A Fast and Efficient Ensemble Transfer Entropy and Applications in Neural Signals
<p>Generating the surrogate data. (<b>a</b>) <math display="inline"><semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>x</mi> </mstyle> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> <mo> </mo> <mstyle mathvariant="bold" mathsize="normal"> <mi>x</mi> </mstyle> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mstyle mathvariant="bold" mathsize="normal"> <mi>x</mi> </mstyle> <mrow> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> are the source signals of independent repetition trials. Each trial is separated into two segments, these segments are shuffled in the ensemble members to ensure each segment is not in the same position as before, and then the surrogate data <math display="inline"><semantics> <mrow> <msup> <mstyle mathvariant="bold" mathsize="normal"> <mi>x</mi> </mstyle> <mo>′</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> <mo> </mo> <msup> <mstyle mathvariant="bold" mathsize="normal"> <mi>x</mi> </mstyle> <mo>′</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> <mo> </mo> <mo>⋯</mo> <mo>,</mo> <msup> <mstyle mathvariant="bold" mathsize="normal"> <mi>x</mi> </mstyle> <mo>′</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> in (<b>b</b>) are generated.</p> "> Figure 2
<p>The novel <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> measures the interaction strength robustly. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> values fluctuated around 0 when <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>X</mi> <mo>→</mo> <mi>Y</mi> </mrow> </msup> </mrow> </semantics></math> was 0 and increased monotonically with <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>X</mi> <mo>→</mo> <mi>Y</mi> </mrow> </msup> </mrow> </semantics></math> from 0 to 70. The solid lines and shaded areas represent the mean and the variance of the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> values, respectively; (<b>b</b>) The densities of the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> values for varied <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>X</mi> <mo>→</mo> <mi>Y</mi> </mrow> </msup> </mrow> </semantics></math>(SNR = 20 dB) were computed. The distributions had some overlap, but the overlap areas were minimal.</p> "> Figure 3
<p>The densities of the <span class="html-italic">t</span>-test values and the false positive rate at different significance <span class="html-italic">p</span> levels. (<b>a</b>) The densities of the <span class="html-italic">t</span>-test values with <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>X</mi> <mo>→</mo> <mi>Y</mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, SNR = 50, 30, 20, 10, 0, −10 dB were broadly similar and normally distributed; (<b>b</b>) The false positive rate increased with the significance level-<span class="html-italic">p</span> from 0.002 to 0.02. It fluctuated around 0.01 when <span class="html-italic">p</span> was 0.002 and increased to 0.05 when <span class="html-italic">p</span> was 0.02. Noise had no impact on the proportion of false positive.</p> "> Figure 4
<p>The sensitivity and the CDT values of the novel <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> with varied significance <span class="html-italic">p</span> levels. (<b>a</b>–<b>d</b>) The sensitivity values of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> were plotted against the weight factor <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>X</mi> <mo>→</mo> <mi>Y</mi> </mrow> </msup> </mrow> </semantics></math> for different SNRs with the significance <span class="html-italic">p</span> level = 0.002, 0.005, 0.01, 0.02. The sensitivity values improved with <span class="html-italic">p</span> from 0.002 to 0.02. Moderate noise had a limited effect on the sensitivity. However, the sensitivity values were reduced for low SNR; (<b>e</b>) The CDT values (sensitivity = 0.8) were plotted against the significance <span class="html-italic">p</span> levels with varied SNRs. Moderate noises and <span class="html-italic">p</span> values had a limited effect on the CDT values, and low SNR increased them.</p> "> Figure 5
<p>The sensitivity and the CDT values of the traditional <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> when the significance <math display="inline"><semantics> <mi>α</mi> </semantics></math> level was 0.05 and 0.01, respectively. (<b>a</b>,<b>b</b>) The sensitivity values in the traditional method were increased with <math display="inline"><semantics> <mi>α</mi> </semantics></math> from 0.01 to 0.05. Moderate noises had a limited effect on sensitivity, but the sensitivity values dramatically reduced when SNR was −10 dB; (<b>c</b>) The false positive rate in the traditional <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> fluctuated around 0.01 when the significance <math display="inline"><semantics> <mi>α</mi> </semantics></math> level was 0.01 and increased to 0.05 or higher when <math display="inline"><semantics> <mi>α</mi> </semantics></math> was 0.05; (<b>d</b>,<b>e</b>) The CDT values of the novel <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> were compared with those of the traditional method for varied SNRs. For SNR = 50, 30, 20, 10, 0 dB, the differences in the CDT values for the two methods were tiny. The differences increased when SNR was −10 dB.</p> "> Figure 6
<p>The performance of the novel <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> with varied window lengths and number of trials. (<b>a</b>) We calculated the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> values for varied window lengths (100, 300, 500) and number of trials (50, 100, 150, 200) (top: SNR = 20 dB; bottom: SNR = 0 dB). In the upper (or bottom) right-hand corner is a detailed drawing. The <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> values clustered around 0 for <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>X</mi> <mo>→</mo> <mi>Y</mi> </mrow> </msup> </mrow> </semantics></math> = 0 and increased monotonically for <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>X</mi> <mo>→</mo> <mi>Y</mi> </mrow> </msup> </mrow> </semantics></math> from 20 to 60, regardless of the SNR values. The variance of the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> values was reduced with the increase in the sample size. The solid lines and shaded areas represent the mean and the variance of the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> values, which were calculated 500 times by drawing a certain number of pairs from 1000 signal pairs; (<b>b</b>) The sensitivity of the novel <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> was calculated. The solid lines are the sensitivity values of the novel <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> and the dotted lines are those of the traditional method. With the increase in the sample size, the sensitivity improved (top: SNR = 20 dB; bottom: SNR = 0 dB); (<b>c</b>) The CDT values against the sample size with SNR = 50, 20, 0 dB. With the increase in samples, the CDT values reached their stable state in the novel <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math>, which was slower than that of the traditional <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>d</b>) We obtained the false positive rates for different sample sizes with SNR = 50, 20, 0 dB. They fluctuated between 0 and 0.02 for the two methods regardless of the samples and noise. There were several values above 0.02 in the traditional method.</p> "> Figure 7
<p>The ability and the time consumption of the novel <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> in tracking the dynamic interaction process. (<b>a</b>,<b>b</b>) Signal pairs were generated with varying coupling strength. <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>X</mi> <mo>→</mo> <mi>Y</mi> </mrow> </msup> </mrow> </semantics></math> is the on/off boxcar and <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>Y</mi> <mo>→</mo> <mi>X</mi> </mrow> </msup> </mrow> </semantics></math> varies with the absolute value of a sinusoid; (<b>c</b>,<b>d</b>) The <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> values for the novel and the traditional method could track the dynamic process of <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>X</mi> <mo>→</mo> <mi>Y</mi> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mi>ω</mi> <mrow> <mi>Y</mi> <mo>→</mo> <mi>X</mi> </mrow> </msup> </mrow> </semantics></math>. The solid blue and red circles indicated the significant interaction. (<b>e</b>) The time consumptions of the novel and the traditional <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> on GPU and CPU, respectively. The time consumption was reduced by about two or three orders of magnitude compared with that of the traditional method. The pro. and tra. are the abbreviations of proposed and traditional, respectively.</p> "> Figure 8
<p>Diagrammatic sketch of a plus-maze and pigeon with implanted arrays. (<b>a</b>) The pigeons were trained to start from the waiting area, pass through the straight area, and turn left, forward, or right as the goal location light instructed. After a reward was consumed, they returned to the waiting area. S1, S2, S3, S4 are infrared sensors. (<b>b</b>) The microelectrode arrays were implanted at Hp and NCL.</p> "> Figure 9
<p>The <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> values of the Hp and NCL brain regions in pigeons when they were preforming the goal-directed decision-making tasks. (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> <mo> </mo> <mi>values</mi> </mrow> </semantics></math> were calculated using the LFPs recorded from Hp and NCL for pigeon P087 (<b>a</b>) and P089 (<b>b</b>). The blue lines are the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> <mi>E</mi> </mrow> <mrow> <mi>e</mi> <mi>n</mi> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> values from Hp to NCL and the red lines are the opposite. The solid blue circles represented the significant interaction from Hp to NCL when the significance <span class="html-italic">p</span> level was 0.002.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ensemble Transfer Entropy () and Ensemble Local Transfer Entropy ()
2.2. Estimating Ensemble Transfer Entropy
2.3. Parameter Selection
2.4. Surrogate Data and The Improved Statistical Test Method
2.5. Neural Mass Model
3. Results
3.1. Results on NMM
3.1.1. The Novel Measures the Strength and the Direction of Interaction Robustly
3.1.2. Window Length and the Number of Trials Affect the Stability of the Novel
3.1.3. The Novel Requires Less Computation Time to Track the Dynamic Interaction Process
3.2. Applying the Novel on the Actual Neural Signals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tononi, G.; Edelman, G.M.; Sporns, O. Complexity and coherency: Integrating information in the brain. Trends Cogn. Sci. 1998, 2, 474. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 2012, 13, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Eichenbaum, H. Prefrontal-hippocampal interactions in episodic memory. Nat. Rev. Neurosci. 2017, 18, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Kanwisher, N. Functional specificity in the human brain: A window into the functional architecture of the mind. Proc. Natl. Acad. Sci. USA 2010, 107, 11163–11170. [Google Scholar] [CrossRef]
- Ad, A.; Vmab, C. Causal dynamics and information flow in parietaltemporal-hippocampal circuits during mental arithmetic revealed by high-temporal resolution human intracranial EEG. Cortex 2022, 147, 24–40. [Google Scholar] [CrossRef]
- Place, R.; Farovik, A.; Brockmann, M.; Eichenbaum, H. Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nat. Neurosci. 2016, 19, 992–994. [Google Scholar] [CrossRef]
- Bossomaier, T.; Barnett, L.; Harré, M.; Lizier, J.T. An Introduction to Transfer Entropy, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 65–95. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef]
- Lindner, M.; Vicente, R.; Priesemann, V.; Wibral, M. TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC Neurosci. 2011, 12, 119. [Google Scholar] [CrossRef]
- Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy—A model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 2011, 30, 45–67. [Google Scholar] [CrossRef]
- Vakorin, V.A.; Kovacevic, N.; Mcintosh, A.R. Exploring transient transfer entropy based on a group-wise ICA decomposition of EEG data. NeuroImage 2010, 49, 1593–1600. [Google Scholar] [CrossRef]
- Barnett, L.; Barrett, A.B.; Seth, A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009, 103, 238701. [Google Scholar] [CrossRef] [PubMed]
- Lehnertz, K.; Geier, C.; Rings, T.; Stahn, K. Capturing time-varying brain dynamics. EPJ Nonlinear Biomed. Phys. 2017, 5, 2. [Google Scholar] [CrossRef]
- Hillebrand, A.; Tewarie, P.; van Dellen, E.; Yu, M.; Carbo, E.W.S.; Douw, L.; Gouw, A.A.; van Straaten, E.C.W.; Stam, C.J. Direction of information flow in large-scale resting-state networks is frequency-dependent. Proc. Natl. Acad. Sci. USA 2016, 113, 3867–3872. [Google Scholar] [CrossRef] [PubMed]
- Tewarie, P.; Liuzzi, L.; O’Neill, G.C.; Quinn, A.J.; Brookes, M.J. Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity. NeuroImage 2019, 200, 38–50. [Google Scholar] [CrossRef]
- Voytek, B.; D’Esposito, M.; Crone, N.; Knight, R.T. A method for event-related phase/amplitude coupling. NeuroImage 2013, 64, 416–424. [Google Scholar] [CrossRef]
- Andrzejak, R.G.; Ledberg, A.; Deco, G. Detecting event-related time-dependent directional couplings. New J. Phys. 2006, 8, 6. [Google Scholar] [CrossRef]
- Leski, S.; Wojcik, D.K. Inferring coupling strength from event-related dynamics. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2008, 78 (Suppl. S1), 41918. [Google Scholar] [CrossRef]
- Martini, M.; Kranz, T.A.; Wagner, T.; Lehnertz, K. Inferring directional interactions from transient signals with symbolic transfer entropy. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2011, 83, 11919. [Google Scholar] [CrossRef]
- Gómez-Herrero, G.; Wu, W.; Rutanen, K.; Soriano, M.; Pipa, G.; Vicente, R. Assessing coupling dynamics from an ensemble of time series. Entropy 2015, 17, 1958–1970. [Google Scholar] [CrossRef]
- Wollstadt, P.; Martinez-Zarzuela, M.; Vicente, R.; Diaz-Pernas, F.J.; Wibral, M. Efficient transfer entropy analysis of non-stationary neural time series. PLoS ONE 2014, 9, e102833. [Google Scholar] [CrossRef]
- Wibral, M.; Pampu, N.; Priesemann, V.; Siebenhuhner, F.; Seiwert, H.; Lindner, M.; Lizier, J.T.; Vicente, R. Measuring information-transfer delays. PLoS ONE 2013, 8, e55809. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 64, 66138. [Google Scholar] [CrossRef] [PubMed]
- Hlaváková-Schindler, K.; Palu, M.; Vejmelka, M.; Bhattacharya, J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 2007, 441, 1–46. [Google Scholar] [CrossRef]
- Shao, S.; Guo, C.; Luk, W.; Weston, S. Accelerating transfer entropy computation. In Proceedings of the IEEE 2014 International Conference on Field-Programmable Technology (FPT), Shanghai, China, 10–12 December 2014. [Google Scholar] [CrossRef]
- Dourado, J.R.; Júnior, J.; Maciel, C. Parallelism Strategies for Big Data Delayed Transfer Entropy Evaluation. Algorithms 2019, 12, 190. [Google Scholar] [CrossRef]
- Lobier, M.; Siebenhühner, F.; Palva, S.; Palva, J.M. Phase transfer entropy: A novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. NeuroImage 2014, 85, 853–872. [Google Scholar] [CrossRef]
- Bastos, A.M.; Jan-Mathijs, S. A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls. Front. Syst. Neurosci. 2016, 9, 175. [Google Scholar] [CrossRef]
- Avena-Koenigsberger, A.; Misic, B.; Sporns, O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 2018, 19, 17–33. [Google Scholar] [CrossRef]
- Mona, F.; Gholam-Ali, H.Z.; Hamid, S.Z. Nonlinear effective connectivity measure based on adaptive Neuro Fuzzy Inference System and Granger Causality. NeuroImage 2018, 181, 382–394. [Google Scholar] [CrossRef]
- Patricia, W.; Sellers, K.K.; Lucas, R.; Viola, P.; Axel, H.; Flavio, F.; Michael, W.; Hilgetag, C.C. Breakdown of local information processing may underlie isoflurane anesthesia effects. PLoS Comput. Biol. 2016, 13, e1005511. [Google Scholar] [CrossRef]
- Mca, B.; Jha, C.; Ad, A.; Kd, B.; Rcs, D.; Sm, A. Measuring transient phase-amplitude coupling using local mutual information. NeuroImage 2019, 185, 361–378. [Google Scholar] [CrossRef]
- Kaiser, A.; Schreiber, T. Information transfer in continuous processes. Phys. D Nonlinear Phenom. 2002, 166, 43–62. [Google Scholar] [CrossRef]
- Lizier, J.T.; Prokopenko, M.; Zomaya, A.Y. Local information transfer as a spatiotemporal filter for complex systems. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 2008, 77, 26110. [Google Scholar] [CrossRef] [PubMed]
- Kozachenko, L.F.; Leonenko, N.N. A statistical estimate for the entropy of a random vector. Probl. Inf. Transm. 1987, 23, 9–16. [Google Scholar]
- Frenzel, S.; Pompe, B. Partial mutual information for coupling analysis of multivariate time series. Phys. Rev. Lett. 2007, 99, 204101. [Google Scholar] [CrossRef] [PubMed]
- Ragwitz, M.; Kantz, H. Markov models from data by simple nonlinear time series predictors in delay embedding spaces. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2002, 65, 56201. [Google Scholar] [CrossRef]
- Runge, J. Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information. In Proceedings of the 21st International Conference on Artificial Intelligence and Statistics, Lanzarote, Spain, 9–11 April 2018. [Google Scholar] [CrossRef]
- Lizier, J.T. Measuring the Dynamics of Information Processing on a Local Scale in Time and Space. In Directed Information Measures in Neuroscience. Understanding Complex Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 161–193. [Google Scholar] [CrossRef]
- Surhone, L.M.; Timpledon, M.T.; Marseken, S.F. Student’s T-Test, 1st ed.; Betascript Publishing: Whitefish, MT, USA, 2010; pp. 36–52. [Google Scholar]
- Lumley, T.; Diehr, P.; Emerson, S.; Chen, L. The Importance of the Normality Assumption in Large Public Health Data Sets. Annu. Rev. Public Health 2002, 23, 151–169. [Google Scholar] [CrossRef]
- Poncet, A.; Courvoisier, D.S.; Combescure, C.; Perneger, T.V. Normality and Sample Size Do Not Matter for the Selection of an Appropriate Statistical Test for Two-Group Comparisons. Methodology 2016, 12, 61–71. [Google Scholar] [CrossRef]
- Ursino, M.; Ricci, G.; Magosso, E. Transfer Entropy as a Measure of Brain Connectivity: A Critical Analysis With the Help of Neural Mass Models. Front. Comput. Neurosci. 2020, 14, 45. [Google Scholar] [CrossRef]
- de Cheveigné, A.; Parra, L.C. Joint decorrelation, a versatile tool for multichannel data analysis. NeuroImage 2014, 98, 487–505. [Google Scholar] [CrossRef]
- de Cheveigné, A.; Nelken, I. Filters: When, Why, and How (Not) to Use Them. Neuron 2019, 102, 280–293. [Google Scholar] [CrossRef]
- Liu, X.; Hong, W.; Shan, L.; Yan, C.; Li, S. Adaptive common average reference for in vivo multichannel local field potentials. Biomed. Eng. Lett. 2017, 7, 7–15. [Google Scholar] [CrossRef]
- Zhao, K.; Nie, J.; Yang, L.; Liu, X.; Shang, Z.; Wan, H. Hippocampus-nidopallium caudolaterale interactions exist in the goal-directed behavior of pigeon. Brain Res. Bull. 2019, 153, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Stonehouse, J.M.; Forrester, G.J. Robustness of the t and U tests under combined assumption violations. J. Appl. Stat. 1998, 25, 63–74. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, B.; Babin, B.J.; Anderson, R. Multivariate Data Analysis, 7th ed.; Prentice Hall: Hoboken, NJ, USA, 2014; pp. 4–12. [Google Scholar]
- Wasserstein, R.L.; Lazar, N.A. The ASA Statement on p-Values: Context, Process, and Purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef]
- Nuzzo, R. Scientific method: Statistical errors. Nature 2014, 506, 150–152. [Google Scholar] [CrossRef]
- Kanitscheider, I.; Coen-Cagli, R.; Pouget, A. Origin of information-limiting noise correlations. Proc. Natl. Acad. Sci. USA 2015, 112, E6973–E6982. [Google Scholar] [CrossRef]
- Pregowska, A. Signal Fluctuations and the Information Transmission Rates in Binary Communication Channels. Preprints 2020, 2020, 2020070297. [Google Scholar] [CrossRef]
- Zhang, M.; Qu, H.; Xie, X.; Kurths, J. Supervised learning in spiking neural networks with noise-threshold. Neurocomputing 2017, 219, 333–349. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Li, D.; Wang, R.; Jin, C.; Yin, X.; Gao, S.; Mu, Q.; Xuan, L.; Cao, Z. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence. Sci. Rep. 2018, 8, 1124. [Google Scholar] [CrossRef]
- Keshtkaran, M.R.; Zhi, Y. A fast, robust algorithm for power line interference cancellation in neural recording. J. Neural Eng. 2014, 11, 26017. [Google Scholar] [CrossRef]
- Chen, X.; He, C.; Peng, H. Removal of Muscle Artifacts from Single-Channel EEG Based on Ensemble Empirical Mode Decomposition and Multiset Canonical Correlation Analysis. J. Appl. Math. 2014, 2014, 261347. [Google Scholar] [CrossRef]
- Gardner, W.A.; Napolitano, A.; Paura, L. Cyclostationarity: Half a century of research. Signal Process. 2006, 86, 639–697. [Google Scholar] [CrossRef]
- Martínez-Cancino, R.; Delorme, A.; Wagner, J.; Kreutz-Delgado, K.; Makeig, S. What Can Local Transfer Entropy Tell Us about Phase-Amplitude Coupling in Electrophysiological Signals? Entropy 2020, 22, 1262. [Google Scholar] [CrossRef] [PubMed]
- Cekic, S. Time, frequency, and time-varying Granger-causality measures in neuroscience. Stat. Med. 2018, 37, 1910–1931. [Google Scholar] [CrossRef]
- Nardi, D.; Bingman, V.P. Asymmetrical participation of the left and right hippocampus for representing environmental geometry in homing pigeons. Behav. Brain Res. 2007, 178, 160–171. [Google Scholar] [CrossRef]
- Güntürkün, O. The Avian “Prefrontal Cortex” and Cognition. Curr. Opin. Neurobiol. 2006, 15, 686–693. [Google Scholar] [CrossRef]
- Liu, T.; Bai, W.; Xia, M.; Tian, X. Directional hippocampal-prefrontal interactions during working memory. Behav. Brain Res. 2018, 338, 1–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Chen, M.; Lu, J.; Zhao, K.; Cui, E.; Zhang, Z.; Wan, H. A Fast and Efficient Ensemble Transfer Entropy and Applications in Neural Signals. Entropy 2022, 24, 1118. https://doi.org/10.3390/e24081118
Zhu J, Chen M, Lu J, Zhao K, Cui E, Zhang Z, Wan H. A Fast and Efficient Ensemble Transfer Entropy and Applications in Neural Signals. Entropy. 2022; 24(8):1118. https://doi.org/10.3390/e24081118
Chicago/Turabian StyleZhu, Junyao, Mingming Chen, Junfeng Lu, Kun Zhao, Enze Cui, Zhiheng Zhang, and Hong Wan. 2022. "A Fast and Efficient Ensemble Transfer Entropy and Applications in Neural Signals" Entropy 24, no. 8: 1118. https://doi.org/10.3390/e24081118
APA StyleZhu, J., Chen, M., Lu, J., Zhao, K., Cui, E., Zhang, Z., & Wan, H. (2022). A Fast and Efficient Ensemble Transfer Entropy and Applications in Neural Signals. Entropy, 24(8), 1118. https://doi.org/10.3390/e24081118