Jarzyski’s Equality and Crooks’ Fluctuation Theorem for General Markov Chains with Application to Decision-Making Systems
<p>Relation between a forward process, its corresponding backward process, and the definition of work. We consider a trajectory <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">x</mi> <mo>=</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </semantics></math> and three energy functions <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> </mrow> </semantics></math>. The upper (bottom) line of arrows represents the forward (backward) process. A work step <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> is typically defined as the change in energy due to the external change of the energy function, whereas a heat step <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> is defined as the change in energy due to internal state changes. (<b>a</b>) Typical relation between the forward and backward processes in physics [<a href="#B8-entropy-24-01731" class="html-bibr">8</a>]. Work in the forward process would be <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi>F</mi> </msub> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>, whereas the backward work under the same definition would be <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi>B</mi> </msub> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>. Instead, backward work is usually defined as <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi>B</mi> </msub> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>E</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> to fulfil the physical time reversal symmetry <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi>F</mi> </msub> <mo>=</mo> <mo>−</mo> <msub> <mi>W</mi> <mi>B</mi> </msub> </mrow> </semantics></math>. (<b>b</b>) Another typical protocol in physics [<a href="#B15-entropy-24-01731" class="html-bibr">15</a>,<a href="#B17-entropy-24-01731" class="html-bibr">17</a>]. In this case, the asymmetry is the other way round, where <math display="inline"><semantics> <msub> <mi>E</mi> <mn>2</mn> </msub> </semantics></math> does not influence the forward process. (<b>c</b>) Symmetric protocol where both forward and backward work follow the same definition with <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi>F</mi> </msub> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi>B</mi> </msub> <mo>=</mo> <msub> <mi>E</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <msub> <mi>W</mi> <mi>F</mi> </msub> </mrow> </semantics></math>. This is the protocol we propose in <a href="#sec4-entropy-24-01731" class="html-sec">Section 4</a>.</p> "> Figure 2
<p>Simple example showing how the asymmetry between <math display="inline"><semantics> <mi mathvariant="bold-italic">X</mi> </semantics></math> and its time reversal <math display="inline"><semantics> <mi mathvariant="bold-italic">Y</mi> </semantics></math> manifests in thermodynamics. We consider <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">x</mi> <mo>=</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </semantics></math> a trajectory, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>≠</mo> <msub> <mi>E</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> the energy functions of <math display="inline"><semantics> <mi mathvariant="bold-italic">X</mi> </semantics></math> (upper line of arrows), and by Remark 1, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </semantics></math> the energy functions of <math display="inline"><semantics> <mi mathvariant="bold-italic">Y</mi> </semantics></math> (bottom line of arrows). We have <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi mathvariant="bold-italic">X</mi> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold-italic">x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi mathvariant="bold-italic">Y</mi> </msub> <mrow> <mo>(</mo> <msup> <mi mathvariant="bold-italic">x</mi> <mi>R</mi> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>. As a result, <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi mathvariant="bold-italic">Y</mi> </msub> <mrow> <mo>(</mo> <msup> <mi mathvariant="bold-italic">x</mi> <mi>R</mi> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <msub> <mi>W</mi> <mi mathvariant="bold-italic">X</mi> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold-italic">x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>E</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>, in accordance with (16) and Corollary 1. Thus, thermodynamic work is <span class="html-italic">not</span> odd under time reversal in general.</p> ">
Abstract
:1. Introduction
2. Thermodynamics for Markov Chains
2.1. Definitions of Energy, Heat, and Work
2.2. Main Result: Fluctuation Theorems for Markov Chains
3. Jarzynski’s Equality for Markov Chains
4. Crooks’ Fluctuation Theorem for Markov Chains
5. Discussion: Application to Decision-Making
- Jarzynski’s equality in decision-making:
- Example application: Jarzynski’s theorem:
- Crooks’ theorem in decision-making:
- Example application: Crooks’ theorem:
- Detailed balance:
- Continuous-time Markov chains:
- Continuous state space:
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
Appendix A
References
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarzynski, C. Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys. 2011, 2, 329–351. [Google Scholar] [CrossRef] [Green Version]
- Jarzynski, C. Nonequilibrium work relations: Foundations and applications. Eur. Phys. J. B 2008, 64, 331–340. [Google Scholar] [CrossRef]
- Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Phys. Rev. E 1997, 56, 5018. [Google Scholar] [CrossRef] [Green Version]
- Jarzynski, C. Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 2004, P09005. [Google Scholar] [CrossRef]
- Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997, 78, 2690. [Google Scholar] [CrossRef] [Green Version]
- Crooks, G.E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 1999, 60, 2721. [Google Scholar] [CrossRef] [Green Version]
- Crooks, G.E. Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 1998, 90, 1481–1487. [Google Scholar] [CrossRef]
- Collin, D.; Ritort, F.; Jarzynski, C.; Smith, S.B.; Tinoco, I.; Bustamante, C. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 2005, 437, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Liphardt, J.; Dumont, S.; Smith, S.B.; Tinoco, I.; Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 2002, 296, 1832–1835. [Google Scholar] [CrossRef]
- Saira, O.P.; Yoon, Y.; Tanttu, T.; Möttönen, M.; Averin, D.; Pekola, J.P. Test of the Jarzynski and Crooks fluctuation relations in an electronic system. Phys. Rev. Lett. 2012, 109, 180601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douarche, F.; Ciliberto, S.; Petrosyan, A.; Rabbiosi, I. An experimental test of the Jarzynski equality in a mechanical experiment. Europhys. Lett. 2005, 70, 593. [Google Scholar] [CrossRef] [Green Version]
- An, S.; Zhang, J.N.; Um, M.; Lv, D.; Lu, Y.; Zhang, J.; Yin, Z.Q.; Quan, H.; Kim, K. Experimental test of the quantum Jarzynski equality with a trapped-ion system. Nat. Phys. 2015, 11, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Lu, Y.; An, S.; Zhang, X.; Zhang, J.N.; Gong, Z.; Quan, H.; Jarzynski, C.; Kim, K. Verification of the quantum nonequilibrium work relation in the presence of decoherence. New J. Phys. 2018, 20, 013008. [Google Scholar] [CrossRef]
- Crooks, G.E. Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 2000, 61, 2361. [Google Scholar] [CrossRef] [Green Version]
- Buscemi, F.; Scarani, V. Fluctuation theorems from Bayesian retrodiction. Phys. Rev. E 2021, 103, 052111. [Google Scholar] [CrossRef]
- Crooks, G.E. Excursions in Statistical Dynamics; University of California, Berkeley: Berkeley, CA, USA, 1999. [Google Scholar]
- Goldt, S.; Seifert, U. Stochastic thermodynamics of learning. Phys. Rev. Lett. 2017, 118, 010601. [Google Scholar] [CrossRef] [Green Version]
- Perunov, N.; Marsland, R.A.; England, J.L. Statistical physics of adaptation. Phys. Rev. X 2016, 6, 021036. [Google Scholar] [CrossRef] [Green Version]
- England, J.L. Dissipative adaptation in driven self-assembly. Nat. Nanotechnol. 2015, 10, 919–923. [Google Scholar] [CrossRef]
- Still, S.; Sivak, D.A.; Bell, A.J.; Crooks, G.E. Thermodynamics of prediction. Phys. Rev. Lett. 2012, 109, 120604. [Google Scholar] [CrossRef]
- Ortega, P.A.; Braun, D.A. Thermodynamics as a theory of decision-making with information-processing costs. Proc. R. Soc. A Math. Phys. Eng. Sci. 2013, 469, 20120683. [Google Scholar] [CrossRef] [Green Version]
- Parr, T.; Da Costa, L.; Friston, K. Markov blankets, information geometry and stochastic thermodynamics. Philos. Trans. R. Soc. 2020, 378, 20190159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Costa, L.; Friston, K.; Heins, C.; Pavliotis, G.A. Bayesian mechanics for stationary processes. Proc. R. Soc. A 2021, 477, 20210518. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, S.; Braun, D.A. The two kinds of free energy and the Bayesian revolution. PLoS Comput. Biol. 2020, 16, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.B.; Crutchfield, J.P.; Gu, M. Thermodynamic machine learning through maximum work production. New J. Phys. 2022, 24, 083040. [Google Scholar] [CrossRef]
- Wolpert, D.H. Information theory—The bridge connecting bounded rational game theory and statistical physics. In Complex Engineered Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 262–290. [Google Scholar]
- Tishby, N.; Polani, D. Information theory of decisions and actions. In Perception-Action Cycle; Springer: Berlin/Heidelberg, Germany, 2011; pp. 601–636. [Google Scholar]
- Ortega, P.A.; Braun, D.A. Information, utility and bounded rationality. In Proceedings of the International Conference on Artificial General Intelligence, San Francisco, CA, USA, 15–18 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 269–274. [Google Scholar]
- Genewein, T.; Leibfried, F.; Grau-Moya, J.; Braun, D.A. Bounded rationality, abstraction, and hierarchical decision-making: An information-theoretic optimality principle. Front. Robot. AI 2015, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.H. The free energy requirements of biological organisms; implications for evolution. Entropy 2016, 18, 138. [Google Scholar] [CrossRef]
- Grau-Moya, J.; Krüger, M.; Braun, D.A. Non-equilibrium relations for bounded rational decision-making in changing environments. Entropy 2018, 20, 1. [Google Scholar] [CrossRef] [Green Version]
- Levin, D.A.; Peres, Y. Markov Chains and Mixing Times; American Mathematical Soc.: Providence, RI, USA, 2017; Volume 107. [Google Scholar]
- Yang, Y.J.; Qian, H. Unified formalism for entropy production and fluctuation relations. Phys. Rev. E 2020, 101, 022129. [Google Scholar] [CrossRef] [Green Version]
- Cohen, E.; Mauzerall, D. A note on the Jarzynski equality. J. Stat. Mech. Theory Exp. 2004, 2004, P07006. [Google Scholar] [CrossRef]
- Ge, H.; Qian, M. Generalized Jarzynski’s equality in inhomogeneous Markov chains. J. Math. Phys. 2007, 48, 053302. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Joe, H. Majorization and divergence. J. Math. Anal. Appl. 1990, 148, 287–305. [Google Scholar] [CrossRef] [Green Version]
- Gottwald, S.; Braun, D.A. Bounded rational decision-making from elementary computations that reduce uncertainty. Entropy 2019, 21, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hack, P.; Lindig-Leon, C.; Gottwald, S.; Braun, D.A. Thermodynamic fluctuation theorems govern human sensorimotor learning. arXiv 2022, arXiv:2209.00941. [Google Scholar]
- Turnham, E.J.; Braun, D.A.; Wolpert, D.M. Facilitation of learning induced by both random and gradual visuomotor task variation. J. Neurophysiol. 2012, 107, 1111–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crooks, G.E. On thermodynamic and microscopic reversibility. J. Stat. Mech. Theory Exp. 2011, 2011, P07008. [Google Scholar] [CrossRef]
- Tolman, R.C. The principle of microscopic reversibility. Proc. Natl. Acad. Sci. USA 1925, 11, 436. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.J.; Qian, H.; Qian, M. Stochastic theory of nonequilibrium steady states and its applications. Part I. Phys. Rep. 2012, 510, 1–86. [Google Scholar] [CrossRef]
- Tang, Y.; Yuan, R.; Chen, J.; Ao, P. Work relations connecting nonequilibrium steady states without detailed balance. Phys. Rev. E 2015, 91, 042108. [Google Scholar] [CrossRef] [Green Version]
- Battle, C.; Broedersz, C.P.; Fakhri, N.; Geyer, V.F.; Howard, J.; Schmidt, C.F.; MacKintosh, F.C. Broken detailed balance at mesoscopic scales in active biological systems. Science 2016, 352, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Chib, S.; Greenberg, E. Understanding the Metropolis-Hastings algorithm. Am. Stat. 1995, 49, 327–335. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hack, P.; Gottwald, S.; Braun, D.A. Jarzyski’s Equality and Crooks’ Fluctuation Theorem for General Markov Chains with Application to Decision-Making Systems. Entropy 2022, 24, 1731. https://doi.org/10.3390/e24121731
Hack P, Gottwald S, Braun DA. Jarzyski’s Equality and Crooks’ Fluctuation Theorem for General Markov Chains with Application to Decision-Making Systems. Entropy. 2022; 24(12):1731. https://doi.org/10.3390/e24121731
Chicago/Turabian StyleHack, Pedro, Sebastian Gottwald, and Daniel A. Braun. 2022. "Jarzyski’s Equality and Crooks’ Fluctuation Theorem for General Markov Chains with Application to Decision-Making Systems" Entropy 24, no. 12: 1731. https://doi.org/10.3390/e24121731
APA StyleHack, P., Gottwald, S., & Braun, D. A. (2022). Jarzyski’s Equality and Crooks’ Fluctuation Theorem for General Markov Chains with Application to Decision-Making Systems. Entropy, 24(12), 1731. https://doi.org/10.3390/e24121731