |
16 | 1 | 0.8 | 0.7 | 30 |
64 | 1 | 0.8 | 0.7 | 25 |
256 | 1 | 0.8 | 0.7 | 25 |
1024 | 1 | 0.8 | 0.7 | 25 |
4096 | 1 | 0.8 | 0.7 | 25 |
16,384 | 1 | 0.8 | 0.7 | 11 * |
32 | 2 | 0.95 | 0.6 | 25 |
128 | 2 | 0.9 | 0.6 | 30 |
512 | 2 | 0.75 | 0.6 | 30 |
2048 | 2 | 0.75 | 0.6 | 30 |
8192 | 2 | 0.65 | 0.6 | 30 |
192 | 3 | 0.96 | 0.6 | 14 * |
768 | 3 | 0.93 | 0.6 | 30 |
3072 | 3 | 0.85 | 0.6 | 30 |
12,288 | 3 | 0.8 | 0.6 | 30 |
256 | 4 | 0.97 | 0.6 | 30 |
1024 | 4 | 0.93 | 0.6 | 30 |
4096 | 4 | 0.8 | 0.6 | 30 |
16,384 | 4 | 0.8 | 0.6 | 30 |
Training Variant N_n | Discriminator Loss | Encoder Loss | Mapper Loss | Decoder Visual Loss | Decoder Loss | Generator Loss | Loss | BER |
---|---|---|---|---|---|---|---|---|
4_1 | 0.023 | 0.095 | 0.007 | 0.027 | 0.032 | 0.011 | 0.130 | 0.008 |
16_1 | 0.015 | 0.065 | 0.001 | 0.000 | 0.001 | 0.011 | 0.076 | 0.002 |
64_1 | 0.028 | 0.071 | 0.001 | −0.002 | −0.001 | 0.012 | 0.080 | 0.001 |
256_1 | 0.021 | 0.073 | 0.001 | 0.003 | 0.004 | 0.011 | 0.087 | 0.000 |
1024_1 | 0.011 | 0.078 | 0.001 | 0.007 | 0.008 | 0.013 | 0.096 | 0.000 |
4096_1 | 0.013 | 0.075 | 0.003 | 0.013 | 0.015 | 0.010 | 0.096 | 0.002 |
16384_1 | 0,030 | 0.091 | 0.003 | 0.009 | 0.012 | 0.010 | 0.110 | 0.002 |
32_2 | 0.019 | 0.074 | 0.004 | −0.001 | 0.002 | 0.010 | 0.086 | 0.004 |
128_2 | 0.010 | 0.077 | 0.001 | −0.004 | −0.004 | 0.027 | 0.098 | 0.001 |
512_2 | 0,018 | 0.070 | 0.001 | 0.002 | 0.003 | 0.013 | 0.083 | 0.001 |
2048_2 | 0.017 | 0.079 | 0.005 | 0.018 | 0.021 | 0.011 | 0.105 | 0.005 |
8192_2 | 0.021 | 0.068 | 0.006 | 0.014 | 0.018 | 0.011 | 0.090 | 0.006 |
192_3 | 0.024 | 0.091 | 0.026 | 0.005 | 0.020 | 0.013 | 0.123 | 0.026 |
768_3 | 0.022 | 0.093 | 0.015 | 0.014 | 0.024 | 0.020 | 0.133 | 0.015 |
3072_3 | 0.015 | 0.082 | 0.044 | 0.043 | 0.070 | 0.010 | 0.151 | 0.044 |
12288_3 | 0.014 | 0.067 | 0.024 | 0.013 | 0.027 | 0.010 | 0.098 | 0.024 |
256_4 | 0.012 | 0.102 | 0.085 | 0.013 | 0.064 | 0.026 | 0.187 | 0.085 |
1024_4 | 0.019 | 0.075 | 0.080 | 0.018 | 0.066 | 0.010 | 0.145 | 0.080 |
4096_4 | 0.023 | 0.059 | 0.076 | 0.017 | 0.062 | 0.010 | 0.118 | 0.076 |
16384_4 | 0.015 | 0.072 | 0.113 | 0.018 | 0.086 | 0.011 | 0.150 | 0.113 |
Training Variant N_n | SSIM | PSNR | BER |
---|---|---|---|
4_1 | 0.930 | 30.256 | 0.000 |
16_1 | 0.944 | 31.223 | 0.001 |
64_1 | 0.947 | 31.738 | 0.002 |
256_1 | 0.948 | 33.962 | 0.000 |
1024_1 | 0.935 | 32.047 | 0.000 |
4096_1 | 0.937 | 32.040 | 0.000 |
16384_1 | 0.931 | 31.983 | 0.000 |
32_2 | 0.933 | 30.550 | 0.002 |
128_2 | 0.943 | 33.409 | 0.001 |
512_2 | 0.949 | 32.958 | 0.000 |
2048_2 | 0.931 | 31.498 | 0.000 |
8192_2 | 0.942 | 32.554 | 0.001 |
192_3 | 0.935 | 32.694 | 0.005 |
768_3 | 0.934 | 32.512 | 0.003 |
3072_3 | 0.945 | 31.856 | 0.005 |
12288_3 | 0.948 | 32.136 | 0.032 |
256_4 | 0.942 | 31.882 | 0.033 |
1024_4 | 0.937 | 31.338 | 0.041 |
4096_4 | 0.942 | 32.294 | 0.083 |
16384_4 | 0.937 | 30.328 | 0.168 |
RivaGAN 32 Bits | Our Model 32 Bits | RivaGAN 64 Bits | Our Model 64 Bits | Our Model 512 Bits | |
---|---|---|---|---|---|
SSIM | 0.960 | 0.933 | 0.950 | 0.947 | 0.949 |
accuracy | 0.992 | 0.998 | 0.983 | 0.998 | 1.000 |
Number of Bits | Training Time |
---|---|
4 | 9 h 5 min 50 s |
16 | 9 h 14 min 34 s |
64 | 9 h 39 min 14 s |
256 | 11 h 20 min 7 s |
1024 | 22 h 23 min 7 s |
4096 | 44 h 12 min 34 s |
16,384 | 54 h 38 min 41 s for 10 epochs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bistroń, M.; Piotrowski, Z. Efficient Video Watermarking Algorithm Based on Convolutional Neural Networks with Entropy-Based Information Mapper. Entropy 2023, 25, 284. https://doi.org/10.3390/e25020284
Bistroń M, Piotrowski Z. Efficient Video Watermarking Algorithm Based on Convolutional Neural Networks with Entropy-Based Information Mapper. Entropy. 2023; 25(2):284. https://doi.org/10.3390/e25020284
Chicago/Turabian StyleBistroń, Marta, and Zbigniew Piotrowski. 2023. "Efficient Video Watermarking Algorithm Based on Convolutional Neural Networks with Entropy-Based Information Mapper" Entropy 25, no. 2: 284. https://doi.org/10.3390/e25020284
APA StyleBistroń, M., & Piotrowski, Z. (2023). Efficient Video Watermarking Algorithm Based on Convolutional Neural Networks with Entropy-Based Information Mapper. Entropy, 25(2), 284. https://doi.org/10.3390/e25020284