Universal Single-Mode Lasing in Fully Chaotic Billiard Lasers
<p>Fully chaotic billiards. From left to right: cardioid, D-shaped, and stadium.</p> "> Figure 2
<p>Gain and resonances in a cardioid billiard. Circles (∘) denote the resonances with odd parity while crosses (×) those with even parity.</p> "> Figure 3
<p>Spatial intensity patterns of eighteen low-loss resonances labeled in <a href="#entropy-24-01648-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>Dynamics of a cardioid billiard laser numerically simulated by the SB model. Time evolution of the total intensity inside the billiard with the pumping power <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mo>∞</mo> </msub> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> </mrow> </semantics></math> (<b>a</b>) 0.001, (<b>d</b>) 0.005, and (<b>g</b>) 0.010. (<b>b</b>,<b>e</b>,<b>h</b>) The spectrum obtained from the stationary oscillation regime with the corresponding pumping powers. (<b>c</b>,<b>f</b>,<b>i</b>) The intensity patterns of the final lasing states with the corresponding pumping powers.</p> "> Figure 5
<p>The spatial intensity pattern obtained by the superposition of the two resonances denoted by ➇ and ➈ in <a href="#entropy-24-01648-f003" class="html-fig">Figure 3</a>, which have even and odd parity, respectively. The superposition of different-parity wave functions yields an asymmetric intensity pattern (see Ref. [<a href="#B9-entropy-24-01648" class="html-bibr">9</a>] for a detailed explanation).</p> "> Figure 6
<p>Dynamics of an elliptic billiard laser numerically simulated by the SB model. Time evolution of the total intensity inside the billiard with the pumping power <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mo>∞</mo> </msub> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> </mrow> </semantics></math> (<b>a</b>) 0.001, (<b>d</b>) 0.005, and (<b>g</b>) 0.010. (<b>b</b>,<b>e</b>,<b>h</b>) The spectrum obtained from the stationary oscillation regime with the corresponding pumping powers. (<b>c</b>,<b>f</b>,<b>i</b>) The intensity patterns of the final lasing states with the corresponding pumping powers.</p> "> Figure 7
<p>Numerically computed light intensity distributions inside the stadium optical billiard with refractive index 3.3 (because of the <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mn>2</mn> <mi>v</mi> </mrow> </msub> </semantics></math> symmetry of the stadium shape, only a quarter domain is shown). (<b>a</b>) Conditionally invariant measure obtained by ray simulation incorporating Fresnel’s law with 25 million initial conditions (See Ref. [<a href="#B48-entropy-24-01648" class="html-bibr">48</a>] for a detailed explanation). (<b>b</b>) Average of 30 low-loss resonance wave functions.</p> "> Figure 8
<p>The histogram of the overlap <span class="html-italic">C</span> for the cardioid billiard (red solid line) and the elliptic billiard (blue dotted line) calculated by using 30 and 19 low-loss resonance wave functions, respectively.</p> "> Figure 9
<p>Power spectra obtained from the lasing states for the cardioid billiard laser with the fixed pumping power <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mo>∞</mo> </msub> <mo>=</mo> <mn>9.1</mn> <mo> </mo> <msub> <mi>W</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </mrow> </semantics></math> and the values of the longitudinal relaxation rate <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>γ</mi> <mo>˜</mo> </mover> <mo>=</mo> </mrow> </semantics></math> (<b>a</b>) 0.009 (<b>b</b>) 0.008 (<b>c</b>) 0.007.</p> "> Figure 10
<p>Phase diagrams of lasing states with various longitudinal relaxation rates <math display="inline"><semantics> <msub> <mover accent="true"> <mi>γ</mi> <mo>˜</mo> </mover> <mo>∥</mo> </msub> </semantics></math> and pumping powers <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mo>∞</mo> </msub> <mo>/</mo> <msub> <mi>W</mi> <mi>th</mi> </msub> </mrow> </semantics></math> for (<b>a</b>) the cardioid billiard laser, (<b>b</b>) the D-shaped billiard laser, and (<b>c</b>) the stadium billiard laser. The white and black circles correspond to single-mode and multi-mode lasing states, respectively.</p> "> Figure 11
<p>Optical microscope images of the fabricated lasers of (<b>a</b>) the cardioid billiard (<span class="html-italic">R</span> = 35 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), (<b>b</b>) the D-shaped billiard (<span class="html-italic">R</span> = 40 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m, <span class="html-italic">d</span> = 20 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), (<b>c</b>) the stadium billiard (<span class="html-italic">R</span> = 50 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), and (<b>d</b>) the circular billiard, i.e., microdisk (<span class="html-italic">R</span> = 40 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m).</p> "> Figure 12
<p>Spectra observed in the experiments of (<b>a</b>) the cardioid laser with the injection current 160 mA, (<b>b</b>) the D-shaped laser with the injection current 200 mA, (<b>c</b>) the stadium laser with the injection current 200 mA, and (<b>d</b>) the microdisk laser with the injection current 120 mA. The thresholds of these lasers are around 30 mA, 45 mA, 40 mA, and 20 mA, respectively.</p> "> Figure 13
<p>A spectrum obtained by using the spectrum analyzer in high-resolution mode with wavelength interval of 0.002 nm in the experiment of the semiconductor D-shaped billiard laser with the injection current 200 mA.</p> "> Figure 14
<p>Injection current dependence of the number of the spectral peaks of fully chaotic and integrable billiard lasers.</p> "> Figure 15
<p>Spectra of the semiconductor stadium billiard laser with the injection current 80 mA at various temperatures between <math display="inline"><semantics> <mrow> <mn>20.1</mn> <msup> <mspace width="3.33333pt"/> <mo>∘</mo> </msup> <mi mathvariant="normal">C</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>21.0</mn> <msup> <mspace width="3.33333pt"/> <mo>∘</mo> </msup> <mi mathvariant="normal">C</mi> </mrow> </semantics></math>.</p> "> Figure 16
<p>The resonance distribution for the D-shaped billiard.</p> "> Figure 17
<p>Power spectra of the lasing states with different gain centers <math display="inline"><semantics> <msub> <mo>Δ</mo> <mn>0</mn> </msub> </semantics></math> (<math display="inline"><semantics> <mrow> <mover accent="true"> <msub> <mi>γ</mi> <mo>∥</mo> </msub> <mo>˜</mo> </mover> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mn>0.008</mn> </mrow> </semantics></math>). (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mo>Δ</mo> <mn>0</mn> </msub> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mn>0.181</mn> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mo>Δ</mo> <mn>0</mn> </msub> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mn>0.206</mn> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mo>Δ</mo> <mn>0</mn> </msub> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mn>0.220</mn> </mrow> </semantics></math>.</p> "> Figure 18
<p>The gain center dependence of the transition threshold <math display="inline"><semantics> <msub> <mi>W</mi> <mi>t</mi> </msub> </semantics></math> from multi-mode to single-mode lasing.</p> ">
Abstract
:1. Introduction
2. The Schrödinger–Bloch Model and the Resonances of the Cardioid Billiard Laser
3. Dynamical Simulation of Large Fully Chaotic and Integrable Billiard Lasers
4. Spatial Overlap between Two Modes and Phase Diagram
5. Experiments of Semiconductor Billiard Lasers
6. Effect of Temperature Fluctuation
7. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harayama, T.; Shinohara, S. Two-dimensional microcavity lasers. Laser Photonics Rev. 2011, 5, 247–271. [Google Scholar] [CrossRef]
- Cao, H.; Wiersig, J. Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 2015, 87, 61–111. [Google Scholar] [CrossRef] [Green Version]
- Nöckel, J.U.; Stone, A.D. Ray and wave chaos in asymmetric resonant optical cavities. Nature 1997, 385, 45–47. [Google Scholar] [CrossRef] [Green Version]
- Gmachl, C.; Capasso, F.; Narimanov, E.; Nöckel, J.U.; Stone, A.D.; Faist, J.; Sivco, D.L.; Cho, A.Y. High-power directional emission from microlasers with chaotic resonators. Science 1998, 280, 1556–1564. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, T.; Biellak, S.A.; Sun, Y.; Siegman, A.E. Beam propagation behavior in a quasi-stadium laser diode. Opt. Express 1998, 2, 21–28. [Google Scholar] [CrossRef]
- Harayama, T.; Davis, P.; Ikeda, K.S. Nonlinear Whispering Gallery Modes. Phys. Rev. Lett. 1999, 82, 3803–3806. [Google Scholar] [CrossRef]
- Lee, S.B.; Lee, J.H.; Chang, J.S.; Moon, H.J.; Kim, S.W.; An, K. Observation of Scarred Modes in Asymmetrically Deformed Microcylinder Lasers. Phys. Rev. Lett. 2002, 88, 033903. [Google Scholar] [CrossRef] [Green Version]
- Harayama, T.; Davis, P.; Ikeda, K.S. Stable Oscillations of a Spatially Chaotic Wave Function in a Microstadium Laser. Phys. Rev. Lett. 2003, 90, 063901. [Google Scholar] [CrossRef] [Green Version]
- Harayama, T.; Fukushima, T.; Sunada, S.; Ikeda, K.S. Asymmetric Stationary Lasing Patterns in 2D Symmetric Microcavities. Phys. Rev. Lett. 2003, 91, 073903. [Google Scholar] [CrossRef]
- Lee, S.Y.; Rim, S.; Ryu, J.W.; Kwon, T.Y.; Choi, M.; Kim, C.M. Quasiscarred Resonances in a Spiral-Shaped Microcavity. Phys. Rev. Lett. 2004, 93, 164102. [Google Scholar] [CrossRef]
- Schwefel, H.G.L.; Rex, N.B.; Tureci, H.E.; Chang, R.K.; Stone, A.D.; Ben-Messaoud, T.; Zyss, J. Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers. J. Opt. Soc. Am. B 2004, 21, 923–934. [Google Scholar] [CrossRef] [Green Version]
- Podolskiy, V.A.; Narimanov, E.; Fang, W.; Cao, H. Chaotic microlasers based on dynamical localization. Proc. Natl. Acad. Sci. USA 2004, 101, 10498–10500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, T.; Harayama, T. Stadium and quasi-stadium laser diodes. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 1039–1051. [Google Scholar] [CrossRef]
- Harayama, T.; Sunada, S.; Ikeda, K.S. Theory of two-dimensional microcavity lasers. Phys. Rev. A 2005, 72, 013803. [Google Scholar] [CrossRef] [Green Version]
- Lebental, M.; Lauret, J.S.; Hierle, R.; Zyss, J. Highly directional stadium-shaped polymer microlasers. Appl. Phys. Lett. 2006, 88, 031108. [Google Scholar] [CrossRef]
- Türeci, H.E.; Stone, A.D.; Collier, B. Self-consistent multimode lasing theory for complex or random lasing media. Phys. Rev. A 2006, 74, 043822. [Google Scholar] [CrossRef] [Green Version]
- Wiersig, J. Formation of Long-Lived, Scarlike Modes near Avoided Resonance Crossings in Optical Microcavities. Phys. Rev. Lett. 2006, 97, 253901. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Hentschel, M.; Fukushima, T.; Harayama, T. Classical Phase Space Revealed by Coherent Light. Phys. Rev. Lett. 2007, 98, 033902. [Google Scholar] [CrossRef] [Green Version]
- Dubertrand, R.; Bogomolny, E.; Djellali, N.; Lebental, M.; Schmit, C. Circular dielectric cavity and its deformations. Phys. Rev. A 2008, 77, 013804. [Google Scholar] [CrossRef] [Green Version]
- Bogomolny, E.; Dubertrand, R.; Schmit, C. Trace formula for dielectric cavities: General properties. Phys. Rev. E 2008, 78, 056202. [Google Scholar] [CrossRef] [PubMed]
- Wiersig, J.; Hentschel, M. Combining Directional Light Output and Ultralow Loss in Deformed Microdisks. Phys. Rev. Lett. 2008, 100, 033901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinohara, S.; Hentschel, M.; Wiersig, J.; Sasaki, T.; Harayama, T. Ray-wave correspondence in limaçon-shaped semiconductor microcavities. Phys. Rev. A 2009, 80, 031801. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Wang, Q.J.; Diehl, L.; Hentschel, M.; Wiersig, J.; Yu, N.; Pflügl, C.; Capasso, F.; Belkin, M.A.; Edamura, T.; et al. Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity. Appl. Phys. Lett. 2009, 94, 251101. [Google Scholar] [CrossRef]
- Song, Q.; Fang, W.; Liu, B.; Ho, S.T.; Solomon, G.S.; Cao, H. Chaotic microcavity laser with high quality factor and unidirectional output. Phys. Rev. A 2009, 80, 041807. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.H.; Kim, M.W.; Kim, C.M. Lasing characteristics of a Limaçon-shaped microcavity laser. Appl. Phys. Lett. 2009, 95, 141107. [Google Scholar] [CrossRef]
- Shinohara, S.; Harayama, T.; Fukushima, T.; Hentschel, M.; Sasaki, T.; Narimanov, E.E. Chaos-Assisted Directional Light Emission from Microcavity Lasers. Phys. Rev. Lett. 2010, 104, 163902. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Ge, L.; Redding, B.; Cao, H. Channeling Chaotic Rays into Waveguides for Efficient Collection of Microcavity Emission. Phys. Rev. Lett. 2012, 108, 243902. [Google Scholar] [CrossRef] [Green Version]
- Sunada, S.; Fukushima, T.; Shinohara, S.; Harayama, T.; Adachi, M. Stable single-wavelength emission from fully chaotic microcavity lasers. Phys. Rev. A 2013, 88, 013802. [Google Scholar] [CrossRef]
- Sarma, R.; Ge, L.; Wiersig, J.; Cao, H. Rotating Optical Microcavities with Broken Chiral Symmetry. Phys. Rev. Lett. 2015, 114, 053903. [Google Scholar] [CrossRef] [Green Version]
- Redding, B.; Cerjan, A.; Huang, X.; Lee, M.L.; Stone, A.D.; Choma, M.A.; Cao, H. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging. Proc. Natl. Acad. Sci. USA 2015, 112, 1304–1309. [Google Scholar] [CrossRef]
- Harayama, T.; Shinohara, S. Ray-wave correspondence in chaotic dielectric billiards. Phys. Rev. E 2015, 92, 042916. [Google Scholar] [CrossRef] [PubMed]
- Sunada, S.; Shinohara, S.; Fukushima, T.; Harayama, T. Signature of Wave Chaos in Spectral Characteristics of Microcavity Lasers. Phys. Rev. Lett. 2016, 116, 203903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harayama, T.; Sunada, S.; Shinohara, S. Universal single-mode lasing in fully chaotic two-dimensional microcavity lasers under continuous-wave operation with large pumping power. Photon. Res. 2017, 5, B39–B46. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, Y.; Shinohara, S.; Sunada, S.; Harayama, T. Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity. Photon. Res. 2017, 5, B47–B53. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.T.; Wang, H.; Dong, C.H.; Jing, H.; Liu, R.S.; Chen, X.; Ge, L.; Gong, Q.; Xiao, Y.F. Experimental Demonstration of Spontaneous Chirality in a Nonlinear Microresonator. Phys. Rev. Lett. 2017, 118, 033901. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Yi, C.H.; Kim, M.W.; Ryu, J.; Oh, K.R.; Kim, C.M. Unidirectional emission of high-Q scarred modes in a rounded D-shape microcavity. Opt. Express 2018, 26, 34864–34871. [Google Scholar] [CrossRef]
- Bittner, S.; Guazzotti, S.; Zeng, Y.; Hu, X.; Yılmaz, H.; Kim, K.; Oh, S.S.; Wang, Q.J.; Hess, O.; Cao, H. Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities. Science 2018, 361, 1225–1231. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Lee, S.Y.; Ryu, J.W.; Kim, I.; Han, J.H.; Tae, H.S.; Choi, M.; Min, B. Designing whispering gallery modes via transformation optics. Nat. Photonics 2016, 10, 647–652. [Google Scholar] [CrossRef]
- Kim, K.; Bittner, S.; Zeng, Y.; Guazzotti, S.; Hess, O.; Wang, Q.J.; Cao, H. Massively parallel ultrafast random bit generation with a chip-scale laser. Science 2021, 371, 948–952. [Google Scholar] [CrossRef]
- Stone, A.D. Chaotic billiard lasers. Nature 2010, 465, 696–697. [Google Scholar] [CrossRef]
- Casati, G.; Valz-Gris, F.; Guarnieri, I. On the connection between quantization of nonintegrable systems and statistical theory of spectra. Lett. Al Nuovo Cimento 1980, 28, 279–282. [Google Scholar] [CrossRef]
- Bohigas, O.; Giannoni, M.J.; Schmit, C. Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws. Phys. Rev. Lett. 1984, 52, 1–4. [Google Scholar] [CrossRef]
- Haake, F. Quantum Signatures of Chaos; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Nakamura, K.; Harayama, T. Quantum Chaos and Quantum Dots; Oxford University Press on Demand: Oxford, UK, 2004; Volume 3. [Google Scholar]
- Bunimovich, L.A. On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 1979, 65, 295–312. [Google Scholar] [CrossRef]
- Wojtkowski, M. Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 1986, 105, 391–414. [Google Scholar] [CrossRef]
- Wiersig, J. Boundary element method for resonances in dielectric microcavities. J. Opt. A Pure Appl. Opt. 2002, 5, 53–60. [Google Scholar] [CrossRef]
- Ketzmerick, R.; Clauß, K.; Fritzsch, F.; Bäcker, A. Chaotic Resonance Modes in Dielectric Cavities: Product of Conditionally Invariant Measure and Universal Fluctuations. Phys. Rev. Lett. 2022, 129, 193901. [Google Scholar] [CrossRef]
- Schomerus, H.; Tworzydło, J. Quantum-to-Classical Crossover of Quasibound States in Open Quantum Systems. Phys. Rev. Lett. 2004, 93, 154102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonnenmacher, S.; Zworski, M. Fractal Weyl laws in discrete models of chaotic scattering. J. Phys. A Math. Gen. 2005, 38, 10683–10702. [Google Scholar] [CrossRef]
- Keating, J.P.; Novaes, M.; Prado, S.D.; Sieber, M. Semiclassical Structure of Chaotic Resonance Eigenfunctions. Phys. Rev. Lett. 2006, 97, 150406. [Google Scholar] [CrossRef] [Green Version]
- Shepelyansky, D.L. Fractal Weyl law for quantum fractal eigenstates. Phys. Rev. E 2008, 77, 015202. [Google Scholar] [CrossRef]
- Novaes, M. Resonances in open quantum maps. J. Phys. A Math. Theor. 2013, 46, 143001. [Google Scholar] [CrossRef] [Green Version]
- Altmann, E.G. Emission from dielectric cavities in terms of invariant sets of the chaotic ray dynamics. Phys. Rev. A 2009, 79, 013830. [Google Scholar] [CrossRef] [Green Version]
- Cerjan, A.; Bittner, S.; Constantin, M.; Guy, M.; Zeng, Y.; Wang, Q.J.; Cao, H.; Stone, A.D. Multimode lasing in wave-chaotic semiconductor microlasers. Phys. Rev. A 2019, 100, 063814. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, M.; Sakakibara, D.; Makino, K.; Morishita, Y.; Matsumura, K.; Kawashima, Y.; Yoshikawa, M.; Tonosaki, M.; Kanno, K.; Uchida, A.; et al. Universal Single-Mode Lasing in Fully Chaotic Billiard Lasers. Entropy 2022, 24, 1648. https://doi.org/10.3390/e24111648
You M, Sakakibara D, Makino K, Morishita Y, Matsumura K, Kawashima Y, Yoshikawa M, Tonosaki M, Kanno K, Uchida A, et al. Universal Single-Mode Lasing in Fully Chaotic Billiard Lasers. Entropy. 2022; 24(11):1648. https://doi.org/10.3390/e24111648
Chicago/Turabian StyleYou, Mengyu, Daisuke Sakakibara, Kota Makino, Yonosuke Morishita, Kazutoshi Matsumura, Yuta Kawashima, Manao Yoshikawa, Mahiro Tonosaki, Kazutaka Kanno, Atsushi Uchida, and et al. 2022. "Universal Single-Mode Lasing in Fully Chaotic Billiard Lasers" Entropy 24, no. 11: 1648. https://doi.org/10.3390/e24111648
APA StyleYou, M., Sakakibara, D., Makino, K., Morishita, Y., Matsumura, K., Kawashima, Y., Yoshikawa, M., Tonosaki, M., Kanno, K., Uchida, A., Sunada, S., Shinohara, S., & Harayama, T. (2022). Universal Single-Mode Lasing in Fully Chaotic Billiard Lasers. Entropy, 24(11), 1648. https://doi.org/10.3390/e24111648