Quantum Simulation of Pseudo-Hermitian-φ-Symmetric Two-Level Systems
<p>Schematic circuit for the quantum simulation of a PH-<math display="inline"><semantics> <mi>φ</mi> </semantics></math> system based on LCU. The whole system consists of <math display="inline"><semantics> <msub> <mi>n</mi> <mn>1</mn> </msub> </semantics></math> ancillary qubits and <math display="inline"><semantics> <msub> <mi>n</mi> <mn>2</mn> </msub> </semantics></math> evolutionary qubits, and it will pass the quantum circuit from the left to the right. The system is initialized in <math display="inline"><semantics> <mrow> <msub> <mrow> <mo>|</mo> <mn>0</mn> <mo>〉</mo> </mrow> <mi>a</mi> </msub> <msub> <mrow> <mo>|</mo> <mn>0</mn> <mo>〉</mo> </mrow> <mi>e</mi> </msub> </mrow> </semantics></math> at first, and then the evolutionary qubits are prepared in arbitrary state <math display="inline"><semantics> <msub> <mrow> <mo>|</mo> <mi>ψ</mi> <mo>〉</mo> </mrow> <mi>e</mi> </msub> </semantics></math> as demanded. After being operated by a unitary rotation <math display="inline"><semantics> <msub> <mi>U</mi> <mrow> <mi>E</mi> <mn>1</mn> </mrow> </msub> </semantics></math>, <span class="html-italic">m</span>-controlled operations (i.e., 0-controlled <math display="inline"><semantics> <msub> <mi>U</mi> <mn>0</mn> </msub> </semantics></math>, 1-controlled <math display="inline"><semantics> <msub> <mi>U</mi> <mn>1</mn> </msub> </semantics></math>, …, and <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>m</mi> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>-controlled <math display="inline"><semantics> <msub> <mi>U</mi> <mrow> <mi>m</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </semantics></math>), and a single-qudit rotation <math display="inline"><semantics> <msub> <mi>U</mi> <mrow> <mi>E</mi> <mn>2</mn> </mrow> </msub> </semantics></math>, the evolutionary subsystem will evolve as per Equation (<a href="#FD4-entropy-24-00867" class="html-disp-formula">4</a>) if the ancillary subsystem is measured in state <math display="inline"><semantics> <msub> <mrow> <mo>|</mo> <mn>0</mn> <mo>〉</mo> </mrow> <mi>a</mi> </msub> </semantics></math>.</p> "> Figure 2
<p>Sets of the <span class="html-italic">P</span>-pseudo-Hermitian-<math display="inline"><semantics> <mi>φ</mi> </semantics></math>-symmetric, PT-<math display="inline"><semantics> <mi>φ</mi> </semantics></math>-symmetric, <span class="html-italic">P</span>-pseudo-Hermitian, and Hermitian systems. The green ellipse of the <span class="html-italic">P</span>-PH set is in the blue ellipse of the general <span class="html-italic">P</span>-PH-<math display="inline"><semantics> <mi>φ</mi> </semantics></math> set because the former can be seen as a special case where <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mn>2</mn> <mi>k</mi> <mi>π</mi> </mrow> </semantics></math> (<span class="html-italic">k</span> is integral) of the latter. The <span class="html-italic">P</span>-PH anti-symmetric set is also a subset of the <span class="html-italic">P</span>-PH-<math display="inline"><semantics> <mi>φ</mi> </semantics></math> set when <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>=</mo> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>π</mi> </mrow> </semantics></math> (<span class="html-italic">k</span> is integral). The sets relevant to the <span class="html-italic">P</span>-pseudo-Hermiticity and the PT symmetry are different, though they have intersections with each other. Notice that the Hermitian sets are not in the <span class="html-italic">P</span>-PH-<math display="inline"><semantics> <mi>φ</mi> </semantics></math> set only. Other NH sets may include various <math display="inline"><semantics> <mi>η</mi> </semantics></math>-PH-<math display="inline"><semantics> <mi>φ</mi> </semantics></math> sets (<math display="inline"><semantics> <mi>η</mi> </semantics></math> is other than <span class="html-italic">P</span>), sets relevant to unknown symmetries, and so on.</p> "> Figure 3
<p>Three-qubit quantum circuit. The system is initialized to <math display="inline"><semantics> <mrow> <msub> <mrow> <mo>|</mo> <mn>00</mn> <mo>〉</mo> </mrow> <mi>a</mi> </msub> <msub> <mrow> <mo>|</mo> <mn>0</mn> <mo>〉</mo> </mrow> <mi>e</mi> </msub> </mrow> </semantics></math>, and the evolutionary qubit <span class="html-italic">e</span> can be rotated to <math display="inline"><semantics> <msub> <mrow> <mo>|</mo> <mi>ψ</mi> <mo>〉</mo> </mrow> <mi>e</mi> </msub> </semantics></math> by <math display="inline"><semantics> <msub> <mi>R</mi> <mi>ψ</mi> </msub> </semantics></math> as needed. In the first block, operations prepare the six-dimensional subspace, and assign the three UE parameters. In the second block, three controlled-controlled operators (the first dashed one can be removed) generate the UE terms. In the third block, operations are applied on the ancillary system to superpose the three UE terms in Equation (<a href="#FD8-entropy-24-00867" class="html-disp-formula">8</a>). Finally, quantum measurements are performed on the ancillary system to evolve the qubit <span class="html-italic">e</span> as the <span class="html-italic">P</span>-PH-<math display="inline"><semantics> <mi>φ</mi> </semantics></math> system in an indeterministic way if <math display="inline"><semantics> <msub> <mrow> <mo>|</mo> <mn>00</mn> <mo>〉</mo> </mrow> <mi>a</mi> </msub> </semantics></math> is output.</p> "> Figure 4
<p>Two-qubit quantum circuit. The system includes an ancillary qubit <span class="html-italic">a</span> and an evolutionary qubit <span class="html-italic">e</span>, and is initialized to <math display="inline"><semantics> <mrow> <msub> <mrow> <mo>|</mo> <mn>0</mn> <mo>〉</mo> </mrow> <mi>a</mi> </msub> <msub> <mrow> <mo>|</mo> <mn>0</mn> <mo>〉</mo> </mrow> <mi>e</mi> </msub> </mrow> </semantics></math> at first. Then, the qubit <span class="html-italic">e</span> is rotated to <math display="inline"><semantics> <msub> <mrow> <mo>|</mo> <mi>ψ</mi> <mo>〉</mo> </mrow> <mi>e</mi> </msub> </semantics></math> as needed by <math display="inline"><semantics> <msub> <mi>R</mi> <mi>ψ</mi> </msub> </semantics></math>. In the main part, operators are applied in series (i.e., a single-qubit rotation <span class="html-italic">W</span>, two controlled operators, and a Hadamard). Finally, the evolutionary qubit <span class="html-italic">e</span> will evolve as <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>i</mi> <mfrac> <mi>t</mi> <mo>ℏ</mo> </mfrac> <msub> <mi>H</mi> <mi>φ</mi> </msub> </mrow> </msup> <msub> <mrow> <mo>|</mo> <mi>ψ</mi> <mo>〉</mo> </mrow> <mi>e</mi> </msub> </mrow> </semantics></math>, if the ancillary qubit is measured in state <math display="inline"><semantics> <msub> <mrow> <mo>|</mo> <mn>0</mn> <mo>〉</mo> </mrow> <mi>a</mi> </msub> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Complex Generalization of Pseudo-Hermitian Symmetry
3. Quantum Simulation Using LCU by Duality Quantum Computing
4. Quantum Simulation of -Pseudo-Hermitian--Symmetric Two-Level Systems
4.1. P-PH- Two-Level Systems
4.2. UE of the Time-Evolutionary Operator
4.3. Qubit Simulation
5. Experimental Proposals
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NH | non-Hermitian |
PT | parity-time-reversal |
PH | pseudo-Hermitian |
PHA | pseudo-Hermitian anti-symmetric |
PH- | pseudo-Hermitian--symmetric |
P | parity |
EP | exceptional point |
LCU | linear combination of unitaries |
NMR | nuclear magnetic resonance |
Appendix A
References
- Gamow, G. Quantum Theory at Nucleus. Z. Phys. 1928, 51, 204. [Google Scholar] [CrossRef]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems, 10th Anniversary ed.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Barreiro, J.T.; Müller, M.; Schindler, P.; Nigg, D.; Monz, T.; Chwalla, M.; Hennrich, M.; Roos, C.F.; Zoller, P.; Blatt, R. An Open-system Quantum Simulator with Trapped Ions. Nature 2011, 470, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Xia, R.; Kais, S. A Quantum Algorithm for Evolving Open Quantum Dynamics on Quantum Computing Devices. Sci. Rep. 2020, 10, 3301. [Google Scholar] [CrossRef]
- Del Re, L.; Rost, B.; Kemper, A.F.; Freericks, J.K. Driven-Dissipative Quantum Mechanics on a Lattice: Simulating a Fermionic Reservoir on a Quantum Computer. Phys. Rev. B 2020, 102, 125112. [Google Scholar] [CrossRef]
- Viyuela, O.; Rivas, A.; Gasparinetti, S.; Wallraff, A.; Filipp, S.; Martin-Delgado, M.A. Observation of Topological Uhlmann Phases with Superconducting Qubits. Njp Quantum Inf. 2018, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C. Universal Quantum Simulation of Single-Qubit Nonunitary Operators using Duality Quantum Algorithm. Sci. Rep. 2021, 11, 3960. [Google Scholar] [CrossRef]
- Schlimgen, A.W.; Head-Marsden, K.; Sager, L.M.; Narang, P.; Mazziotti, D.A. Quantum Simulation of Open Quantum Systems Using a Unitary Decomposition of Operators. Phys. Rev. Lett. 2021, 127, 270503. [Google Scholar] [CrossRef]
- Del Re, L.; Rost, B.; Foss-Feig, M.; Kemper, A.F.; Freericks, J.K. Robust Measurements of N-Point Correlation Functions of Driven-Dissipative Quantum Systems on a Digital Quantum Computer. arXiv 2022, arXiv:2204.12400. [Google Scholar]
- Ding, P.Z.; Yi, W. Two-body exceptional points in open dissipative systems. Chin. Phys. B 2022, 31, 010309. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians having PT Symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Boettcher, S.; Meisinger, P.N. PT-Symmetric Quantum Mechanics. J. Math. Phys. 1999, 40, 2201–2229. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Brody, D.C.; Jones, H.F. Complex Extension of Quantum Mechanics. Phys. Rev. Lett. 2002, 89, 270401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, C.M.; Brody, D.C.; Jones, H.F. Must a Hamiltonian be Hermitian? Am. J. Phys. 2003, 71, 1095–1102. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M. PT-symmetric Quantum Theory. J. Phys. Conf. Ser. 2015, 631, 012002. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, L.; Song, Z. Topology of a parity-time symmetric non-Hermitian rhombic lattice. Chin. Phys. B 2022, 31, 010312. [Google Scholar] [CrossRef]
- Hu, Z.; Jin, L.; Zeng, Z.-Y.; Tang, J.; Luo, X.-B. Quasi-parity-time symmetric dynamics in periodically driven two-level non-Hermitian system. Acta Phys. Sin. 2022, 71, 074207. [Google Scholar] [CrossRef]
- Wang, K.; Gao, Y.-P.; Jiao, R.; Wang, C. Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys. 2021, 14, 42201. [Google Scholar] [CrossRef]
- Xu, W.-L.; Liu, X.-F.; Sun, Y.; Gao, Y.-P.; Wang, T.-J.; Wang, C. Magnon-induced chaos in an optical PT-symmetric resonator. Phys. Rev. E 2020, 101, 012205. [Google Scholar] [CrossRef]
- Bender, C.M.; Brody, D.C.; Jones, H.F.; Meister, B.K. Faster than Hermitian Quantum Mechanics. Phys. Rev. Lett. 2007, 98, 040403. [Google Scholar] [CrossRef] [Green Version]
- Günther, U.; Samsonov, B.F. Naimark-dilated PT-Symmetric Brachistochrone. Phys. Rev. Lett. 2008, 101, 230404. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Hao, L.; Long, G.L. Observation of a Fast Evolution in a Parity-Time-Symmetric System. Philos. Trans. R. Soc. A 2013, 371, 20120053. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C. Duality Quantum Simulation of a General Parity-Time-Symmetric Two-level System. EPL 2018, 123, 40002. [Google Scholar] [CrossRef]
- Wen, J.; Zheng, C.; Kong, X.; Wei, S.; Xin, T.; Long, G.L. Experimental Demonstration of a Digital Quantum Simulation of a General PT-symmetric System. Phys. Rev. A 2019, 99, 062122. [Google Scholar] [CrossRef]
- Gao, W.-C.; Zheng, C.; Liu, L.; Wang, T.-J.; Wang, C. Experimental simulation of the parity-time symmetric dynamics using photonic qubits. Opt. Exp. 2021, 29, 517–526. [Google Scholar] [CrossRef]
- Wen, J.; Zheng, C.; Ye, Z.; Xin, T.; Long, G.L. Stable states with nonzero entropy under broken PT-symmetry. Phys. Rev. Res. 2021, 3, 013256. [Google Scholar] [CrossRef]
- Zheng, C. Quantum simulation of PT-arbitrary-phase–symmetric systems. EPL 2021, 136, 30002. [Google Scholar] [CrossRef]
- Lee, T.D.; Wick, G.C. Negative Metric and the Unitarity of the S Matrix. Nucl. Phys. B 1969, 9, 209–243. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT Symmetry: The Necessary Condition for the Reality of the Spectrum of a Non-Hermitian Hamiltonian. J. Math. Phys. 2002, 43, 205–243. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 2002, 43, 2814–2816. [Google Scholar] [CrossRef]
- Konotop, V.V.; Yang, Z.; Zezyulin, D.A. Nonlinear Waves in PT-Symmetric Systems. Rev. Mod. Phys. 2016, 88, 035002. [Google Scholar] [CrossRef] [Green Version]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT-Symmetry III: Equivalence of Pseudo-Hermiticity and the Presence of Antilinear Symmetries. J. Math. Phys. 2002, 43, 3944–3951. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity and generalized PT- and CPT-symmetries. J. Math. Phys. 2003, 44, 974–989. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Tian, J.; Li, D.; Wen, J.; Wei, S.; Li, Y.-S. Efficient quantum simulation of an anti-P-pseudo-Hermitian two-level system. Entropy 2020, 22, 812. [Google Scholar] [CrossRef] [PubMed]
- Solombrino, L. Weak Pseudo-Hermiticity and Antilinear Commutant. J. Math. Phys. 2002, 43, 5439–5445. [Google Scholar] [CrossRef] [Green Version]
- Nixon, S.; Yang, J. All-real spectra in optical systems with arbitrary gain-and-loss distributions. Phys. Rev. A 2016, 93, 031802(R). [Google Scholar] [CrossRef] [Green Version]
- Mostafazadeh, A. Time-Dependent Pseudo-Hermitian Hamiltonians and a Hidden Geometric Aspect of Quantum Mechanics. Entropy 2020, 22, 471. [Google Scholar] [CrossRef] [Green Version]
- Pinske, J.; Teuber, L.; Scheel, S. Holonomic Gates in Pseudo-Hermitian Quantum Systems. Phys. Rev. A 2019, 100, 042316. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Liu, Y.; Liu, H.; Cai, J. Quantum Sensing with a Single-Qubit Pseudo-Hermitian System. Phys. Rev. Lett. 2020, 124, 020501. [Google Scholar] [CrossRef] [Green Version]
- Jin, L. Unitary Scattering Protected by Pseudo-Hermiticity. Chin. Phys. Lett. 2022, 39, 037302. [Google Scholar] [CrossRef]
- Feynman, R. Simulating Physics with Computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Greiner, M.; Mandel, O.; Esslinger, T.; Hansch, T.W.; Bloch, I. Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. Nature 2002, 415, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Leibfried, D.; DeMarco, B.; Meyer, V.; Rowe, M.; Ben-Kish, A.; Britton, J.; Itano, W.M.; Jelenkovic, B.; Langer, C.; Rosenband, T.; et al. Trapped-Ion Quantum Simulator: Experimental Application to Nonlinear Interferometers. Phys. Rev. Lett. 2002, 89, 247901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedenauer, A.; Schmitz, H.; Glueckert, J.T.; Porras, D.; Schaetz, T. Simulating a Quantum Magnet with Trapped Ions. Nat. Phys. 2008, 4, 757–761. [Google Scholar] [CrossRef]
- Kim, K.; Chang, M.-S.; Korenblit, S.; Islam, R.; Edwards, E.E.; Freericks, J.K.; Lin, G.-D.; Duan, L.-M.; Monroe, C. Quantum Simulation of Frustrated Ising Spins with Trapped Ions. Nature 2010, 465, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Lanyon, B.P.; Whitfield, J.D.; Gillett, G.G.; Goggin, M.E.; Almeida, M.P.; Kassal, I.; Biamonte, J.D.; Mohseni, M.; Powell, B.J.; Barbieri, M.; et al. Towards Quantum Chemistry on a Quantum Computer. Nat. Chem. 2010, 2, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Gerritsma, R.; Kirchmair, G.; Zahringer, F.; Solano, E.; Blatt, R.; Roos, C.F. Quantum Simulation of the Dirac Equation. Nature 2010, 463, 68–71. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum Simulation. Nature 2014, 86, 153–185. [Google Scholar] [CrossRef] [Green Version]
- Setia, K.; Bravyi, S.; Mezzacapo, A.; Whitfield, J.D. Superfast Encodings for Fermionic Quantum Simulation. Phys. Rev. Res. 2019, 1, 033033. [Google Scholar] [CrossRef] [Green Version]
- Aspuru-Guzik, A.; Walther, P. Photonic Quantum Simulators. Nat. Phys. 2012, 8, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.B.; Zhou, L. Distributed Secure Quantum Machine Learning. Sci. Bull. 2017, 62, 1025–1029. [Google Scholar] [CrossRef] [Green Version]
- Tranter, A.; Love, P.J.; Mintert, F.; Wiebe, N.; Coveney, P.V. Ordering of Trotterization: Impact on Errors in Quantum Simulation of Electronic Structure. Entropy 2019, 21, 1218. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Tureci, H.E. Antisymmetric PT-Photonic Structures with Balanced Positive- and Negative-index Materials. Phys. Rev. A 2013, 88, 053810. [Google Scholar] [CrossRef] [Green Version]
- Hang, C.; Huang, G.; Konotop, V.V. PT Symmetry with a System of Three-Level Atoms. Phys. Rev. Lett. 2013, 110, 083604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonosyan, D.A.; Solntsev, A.S.; Sukhorukov, A.A. Parity-time anti-symmetric parametric amplifier. Opt. Lett. 2015, 40, 4575–4582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.-H.; Artoni, M.; La Rocca, G.C. Parity-Time-Antisymmetric Atomic Lattices without Gain. Phys. Rev. A 2015, 91, 033811. [Google Scholar] [CrossRef] [Green Version]
- Peng, P.; Cao, W.; Shen, C.; Qu, W.; Wen, J.; Jiang, L.; Xiao, Y. Anti-Parity-Time Symmetry with Flying Atoms. Nat. Phys. 2016, 12, 1139–1145. [Google Scholar] [CrossRef]
- Yang, F.; Liu, Y.C.; You, L. Anti-PT Symmetry in Dissipatively Coupled Optical Systems. Phys. Rev. A 2017, 96, 053845. [Google Scholar] [CrossRef]
- Choi, Y.; Hahn, C.; Yoon, J.W.; Song, H.S. Observation of an Anti-PT-Symmetric Exceptional Point and Energy-Difference Conserving Dynamics in Electrical Circuit Resonators. Nat. Commun. 2018, 9, 2182. [Google Scholar] [CrossRef]
- Konotop, V.V.; Zezyulin, D.A. Odd-Time Reversal PT Symmetry Induced by an Anti-PT-Symmetric Medium. Phys. Rev. Lett. 2018, 120, 123902. [Google Scholar] [CrossRef] [Green Version]
- Chuang, Y.-L.; Ziauddin; Lee, R.-K. Realization of Simultaneously Parity-Time-Symmetric and Parity-Time-Antisymmetric Susceptibilities along the Longitudinal Direction in Atomic Systems with all Optical Controls. Opt. Express 2018, 26, 21969–21978. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Y.-G.; Han, L.; Miri, M.-A.; Li, W.; Xiao, M.; Zhu, X.-F.; Zhao, J.; Alu, A.; Fan, S.; et al. Odd-Time Reversal PT Symmetry Induced by an Anti-PT-Symmetric Medium. Science 2019, 364, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C. Duality quantum simulation of a generalized anti-PT-symmetric two-level system. EPL 2019, 126, 30005. [Google Scholar] [CrossRef]
- Wen, J.; Qin, G.; Zheng, C.; Wei, S.; Kong, X.; Xin, T.; Long, G.L. Observation of information flow in the anti-PT-symmetric system with nuclear spins. Npj Quantum Inf. 2020, 6, 28. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, M.; Xu, X.-W.; Jing, H. Anti-PT-symmetric Kerr gyroscope. Chin. Phys. B 2022, 31, 014215. [Google Scholar] [CrossRef]
- Long, G.-L. General Quantum Interference Principle and Duality Computer. Commun. Theor. Phys. 2006, 45, 825–843. [Google Scholar]
- Long, G.-L.; Liu, Y. Duality Quantum Computing. Front. Comput. Sci. 2008, 2, 167. [Google Scholar] [CrossRef]
- Long, G.-L.; Liu, Y.; Wang, C. Allowable Generalized Quantum Gates. Commun. Theor. Phys. 2009, 51, 65–67. [Google Scholar]
- Long, G.L. Duality Quantum Computing and Duality Quantum Information Processing. Int. J. Theor. Phys. 2011, 50, 1305–1318. [Google Scholar] [CrossRef]
- Cui, J.; Zhou, T.; Long, G.L. Density Matrix Formalism of Duality Quantum Computer and the Solution of Zero-Wave-Function Paradox. Quantum Inf. Process. 2012, 11, 317–323. [Google Scholar] [CrossRef]
- Qiang, X.; Zhou, X.; Wang, J.; Wilkes, C.M.; Loke, T.; O’Gara, S.; Kling, L.; Marshall, G.D.; Santagati, R.; Ralph, T.C.; et al. Large-Scale Silicon Quantum Photonics Implementing Arbitrary Two-Qubit Processing. Nat. Photon. 2018, 12, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.-J.; Li, H.; Long, G.-L. A Full Quantum Eigensolver for Quantum Chemistry Simulations. Research 2020, 2020, 1486935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, C.P.; Li, Y.; Li, H.B. Quantum Algorithm Design: Techniques and Applications. J. Syst. Sci. Complex. 2019, 32, 375–495. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin, Germany, 1966. [Google Scholar]
- Neeley, M.; Ansmann, M.; Bialczak, R.C.; Hofheinz, M.; Lucero, E.; O’Connell, A.D.; Sank, D.; Wang, H.; Wenner, J.; Cleland, A.N.; et al. Emulation of a Quantum Spin with a Superconducting Phase Qudit. Science 2009, 325, 722–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th Anniversary ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 217–226. [Google Scholar]
- Cory, D.G.; Price, M.D.; Havel, T.F. Nuclear Magnetic Resonance Spectroscopy: An Experimentally Accessible Paradigm for Quantum Computing. Physics D 2008, 120, 82–101. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.W.; Xue, K.; Ge, M.L. Optical Simulation of the Yang-Baxter Equation. Phys. Rev. A 2008, 78, 022319. [Google Scholar] [CrossRef] [Green Version]
- Knill, E.; Laflamme, R.; Milburn, G. A Scheme for Efficient Quantum Computation with Linear Optics. Nature 2001, 409, 46–52. [Google Scholar] [CrossRef]
- Cerf, N.J.; Adami, C.; Kwiat, P.G. Optical Simulation of Quantum Logic. Phys. Rev. A 1998, 57, R1477(R). [Google Scholar] [CrossRef] [Green Version]
- Fan, C.-R.; Lu, B.; Feng, X.-T.; Gao, W.-C.; Wang, C. Efficient multi-qubit quantum data compression. Quantum Eng. 2021, 3, e67. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C. Quantum Simulation of Pseudo-Hermitian-φ-Symmetric Two-Level Systems. Entropy 2022, 24, 867. https://doi.org/10.3390/e24070867
Zheng C. Quantum Simulation of Pseudo-Hermitian-φ-Symmetric Two-Level Systems. Entropy. 2022; 24(7):867. https://doi.org/10.3390/e24070867
Chicago/Turabian StyleZheng, Chao. 2022. "Quantum Simulation of Pseudo-Hermitian-φ-Symmetric Two-Level Systems" Entropy 24, no. 7: 867. https://doi.org/10.3390/e24070867
APA StyleZheng, C. (2022). Quantum Simulation of Pseudo-Hermitian-φ-Symmetric Two-Level Systems. Entropy, 24(7), 867. https://doi.org/10.3390/e24070867