A Grouping Differential Evolution Algorithm Boosted by Attraction and Repulsion Strategies for Masi Entropy-Based Multi-Level Image Segmentation
"> Figure 1
<p>General structure of the ME-GDEAR algorithm.</p> "> Figure 2
<p>Population clustering: red points represent individuals and black points indicate cluster centres. The population is divided into 3 clusters. A is the set of cluster centres while B contains some random individuals.</p> "> Figure 3
<p>Encoding strategy in ME-GDEAR.</p> "> Figure 4
<p>Fractions of cluster centres and random individuals located in the golden region.</p> "> Figure 5
<p>Distance between the centre of the golden region and the cluster centres/random individuals.</p> "> Figure 6
<p>Mean objective function results with/without grouping strategy.</p> "> Figure 7
<p>Test images and their histograms.</p> "> Figure 8
<p>Thresholding results for image 147091 for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>. (<b>a</b>) Original image, (<b>b</b>–<b>f</b>) true manual segmentation, (<b>g</b>) segmented image for ME-DE, (<b>h</b>) segmented image for ME-FA, (<b>i</b>) segmented image for ME-BA, (<b>j</b>) segmented image for ME-MFO, (<b>k</b>) segmented image ME-DA, (<b>l</b>) segmented image for ME-WOA, and (<b>m</b>) segmented image for ME-GDEAR.</p> "> Figure 8 Cont.
<p>Thresholding results for image 147091 for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>. (<b>a</b>) Original image, (<b>b</b>–<b>f</b>) true manual segmentation, (<b>g</b>) segmented image for ME-DE, (<b>h</b>) segmented image for ME-FA, (<b>i</b>) segmented image for ME-BA, (<b>j</b>) segmented image for ME-MFO, (<b>k</b>) segmented image ME-DA, (<b>l</b>) segmented image for ME-WOA, and (<b>m</b>) segmented image for ME-GDEAR.</p> "> Figure 9
<p>Thresholding results for image 101087 for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. (<b>a</b>): original image, (<b>b</b>–<b>f</b>): different manual segmentations, (<b>g</b>) segmented image for ME-DE, (<b>h</b>) segmented image for ME-FA,(<b>i</b>) segmented image for ME-BA, (<b>j</b>) segmented image for ME-MFO, (<b>k</b>) segmented image for ME-DA, (<b>l</b>) segmented image for ME-WOA, and (<b>m</b>) segmented image for ME-GDEAR.</p> "> Figure 9 Cont.
<p>Thresholding results for image 101087 for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. (<b>a</b>): original image, (<b>b</b>–<b>f</b>): different manual segmentations, (<b>g</b>) segmented image for ME-DE, (<b>h</b>) segmented image for ME-FA,(<b>i</b>) segmented image for ME-BA, (<b>j</b>) segmented image for ME-MFO, (<b>k</b>) segmented image for ME-DA, (<b>l</b>) segmented image for ME-WOA, and (<b>m</b>) segmented image for ME-GDEAR.</p> "> Figure 10
<p>Effect of <math display="inline"><semantics> <msub> <mi>C</mi> <mi>P</mi> </msub> </semantics></math> on the mean objective function value for images (<b>a</b>) 147091, (<b>b</b>) 101087, and (<b>c</b>) 253027 for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Effect of <math display="inline"><semantics> <msub> <mi>P</mi> <mi>r</mi> </msub> </semantics></math> on the mean objective function value for images (<b>a</b>) 147091, (<b>b</b>) 101087, and (<b>c</b>) 253027 for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Differential Evolution
Algorithm 1: Pseudo-code of DE algorithm. |
2.1.1. Initialisation
2.1.2. Mutation
2.1.3. Crossover
2.1.4. Selection
2.2. Clustering
- Each cluster should have at least one sample: ;
- The total number of samples in all clusters must be equal to the total number of samples: ; and
- Distinct clusters should not have a mutual sample: .
- Randomly select k samples as cluster centres;
- Allocate each sample to its closest cluster centre based on a distance metric (often Euclidean distance);
- Recalculate the new cluster centres as the mean value of the samples located in each cluster;
- If the stopping condition is satisfied, the algorithm has terminated—otherwise go to Step 2.
2.3. Multi-Level Image Thresholding
3. Proposed ME-GDEAR Algorithm
3.1. Grouping Strategy
3.1.1. Region Creation
3.1.2. Population Update
- Selection: randomly choose some individuals from the current population. This relates to choosing initial samples in the k-means algorithm;
- Generation: create m individuals as set A. For this, ME-GDEAR selects the cluster centres as the new individuals, that is, the new individuals are generated using k-means clustering;
- Substitution: choose m individuals (set B) from the population for substitution. There are various ways to select some individuals from the population; ME-GDEAR uses random selection as a simple selection strategy;
- Update: from the union set , the m best individuals are selected as . The new population is then obtained as .
3.1.3. Clustering Period
3.2. Attraction and Repulsion Strategies
3.2.1. Repulsion from Random Individuals
3.2.2. Attraction towards the Best Individual
3.2.3. Attraction towards the Best Individual (Spirally)
3.3. Encoding Strategy
3.4. Objective Function
3.5. Proposed Algorithm
- Initialise the parameters including population size , maximum number of function evaluations , clustering period , probability of attraction and repulsion strategies , and entropic parameter r. Set the current number of function evaluations , and the current iteration .
- Generate the initial population of size using uniformly distributed random numbers.
- Calculate the objective function value of each individual in the population using Equation (14).
- Set .
- For each individual, perform Steps 5a–5d:
- (a)
- Apply mutation operator;
- (b)
- Apply crossover operator;
- (c)
- Calculate the objective function using Equation (14);
- (d)
- Apply selection operator.
- Set .
- If , go to Step 7a—otherwise, go to Step 8:
- (a)
- Randomly generate k as random integer number between 2 and ;
- (b)
- Perform k-means clustering and select k cluster centres as set A;
- (c)
- Select k individuals randomly from current population as set B;
- (d)
- From , select best k individuals as ;
- (e)
- Select new population as .
- If , go to Step 8a—otherwise, go to Step 9.
- (a)
- Generate two random numbers, and , between 0 and 1, and one random number, C, between 0 and 2;
- (b)
- Set a as and A as ;
- (c)
- If , go to Step 8d—otherwise, go to Step 8g;
- (d)
- If , go to Step 8e—otherwise, go to Step 8f;
- (e)
- Apply repulsion operator using Equation (4) and go to Step 9;
- (f)
- Apply attraction operator using Equation (6) and go to Step 9;
- (g)
- Apply spiral attraction operator using Equation (8).
- Set .
- If , go to Step 11—otherwise, go to Step 5.
- Select the best individual as the set of optimal threshold values.
3.6. Monte-Carlo Simulations
4. Results and Discussion
4.1. Objective Function Results
4.2. Feature Similarity Index Results
4.3. Dice Measure
4.4. Statistical Tests
4.5. Visual Evaluation
4.6. Effect of Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rundo, L.; Tangherloni, A.; Cazzaniga, P.; Nobile, M.S.; Russo, G.; Gilardi, M.C.; Vitabile, S.; Mauri, G.; Besozzi, D.; Militello, C. A novel framework for MR image segmentation and quantification by using MedGA. Comput. Methods Programs Biomed. 2019, 176, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiao, L.; Shang, R.; Stolkin, R. Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Inf. Sci. 2015, 294, 408–422. [Google Scholar] [CrossRef] [Green Version]
- Sanei, S.H.R.; Barsotti, E.J.; Leonhardt, D.; Fertig, R.S., III. Characterization, synthetic generation, and statistical equivalence of composite microstructures. J. Compos. Mater. 2017, 51, 1817–1829. [Google Scholar] [CrossRef]
- Mousavirad, S.; Akhlaghian, F.; Mollazade, K. Classification of rice varieties using optimal color and texture features and BP neural networks. In Proceedings of the 7th Iranian Conference on Machine Vision and Image Processing, Tehran, Iran, 16–17 November 2011; pp. 1–5. [Google Scholar]
- Pal, N.R.; Pal, S.K. A review on image segmentation techniques. Pattern Recognit. 1993, 26, 1277–1294. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, in press. Available online: https://ieeexplore.ieee.org/abstract/document/9356353 (accessed on 14 December 2021). [CrossRef] [PubMed]
- Mousavirad, S.J.; Schaefer, G.; Oliva, D.; Hinojosa, S. HCS-BBD: An effective population-based approach for multi-level thresholding. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Lille, France, 10–14 July 2021; pp. 1923–1930. [Google Scholar]
- Farshi, T.R. A multilevel image thresholding using the animal migration optimization algorithm. Iran J. Comput. Sci. 2019, 2, 9–22. [Google Scholar] [CrossRef]
- Farshi, T.R.; Demirci, R. Multilevel image thresholding with multimodal optimization. Multimed. Tools Appl. 2021, 80, 15273–15289. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Chang, V.; Mohamed, R. A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems. Neural Comput. Appl. 2021, 33, 10685–10718. [Google Scholar] [CrossRef]
- Esmaeili, L.; Mousavirad, S.J.; Shahidinejad, A. An efficient method to minimize cross-entropy for selecting multi-level threshold values using an improved human mental search algorithm. Expert Syst. Appl. 2021, 182, 115106. [Google Scholar] [CrossRef]
- Mousavirad, S.J.; Schaefer, G.; Ebrahimpour-Komleh, H. A benchmark of population-based metaheuristic algorithms for high-dimensional multi-level image thresholding. In Proceedings of the IEEE Congress on Evolutionary Computation, Wellington, New Zealand, 10–13 June 2019; pp. 2394–2401. [Google Scholar]
- Mousavirad, S.J.; Ebrahimpour-Komleh, H. Entropy based optimal multilevel thresholding using cuckoo optimization algorithm. In Proceedings of the 11th International Conference on Innovations in Information Technology, Dubai, United Arab Emirates, 1–3 November 2015; pp. 302–307. [Google Scholar]
- Mousavirad, S.J.; Schaefer, G.; Korovin, I. High-dimensional multi-level image thresholding using self-organizing migrating algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Cancun, Mexico, 8–12 July 2020; ACM: New York, NY, USA; pp. 1454–1459. [Google Scholar]
- Farshi, T.R.; Ardabili, A.K. A hybrid firefly and particle swarm optimization algorithm applied to multilevel image thresholding. Multimed. Syst. 2021, 27, 125–142. [Google Scholar] [CrossRef]
- Shubham, S.; Bhandari, A.K. A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation. Multimed. Tools Appl. 2019, 78, 17197–17238. [Google Scholar] [CrossRef]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vision, Graph. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Sahoo, P.; Wilkins, C.; Yeager, J. Threshold selection using Renyi’s entropy. Pattern Recognit. 1997, 30, 71–84. [Google Scholar] [CrossRef]
- Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef] [Green Version]
- De Albuquerque, M.P.; Esquef, I.A.; Mello, A.G. Image thresholding using Tsallis entropy. Pattern Recognit. Lett. 2004, 25, 1059–1065. [Google Scholar] [CrossRef]
- Naik, M.K.; Panda, R.; Wunnava, A.; Jena, B.; Abraham, A. A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding. Multimed. Tools Appl. 2021, 80, 35543–35583. [Google Scholar] [CrossRef]
- Masi, M. A step beyond Tsallis and Rényi entropies. Phys. Lett. A 2005, 338, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Rundo, L.; Militello, C.; Vitabile, S.; Russo, G.; Sala, E.; Gilardi, M.C. A survey on nature-inspired medical image analysis: A step further in biomedical data integration. Fundam. Inform. 2020, 171, 345–365. [Google Scholar] [CrossRef]
- Khairuzzaman, A.K.M.; Chaudhury, S. Masi entropy based multilevel thresholding for image segmentation. Multimed. Tools Appl. 2019, 78, 33573–33591. [Google Scholar] [CrossRef]
- Chakraborty, R.; Verma, G.; Namasudra, S. IFODPSO-based multi-level image segmentation scheme aided with Masi entropy. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 7793–7811. [Google Scholar] [CrossRef]
- Kandhway, P.; Bhandari, A.K. A water cycle algorithm-based multilevel thresholding system for color image segmentation using Masi entropy. Circuits Syst. Signal Process. 2019, 38, 3058–3106. [Google Scholar] [CrossRef]
- Bhandari, A.K.; Rahul, K. A context sensitive Masi entropy for multilevel image segmentation using moth swarm algorithm. Infrared Phys. Technol. 2019, 98, 132–154. [Google Scholar] [CrossRef]
- Jia, H.; Peng, X.; Song, W.; Oliva, D.; Lang, C.; Li, Y. Masi entropy for satellite color image segmentation using tournament-based Lévy multiverse optimization algorithm. Remote Sens. 2019, 11, 942. [Google Scholar] [CrossRef] [Green Version]
- Kandhway, P.; Bhandari, A.K. Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer. Multimed. Tools Appl. 2019, 78, 22613–22641. [Google Scholar] [CrossRef]
- Wunnava, A.; Naik, M.K.; Panda, R.; Jena, B.; Abraham, A. A differential evolutionary adaptive Harris hawks optimization for two dimensional practical Masi entropy-based multilevel image thresholding. J. King Saud-Univ.-Comput. Inf. Sci. 2020, in press. [Google Scholar] [CrossRef]
- Bhandari, A.K.; Rahul, K.; Shahnawazuddin, S. A fused contextual color image thresholding using cuttlefish algorithm. Neural Comput. Appl. 2021, 33, 271–299. [Google Scholar] [CrossRef]
- Li, H.; Zheng, G.; Sun, K.; Jiang, Z.; Li, Y.; Jia, H. A logistic chaotic barnacles mating optimizer with Masi entropy for color image multilevel thresholding segmentation. IEEE Access 2020, 8, 213130–213153. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Li, W.; Meng, X.; Huang, Y. Fitness distance correlation and mixed search strategy for differential evolution. Neurocomputing 2021, 458, 514–525. [Google Scholar] [CrossRef]
- Mousavirad, S.J.; Rahnamayan, S. Differential Evolution Algorithm Based on a Competition Scheme. In Proceedings of the 14th International Conference on Computer Science and Education, Toronto, ON, Canada, 19–21 August 2019; pp. 929–934. [Google Scholar]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Faris, H. MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl. Soft Comput. 2020, 97, 106761. [Google Scholar] [CrossRef]
- Fister, I.; Fister, D.; Deb, S.; Mlakar, U.; Brest, J. Post hoc analysis of sport performance with differential evolution. Neural Comput. Appl. 2018, 32, 10799–10808. [Google Scholar] [CrossRef]
- Tang, Y.; Ji, J.; Zhu, Y.; Gao, S.; Tang, Z.; Todo, Y. A differential evolution-oriented pruning neural network model for bankruptcy prediction. Complexity 2019, 2019, 8682124. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Wang, L.; Tao, R. Wind speed forecasting based on variational mode decomposition and improved echo state network. Renew. Energy 2021, 164, 729–751. [Google Scholar] [CrossRef]
- Ara, A.; Khan, N.A.; Razzaq, O.A.; Hameed, T.; Raja, M.A.Z. Wavelets optimization method for evaluation of fractional partial differential equations: An application to financial modelling. Adv. Differ. Equ. 2018, 2018, 8. [Google Scholar] [CrossRef]
- Mousavirad, S.J.; Rahnamayan, S.; Schaefer, G. Many-level image thresholding using a center-based differential evolution algorithm. In Proceedings of the Congress on Evolutionary Computation, Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 7 January 1967; pp. 281–297. [Google Scholar]
- Cai, Z.; Gong, W.; Ling, C.X.; Zhang, H. A clustering-based differential evolution for global optimization. Appl. Soft Comput. 2011, 11, 1363–1379. [Google Scholar] [CrossRef]
- Deb, K. A population-based algorithm-generator for real-parameter optimization. Soft Comput. 2005, 9, 236–253. [Google Scholar] [CrossRef]
- Damavandi, N.; Safavi-Naeini, S. A hybrid evolutionary programming method for circuit optimization. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 902–910. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the 8th International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423. [Google Scholar]
- Rahnamayan, S.; Wang, G.G. Center-based sampling for population-based algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 933–938. [Google Scholar]
- Yang, X.S. Firefly algorithm, stochastic test functions and design optimisation. arXiv 2010, arXiv:1003.1409. [Google Scholar] [CrossRef]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization; Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csurka, G.; Larlus, D.; Perronnin, F.; Meylan, F. What is a good evaluation measure for semantic segmentation? In Proceedings of the British Machine Vision Conference, Bristol, UK, 9–13 September 2013; Volume 27, pp. 10–5244. [Google Scholar]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Touria, B.; Amine, C.M. Interactive image segmentation based on graph cuts and automatic multilevel thresholding for brain images. J. Med. Imaging Health Inform. 2014, 4, 36–42. [Google Scholar] [CrossRef]
Algorithm | Parameter | Value |
---|---|---|
ME-DE [33] | scaling factor | 0.5 |
crossover probability | 0.9 | |
ME-FA [49] | light absorption coefficient () | 1 |
attractiveness at () | 1 | |
scaling factor | 0.25 | |
ME-BA [50] | loudness | 0.5 |
pulse rate | 0.5 | |
ME-MFO [51] | a | −1 |
b | 1 | |
ME-DA [52] | no parameters | |
ME-WOA [46] | constant defining shape of logarithmic spiral | 1 |
ME-GDEAR | scaling factor | 0.5 |
crossover probability | 0.9 | |
clustering period | 0.5 | |
0.2 |
Image | ME-DE | ME-FA | ME-BA | ME-MFO | ME-DA | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
Boats | mean | 35.23 | 34.25 | 33.98 | 34.85 | 34.73 | 34.45 | 34.71 |
std.dev. | 0.02 | 0.97 | 0.96 | 0.49 | 0.54 | 0.41 | 0.64 | |
rank | 1 | 6 | 7 | 2 | 3 | 5 | 4 | |
Peppers | mean | 66.20 | 63.92 | 58.27 | 64.23 | 66.42 | 61.71 | 66.33 |
std.dev. | 8.75 | 9.26 | 7.95 | 6.94 | 7.98 | 10.34 | 6.51 | |
rank | 3 | 5 | 7 | 4 | 1 | 6 | 2 | |
Goldhill | mean | 15.56 | 15.77 | 15.28 | 16.03 | 15.76 | 15.42 | 16.05 |
std.dev. | 0.21 | 0.57 | 0.93 | 0.12 | 0.31 | 0.89 | 0.03 | |
rank | 5 | 3 | 7 | 2 | 4 | 6 | 1 | |
Lenna | mean | 70.74 | 64.87 | 62.04 | 65.91 | 61.05 | 63.54 | 67.10 |
std.dev. | 2.17 | 5.39 | 5.83 | 5.67 | 4.92 | 6.56 | 5.04 | |
rank | 1 | 4 | 6 | 3 | 7 | 5 | 2 | |
House | mean | 64.75 | 66.38 | 64.67 | 64.43 | 64.69 | 65.16 | 66.64 |
std.dev. | 2.92 | 7.13 | 3.44 | 1.5cm7 | 4.10 | 7.84 | 4.36 | |
rank | 4 | 2 | 6 | 7 | 5 | 3 | 1 | |
12003 | mean | 66.30 | 62.38 | 58.57 | 62.06 | 64.88 | 64.44 | 64.29 |
std.dev. | 6.61 | 6.47 | 5.77 | 7.10 | 5.17 | 6.29 | 7.17 | |
rank | 1 | 5 | 7 | 6 | 2 | 3 | 4 | |
181079 | mean | 66.24 | 63.42 | 60.68 | 67.24 | 61.74 | 61.07 | 63.29 |
std.dev. | 3.44 | 7.56 | 5.97 | 3.94 | 5.25 | 7.62 | 6.61 | |
rank | 2 | 3 | 7 | 1 | 5 | 6 | 4 | |
175043 | mean | 63.16 | 65.59 | 59.16 | 63.62 | 62.32 | 61.72 | 64.77 |
std.dev. | 3.50 | 6.04 | 4.16 | 4.75 | 5.49 | 6.50 | 6.30 | |
rank | 4 | 1 | 7 | 3 | 5 | 6 | 2 | |
101085 | mean | 63.96 | 62.49 | 61.59 | 64.08 | 66.85 | 61.21 | 66.20 |
std.dev. | 4.86 | 5.71 | 5.09 | 5.41 | 3.05 | 5.94 | 5.69 | |
rank | 4 | 5 | 6 | 3 | 1 | 7 | 2 | |
147091 | mean | 67.88 | 67.97 | 65.16 | 67.62 | 66.95 | 65.15 | 68.05 |
std.dev. | 1.56 | 2.70 | 3.82 | 1.61 | 1.20 | 4.40 | 2.22 | |
rank | 3 | 2 | 6 | 4 | 5 | 7 | 1 | |
101087 | mean | 59.46 | 65.73 | 60.56 | 64.92 | 63.64 | 64.99 | 71.12 |
std.dev. | 7.20 | 9.02 | 7.60 | 7.09 | 7.42 | 8.55 | 3.91 | |
rank | 7 | 2 | 6 | 4 | 5 | 3 | 1 | |
253027 | mean | 29.99 | 30.07 | 29.87 | 30.03 | 29.92 | 29.97 | 30.03 |
std.dev. | 0.07 | 0.07 | 0.23 | 0.13 | 0.17 | 0.16 | 0.13 | |
rank | 4 | 1 | 7 | 2 | 6 | 5 | 3 | |
average rank | 3.25 | 3.25 | 6.58 | 3.42 | 4.08 | 5.17 | 2.25 | |
overall rank | 2.5 | 2.5 | 7 | 4 | 5 | 6 | 1 |
Image | ME-DE | ME-FA | ME-BA | ME-MFO | ME-DA | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
Boats | mean | 35.39 | 35.84 | 35.22 | 35.87 | 35.79 | 35.80 | 35.84 |
std.dev. | 0.20 | 0.02 | 0.48 | 0.11 | 0.19 | 0.21 | 0.02 | |
rank | 6 | 3 | 7 | 1 | 5 | 4 | 2 | |
Peppers | mean | 66.45 | 65.67 | 62.46 | 68.23 | 66.39 | 64.90 | 71.57 |
std.dev. | 6.49 | 10.13 | 8.86 | 7.65 | 7.90 | 9.98 | 7.94 | |
rank | 3 | 5 | 7 | 2 | 4 | 6 | 1 | |
Goldhill | mean | 16.80 | 17.32 | 17.24 | 18.14 | 17.21 | 16.87 | 17.61 |
std.dev. | 0.47 | 0.29 | 0.56 | 0.42 | 0.31 | 0.75 | 0.35 | |
rank | 7 | 3 | 4 | 1 | 5 | 6 | 2 | |
Lenna | mean | 71.57 | 66.49 | 63.34 | 68.87 | 63.74 | 65.17 | 70.22 |
std.dev. | 2.06 | 5.90 | 5.44 | 5.58 | 5.09 | 6.61 | 5.22 | |
rank | 1 | 4 | 7 | 3 | 6 | 5 | 2 | |
House | mean | 64.92 | 67.11 | 64.48 | 67.14 | 65.55 | 64.82 | 68.62 |
std.dev. | 2.41 | 8.91 | 2.61 | 4.27 | 3.78 | 7.53 | 4.19 | |
rank | 5 | 3 | 7 | 2 | 4 | 6 | 1 | |
12003 | mean | 65.84 | 63.35 | 63.79 | 66.29 | 69.58 | 64.16 | 68.69 |
std.dev. | 7.14 | 7.49 | 6.69 | 6.40 | 3.66 | 7.12 | 5.71 | |
rank | 4 | 7 | 6 | 3 | 1 | 5 | 2 | |
181079 | mean | 68.29 | 68.97 | 60.33 | 68.33 | 65.18 | 62.18 | 65.78 |
std.dev. | 2.79 | 5.29 | 5.14 | 4.08 | 5.40 | 7.61 | 6.79 | |
rank | 3 | 1 | 7 | 2 | 5 | 6 | 4 | |
175043 | mean | 62.84 | 67.97 | 61.56 | 63.57 | 62.61 | 59.77 | 66.16 |
std.dev. | 3.63 | 5.65 | 4.35 | 3.52 | 5.77 | 6.05 | 6.07 | |
rank | 4 | 1 | 6 | 3 | 5 | 7 | 2 | |
101085 | mean | 64.24 | 64.36 | 62.44 | 66.87 | 69.09 | 65.96 | 68.04 |
std.dev. | 4.22 | 5.80 | 4.35 | 5.69 | 1.54 | 5.86 | 4.98 | |
rank | 6 | 5 | 7 | 3 | 1 | 4 | 2 | |
147091 | mean | 70.11 | 70.11 | 68.22 | 69.73 | 69.41 | 66.69 | 70.68 |
std.dev. | 2.28 | 3.40 | 4.16 | 1.88 | 1.64 | 5.46 | 2.28 | |
rank | 2 | 3 | 6 | 4 | 5 | 7 | 1 | |
101087 | mean | 62.25 | 69.13 | 62.67 | 68.57 | 69.01 | 66.49 | 70.57 |
std.dev. | 5.94 | 10.06 | 6.96 | 7.21 | 8.01 | 9.04 | 7.82 | |
rank | 7 | 2 | 6 | 4 | 3 | 5 | 1 | |
253027 | mean | 32.99 | 33.22 | 32.89 | 33.26 | 33.18 | 33.06 | 33.21 |
std.dev. | 0.09 | 0.11 | 0.27 | 0.02 | 0.11 | 0.21 | 0.15 | |
rank | 6 | 2 | 7 | 1 | 4 | 5 | 3 | |
average rank | 4.50 | 3.25 | 6.42 | 2.42 | 4.00 | 5.50 | 1.92 | |
overall rank | 5 | 3 | 7 | 2 | 4 | 6 | 1 |
Image | ME-DE | ME-FA | ME-BA | ME-MFO | ME-DA | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
Boats | mean | 37.76 | 38.39 | 37.94 | 38.40 | 38.18 | 38.15 | 38.35 |
std.dev. | 0.22 | 0.12 | 0.36 | 0.18 | 0.20 | 0.27 | 0.20 | |
rank | 7 | 2 | 6 | 1 | 4 | 5 | 3 | |
Peppers | mean | 68.26 | 68.96 | 65.50 | 69.32 | 64.66 | 66.02 | 70.44 |
std.dev. | 7.76 | 7.89 | 8.12 | 6.85 | 7.07 | 10.10 | 8.67 | |
rank | 4 | 3 | 6 | 2 | 7 | 5 | 1 | |
Goldhill | mean | 17.48 | 18.82 | 18.28 | 19.86 | 18.61 | 18.49 | 19.01 |
std.dev. | 0.64 | 0.64 | 0.71 | 0.30 | 0.41 | 0.46 | 0.28 | |
rank | 7 | 3 | 6 | 1 | 4 | 5 | 2 | |
Lenna | mean | 73.16 | 68.20 | 68.15 | 70.58 | 64.39 | 67.49 | 71.51 |
std.dev. | 1.51 | 5.73 | 5.63 | 5.42 | 5.67 | 7.35 | 5.43 | |
rank | 1 | 4 | 5 | 3 | 7 | 6 | 2 | |
House | mean | 67.70 | 42.00 | 64.87 | 65.34 | 61.41 | 58.10 | 68.78 |
std.dev. | 3.36 | 12.44 | 3.87 | 9.24 | 7.85 | 8.57 | 4.30 | |
rank | 2 | 7 | 4 | 3 | 5 | 6 | 1 | |
12003 | mean | 68.55 | 69.43 | 65.12 | 68.96 | 67.90 | 64.66 | 71.27 |
std.dev. | 4.65 | 7.55 | 8.30 | 7.07 | 4.65 | 6.83 | 5.62 | |
rank | 4 | 2 | 6 | 3 | 5 | 7 | 1 | |
181079 | mean | 70.16 | 53.32 | 62.10 | 69.29 | 63.59 | 61.53 | 66.81 |
std.dev. | 3.02 | 16.02 | 5.33 | 8.51 | 5.27 | 9.09 | 5.89 | |
rank | 1 | 7 | 6 | 2 | 4 | 5 | 3 | |
175043 | mean | 63.96 | 54.01 | 61.11 | 64.55 | 59.43 | 60.84 | 68.18 |
std.dev. | 4.80 | 13.72 | 3.48 | 4.80 | 4.70 | 6.85 | 6.20 | |
rank | 3 | 7 | 4 | 2 | 6 | 5 | 1 | |
101085 | mean | 67.46 | 65.38 | 67.37 | 69.57 | 69.85 | 66.43 | 69.95 |
std.dev. | 4.39 | 5.28 | 5.68 | 4.71 | 3.45 | 6.23 | 4.67 | |
rank | 4 | 7 | 5 | 3 | 2 | 6 | 1 | |
147091 | mean | 70.68 | 71.75 | 67.48 | 70.72 | 70.01 | 69.16 | 70.73 |
std.dev. | 1.67 | 4.51 | 3.65 | 4.44 | 2.49 | 5.00 | 1.49 | |
rank | 4 | 1 | 7 | 3 | 5 | 6 | 2 | |
101087 | mean | 65.94 | 72.41 | 64.94 | 71.27 | 67.22 | 68.94 | 74.58 |
std.dev. | 7.50 | 8.27 | 5.43 | 8.13 | 7.40 | 9.07 | 5.51 | |
rank | 6 | 2 | 7 | 3 | 5 | 4 | 1 | |
253027 | mean | 35.87 | 36.29 | 36.02 | 36.28 | 36.16 | 36.25 | 36.22 |
std.dev. | 0.15 | 0.05 | 0.34 | 0.10 | 0.16 | 0.17 | 0.17 | |
rank | 7 | 1 | 6 | 2 | 5 | 3 | 4 | |
average rank | 4.17 | 3.83 | 5.67 | 2.33 | 4.92 | 5.25 | 1.83 | |
overall rank | 4 | 3 | 7 | 2 | 5 | 6 | 1 |
Image | ME-DE | ME-FA | ME-BA | ME-MFO | ME-DA | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
Boats | mean | 50.61 | 51.20 | 51.02 | 51.38 | 50.54 | 51.14 | 51.10 |
std.dev. | 0.16 | 0.15 | 0.22 | 0.11 | 0.27 | 0.16 | 0.24 | |
rank | 6 | 2 | 5 | 1 | 7 | 3 | 4 | |
Peppers | mean | 51.27 | 49.84 | 60.95 | 54.62 | 50.92 | 58.53 | 73.47 |
std.dev. | 3.30 | 0.26 | 9.31 | 10.81 | 6.36 | 6.73 | 5.87 | |
rank | 5 | 7 | 2 | 4 | 6 | 3 | 1 | |
Goldhill | mean | 24.21 | 24.45 | 24.22 | 26.85 | 23.16 | 23.72 | 24.13 |
std.dev. | 0.45 | 1.12 | 1.55 | 1.06 | 0.55 | 0.87 | 0.92 | |
rank | 4 | 2 | 3 | 1 | 7 | 6 | 5 | |
Lenna | mean | 58.84 | 49.93 | 70.03 | 54.82 | 50.07 | 60.99 | 74.63 |
std.dev. | 7.21 | 0.23 | 5.47 | 10.61 | 2.08 | 5.09 | 6.31 | |
rank | 4 | 7 | 2 | 5 | 6 | 3 | 1 | |
House | mean | 49.51 | 50.06 | 63.28 | 50.29 | 49.22 | 51.92 | 64.51 |
std.dev. | 0.21 | 0.17 | 6.97 | 0.05 | 0.32 | 5.59 | 8.08 | |
rank | 6 | 5 | 2 | 4 | 7 | 3 | 1 | |
12003 | mean | 61.17 | 51.75 | 68.35 | 63.73 | 52.08 | 60.81 | 74.15 |
std.dev. | 5.80 | 0.12 | 8.73 | 12.25 | 1.82 | 3.68 | 6.18 | |
rank | 4 | 7 | 2 | 3 | 6 | 5 | 1 | |
181079 | mean | 50.30 | 50.74 | 64.51 | 51.17 | 49.90 | 58.92 | 63.68 |
std.dev. | 0.36 | 0.39 | 6.95 | 0.03 | 0.52 | 4.47 | 5.65 | |
rank | 6 | 5 | 1 | 4 | 7 | 3 | 2 | |
175043 | mean | 50.84 | 51.12 | 61.65 | 51.72 | 50.49 | 56.54 | 62.62 |
std.dev. | 0.20 | 0.32 | 4.57 | 0.15 | 0.41 | 4.30 | 6.13 | |
rank | 6 | 5 | 2 | 4 | 7 | 3 | 1 | |
101085 | mean | 60.09 | 52.61 | 68.84 | 58.63 | 55.00 | 66.96 | 74.33 |
std.dev. | 7.01 | 0.14 | 7.57 | 8.43 | 5.81 | 4.63 | 4.24 | |
rank | 4 | 7 | 2 | 5 | 6 | 3 | 1 | |
147091 | mean | 56.56 | 52.43 | 69.47 | 53.44 | 52.45 | 67.77 | 76.56 |
std.dev. | 6.64 | 0.13 | 5.98 | 4.03 | 2.52 | 4.69 | 3.45 | |
rank | 4 | 7 | 2 | 5 | 6 | 3 | 1 | |
101087 | mean | 55.69 | 50.39 | 62.74 | 56.56 | 49.60 | 56.76 | 76.40 |
std.dev. | 6.80 | 0.14 | 9.65 | 11.74 | 0.33 | 11.03 | 8.46 | |
rank | 5 | 6 | 2 | 4 | 7 | 3 | 1 | |
253027 | mean | 48.80 | 49.35 | 49.37 | 49.51 | 48.40 | 49.39 | 49.38 |
std.dev. | 0.22 | 0.16 | 0.23 | 0.06 | 0.35 | 0.11 | 0.12 | |
rank | 6 | 5 | 4 | 1 | 7 | 2 | 3 | |
average rank | 5.00 | 5.42 | 2.42 | 3.42 | 6.58 | 3.33 | 1.83 | |
overall rank | 5 | 6 | 2 | 4 | 7 | 3 | 1 |
Image | ME-DE | ME-FA | ME-BA | ME-MFO | ME-DA | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
Boats | mean | 0.4784 | 0.5276 | 0.5365 | 0.4737 | 0.4713 | 0.4662 | 0.4855 |
std.dev. | 0.0006 | 0.1130 | 0.1262 | 0.0083 | 0.0085 | 0.0077 | 0.0554 | |
rank | 4 | 2 | 1 | 5 | 6 | 7 | 3 | |
Peppers | mean | 0.6064 | 0.5988 | 0.6048 | 0.6034 | 0.5947 | 0.6089 | 0.6120 |
std.dev. | 0.0196 | 0.0179 | 0.0175 | 0.0184 | 0.0175 | 0.0189 | 0.0164 | |
rank | 3 | 6 | 4 | 5 | 7 | 2 | 1 | |
Goldhill | mean | 0.6152 | 0.6237 | 0.6326 | 0.5951 | 0.6206 | 0.6089 | 0.6258 |
std.dev. | 0.0565 | 0.0513 | 0.0418 | 0.0521 | 0.0562 | 0.0352 | 0.0036 | |
rank | 5 | 3 | 1 | 7 | 4 | 6 | 2 | |
Lenna | mean | 0.6381 | 0.6203 | 0.6129 | 0.6092 | 0.6112 | 0.6219 | 0.6237 |
std.dev. | 0.0109 | 0.0271 | 0.0271 | 0.0262 | 0.0271 | 0.0263 | 0.0260 | |
rank | 1 | 4 | 5 | 7 | 6 | 3 | 2 | |
House | mean | 0.4519 | 0.4575 | 0.4512 | 0.4484 | 0.4524 | 0.4563 | 0.4537 |
std.dev. | 0.0137 | 0.0141 | 0.0118 | 0.0105 | 0.0133 | 0.0146 | 0.0138 | |
rank | 5 | 1 | 6 | 7 | 4 | 2 | 3 | |
12003 | mean | 0.5288 | 0.5267 | 0.5343 | 0.5329 | 0.5118 | 0.5182 | 0.5327 |
std.dev. | 0.0214 | 0.0273 | 0.0276 | 0.0232 | 0.0206 | 0.0239 | 0.0309 | |
rank | 4 | 5 | 1 | 2 | 7 | 6 | 3 | |
181079 | mean | 0.5123 | 0.5169 | 0.5152 | 0.5140 | 0.5120 | 0.5141 | 0.5138 |
std.dev. | 0.0029 | 0.0048 | 0.0050 | 0.0028 | 0.0016 | 0.0039 | 0.0028 | |
rank | 6 | 1 | 2 | 4 | 7 | 3 | 5 | |
175043 | mean | 0.2920 | 0.2918 | 0.2911 | 0.2917 | 0.2918 | 0.2923 | 0.2948 |
std.dev. | 0.0033 | 0.0020 | 0.0045 | 0.0033 | 0.0028 | 0.0027 | 0.0023 | |
rank | 3 | 4 | 7 | 6 | 5 | 2 | 1 | |
101085 | mean | 0.5475 | 0.5748 | 0.5862 | 0.5853 | 0.5607 | 0.5590 | 0.5631 |
std.dev. | 0.0294 | 0.0462 | 0.0485 | 0.0477 | 0.0380 | 0.0445 | 0.0434 | |
rank | 7 | 3 | 1 | 2 | 5 | 6 | 4 | |
147091 | mean | 0.5974 | 0.6270 | 0.6138 | 0.6018 | 0.5940 | 0.6541 | 0.6022 |
std.dev. | 0.0126 | 0.0591 | 0.0546 | 0.0341 | 0.0016 | 0.0795 | 0.0207 | |
rank | 6 | 2 | 3 | 5 | 7 | 1 | 4 | |
101087 | mean | 0.6353 | 0.6323 | 0.6282 | 0.6338 | 0.6349 | 0.6297 | 0.6384 |
std.dev. | 0.0076 | 0.0134 | 0.0146 | 0.0111 | 0.0098 | 0.0156 | 0.0025 | |
rank | 2 | 5 | 7 | 4 | 3 | 6 | 1 | |
253027 | mean | 0.6052 | 0.6169 | 0.6348 | 0.6173 | 0.6137 | 0.6154 | 0.6171 |
std.dev. | 0.0113 | 0.0007 | 0.0462 | 0.0012 | 0.0060 | 0.0062 | 0.0015 | |
rank | 7 | 4 | 1 | 2 | 6 | 5 | 3 | |
average rank | 4.41 | 3.33 | 3.25 | 4.58 | 5.50 | 4.08 | 2.66 | |
overall rank | 5 | 3 | 2 | 6 | 7 | 4 | 1 |
Image | ME-DE | ME-FA | ME-BA | ME-MFO | ME-DA | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
Boats | mean | 0.7608 | 0.7674 | 0.7993 | 0.7549 | 0.7362 | 0.7465 | 0.7661 |
std.dev. | 0.0870 | 0.0031 | 0.0272 | 0.0580 | 0.0982 | 0.0836 | 0.0023 | |
rank | 4 | 2 | 1 | 5 | 7 | 6 | 3 | |
Peppers | mean | 0.6094 | 0.6099 | 0.6057 | 0.6040 | 0.5991 | 0.6016 | 0.6098 |
std.dev. | 0.0161 | 0.0201 | 0.0197 | 0.0202 | 0.0151 | 0.0205 | 0.0212 | |
rank | 3 | 1 | 4 | 5 | 7 | 6 | 2 | |
Goldhill | mean | 0.6856 | 0.6961 | 0.6928 | 0.6126 | 0.6783 | 0.6698 | 0.6937 |
std.dev. | 0.0779 | 0.0745 | 0.0526 | 0.0488 | 0.0808 | 0.0787 | 0.0803 | |
rank | 4 | 1 | 3 | 7 | 5 | 6 | 2 | |
Lenna | mean | 0.6329 | 0.6080 | 0.6028 | 0.6141 | 0.6199 | 0.6207 | 0.6288 |
std.dev. | 0.0193 | 0.0267 | 0.0237 | 0.0266 | 0.0270 | 0.0266 | 0.0234 | |
rank | 1 | 6 | 7 | 5 | 4 | 3 | 2 | |
House | mean | 0.4461 | 0.4617 | 0.4487 | 0.4564 | 0.4518 | 0.4531 | 0.4573 |
std.dev. | 0.0076 | 0.0166 | 0.0105 | 0.0148 | 0.0136 | 0.0140 | 0.0146 | |
rank | 7 | 1 | 6 | 3 | 5 | 4 | 2 | |
12003 | mean | 0.5347 | 0.5500 | 0.5372 | 0.5353 | 0.5089 | 0.5391 | 0.5324 |
std.dev. | 0.0221 | 0.0208 | 0.0267 | 0.0247 | 0.0194 | 0.0268 | 0.0236 | |
rank | 5 | 1 | 3 | 4 | 7 | 2 | 6 | |
181079 | mean | 0.5124 | 0.5153 | 0.5163 | 0.5148 | 0.5142 | 0.5160 | 0.5178 |
std.dev. | 0.0022 | 0.0040 | 0.0061 | 0.0044 | 0.0034 | 0.0044 | 0.0023 | |
rank | 7 | 4 | 2 | 5 | 6 | 3 | 1 | |
175043 | mean | 0.2925 | 0.2904 | 0.2924 | 0.2926 | 0.2913 | 0.2924 | 0.2924 |
std.dev. | 0.0028 | 0.0033 | 0.0034 | 0.0028 | 0.0034 | 0.0034 | 0.0028 | |
rank | 2 | 7 | 4 | 1 | 6 | 5 | 3 | |
101085 | mean | 0.5573 | 0.5858 | 0.6029 | 0.6112 | 0.5750 | 0.5793 | 0.5761 |
std.dev. | 0.0354 | 0.0574 | 0.0577 | 0.0511 | 0.0397 | 0.0474 | 0.0457 | |
rank | 7 | 3 | 2 | 1 | 6 | 4 | 5 | |
147091 | mean | 0.6045 | 0.6406 | 0.6226 | 0.6095 | 0.6034 | 0.6438 | 0.6204 |
std.dev. | 0.0210 | 0.0570 | 0.0540 | 0.0398 | 0.0197 | 0.0701 | 0.0449 | |
rank | 6 | 2 | 3 | 5 | 7 | 1 | 4 | |
101087 | mean | 0.6398 | 0.6292 | 0.6334 | 0.6383 | 0.6392 | 0.6289 | 0.6366 |
std.dev. | 0.0082 | 0.0171 | 0.0116 | 0.0094 | 0.0077 | 0.0162 | 0.0116 | |
rank | 1 | 6 | 5 | 3 | 2 | 7 | 4 | |
253027 | mean | 0.6512 | 0.6439 | 0.7278 | 0.6341 | 0.6456 | 0.7124 | 0.6538 |
std.dev. | 0.0233 | 0.0366 | 0.0807 | 0.0070 | 0.0371 | 0.0856 | 0.0592 | |
rank | 4 | 6 | 1 | 7 | 5 | 2 | 3 | |
average rank | 4.25 | 3.33 | 3.41 | 4.25 | 5.58 | 4.08 | 3.08 | |
overall rank | 5.5 | 2 | 3 | 5.5 | 7 | 4 | 1 |
Image | ME-DE | ME-FA | ME-BA | ME-MFO | ME-DA | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
Boats | mean | 0.8391 | 0.8105 | 0.8440 | 0.8158 | 0.8282 | 0.8374 | 0.8440 |
std.dev. | 0.0302 | 0.0188 | 0.0407 | 0.0272 | 0.0279 | 0.0368 | 0.0278 | |
rank | 3 | 7 | 1 | 6 | 5 | 4 | 2 | |
Peppers | mean | 0.6098 | 0.6067 | 0.6107 | 0.6141 | 0.6020 | 0.6010 | 0.6140 |
std.dev. | 0.0169 | 0.0183 | 0.0157 | 0.0131 | 0.0173 | 0.0201 | 0.0208 | |
rank | 4 | 5 | 3 | 1 | 6 | 7 | 2 | |
Goldhill | mean | 0.7417 | 0.7613 | 0.7859 | 0.6458 | 0.7097 | 0.7432 | 0.7860 |
std.dev. | 0.0879 | 0.0581 | 0.0625 | 0.0770 | 0.0768 | 0.0761 | 0.0505 | |
rank | 5 | 3 | 2 | 7 | 6 | 4 | 1 | |
Lenna | mean | 0.6400 | 0.6028 | 0.6086 | 0.6084 | 0.6082 | 0.6249 | 0.6358 |
std.dev. | 0.0105 | 0.0242 | 0.0251 | 0.0259 | 0.0267 | 0.0258 | 0.0187 | |
rank | 1 | 7 | 4 | 5 | 6 | 3 | 2 | |
House | mean | 0.4565 | 0.4524 | 0.4524 | 0.4877 | 0.4678 | 0.4465 | 0.4565 |
std.dev. | 0.0149 | 0.1245 | 0.0108 | 0.1083 | 0.0807 | 0.0083 | 0.0149 | |
rank | 4 | 6 | 5 | 1 | 2 | 7 | 3 | |
12003 | mean | 0.5221 | 0.5483 | 0.5273 | 0.5494 | 0.5140 | 0.5422 | 0.5428 |
std.dev. | 0.0200 | 0.0219 | 0.0302 | 0.0208 | 0.0192 | 0.0257 | 0.0296 | |
rank | 6 | 2 | 5 | 1 | 7 | 4 | 3 | |
181079 | mean | 0.5129 | 0.6074 | 0.5151 | 0.5242 | 0.5141 | 0.5175 | 0.5260 |
std.dev. | 0.0021 | 0.1071 | 0.0051 | 0.0456 | 0.0042 | 0.0049 | 0.0050 | |
rank | 7 | 1 | 5 | 3 | 6 | 4 | 2 | |
175043 | mean | 0.2919 | 0.2917 | 0.2934 | 0.2922 | 0.2916 | 0.2908 | 0.2911 |
std.dev. | 0.0033 | 0.2409 | 0.0021 | 0.0028 | 0.0039 | 0.0047 | 0.0024 | |
rank | 3 | 4 | 1 | 2 | 5 | 7 | 6 | |
101085 | mean | 0.5916 | 0.5814 | 0.5914 | 0.6079 | 0.5845 | 0.5987 | 0.5864 |
std.dev. | 0.0549 | 0.0594 | 0.0597 | 0.0538 | 0.0455 | 0.0527 | 0.0395 | |
rank | 3 | 7 | 4 | 1 | 6 | 2 | 5 | |
147091 | mean | 0.5981 | 0.6270 | 0.6295 | 0.6353 | 0.6149 | 0.6626 | 0.6382 |
std.dev. | 0.0016 | 0.0573 | 0.0603 | 0.0607 | 0.0396 | 0.0733 | 0.0016 | |
rank | 7 | 5 | 4 | 3 | 6 | 1 | 2 | |
101087 | mean | 0.6419 | 0.6341 | 0.6356 | 0.6381 | 0.6360 | 0.6310 | 0.6405 |
std.dev. | 0.0051 | 0.0145 | 0.0091 | 0.0142 | 0.0100 | 0.0163 | 0.0085 | |
rank | 1 | 6 | 5 | 3 | 4 | 7 | 2 | |
253027 | mean | 0.7938 | 0.8103 | 0.8062 | 0.8055 | 0.7971 | 0.7917 | 0.8064 |
std.dev. | 0.0358 | 0.0315 | 0.0459 | 0.0377 | 0.0448 | 0.0552 | 0.0391 | |
rank | 6 | 1 | 3 | 4 | 5 | 7 | 2 | |
average rank | 4.17 | 4.50 | 3.50 | 3.08 | 5.33 | 4.75 | 2.67 | |
overall rank | 4 | 5 | 3 | 2 | 7 | 6 | 1 |
Image | ME-DE | ME-FA | ME-BA | ME-MFO | ME-DA | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
Boats | mean | 0.9521 | 0.9646 | 0.9585 | 0.9613 | 0.9548 | 0.9575 | 0.9664 |
std.dev. | 0.0157 | 0.0053 | 0.0111 | 0.0076 | 0.0119 | 0.0094 | 0.0063 | |
rank | 7 | 2 | 4 | 3 | 6 | 5 | 1 | |
Peppers | mean | 0.7943 | 0.8648 | 0.6669 | 0.8619 | 0.8301 | 0.8250 | 0.8716 |
std.dev. | 0.1394 | 0.0064 | 0.1258 | 0.1083 | 0.1247 | 0.0164 | 0.0137 | |
rank | 6 | 2 | 7 | 3 | 4 | 5 | 1 | |
Goldhill | mean | 0.8447 | 0.8778 | 0.8766 | 0.8211 | 0.8567 | 0.8258 | 0.8708 |
std.dev. | 0.0481 | 0.0328 | 0.0551 | 0.0468 | 0.0260 | 0.0615 | 0.0466 | |
rank | 5 | 1 | 2 | 7 | 4 | 6 | 3 | |
Lenna | mean | 0.6295 | 0.6345 | 0.6253 | 0.6403 | 0.6409 | 0.6397 | 0.6465 |
std.dev. | 0.0902 | 0.0070 | 0.0235 | 0.1175 | 0.1346 | 0.0150 | 0.0281 | |
rank | 6 | 5 | 7 | 3 | 2 | 4 | 1 | |
House | mean | 0.9525 | 0.9645 | 0.9994 | 0.9637 | 0.9484 | 0.8953 | 0.9600 |
std.dev. | 0.0131 | 0.0044 | 0.1913 | 0.0046 | 0.0110 | 0.1675 | 0.2078 | |
rank | 5 | 2 | 1 | 3 | 6 | 7 | 4 | |
12003 | mean | 0.5950 | 0.5990 | 0.5357 | 0.5919 | 0.5921 | 0.5820 | 0.5980 |
std.dev. | 0.1161 | 0.0112 | 0.0280 | 0.1845 | 0.1593 | 0.0163 | 0.0279 | |
rank | 3 | 1 | 7 | 5 | 4 | 6 | 2 | |
181079 | mean | 0.8247 | 0.8753 | 0.8441 | 0.8613 | 0.8572 | 0.8205 | 0.8788 |
std.dev. | 0.0950 | 0.0106 | 0.0953 | 0.0069 | 0.0192 | 0.0945 | 0.0053 | |
rank | 6 | 2 | 5 | 3 | 4 | 7 | 1 | |
175043 | mean | 0.9327 | 0.9551 | 0.9369 | 0.9486 | 0.9252 | 0.9322 | 0.9488 |
std.dev. | 0.0168 | 0.0070 | 0.1852 | 0.0045 | 0.0266 | 0.2206 | 0.0054 | |
rank | 5 | 1 | 4 | 3 | 7 | 6 | 2 | |
101085 | mean | 0.8335 | 0.8441 | 0.8773 | 0.8331 | 0.8345 | 0.8270 | 0.8381 |
std.dev. | 0.1426 | 0.0070 | 0.0455 | 0.1606 | 0.1413 | 0.0620 | 0.0501 | |
rank | 5 | 2 | 1 | 6 | 4 | 7 | 3 | |
147091 | mean | 0.8307 | 0.8958 | 0.8308 | 0.8848 | 0.8706 | 0.8642 | 0.8769 |
std.dev. | 0.1192 | 0.0067 | 0.0587 | 0.0541 | 0.0602 | 0.0833 | 0.0591 | |
rank | 7 | 1 | 6 | 2 | 4 | 5 | 3 | |
101087 | mean | 0.8122 | 0.8123 | 0.8261 | 0.8417 | 0.8915 | 0.8194 | 0.8376 |
std.dev. | 0.1178 | 0.0074 | 0.0082 | 0.1172 | 0.0180 | 0.1316 | 0.0149 | |
rank | 7 | 6 | 4 | 2 | 1 | 5 | 3 | |
253027 | mean | 0.9057 | 0.9173 | 0.9069 | 0.9125 | 0.8978 | 0.9079 | 0.9197 |
std.dev. | 0.0168 | 0.0106 | 0.0116 | 0.0069 | 0.0199 | 0.0114 | 0.0131 | |
rank | 6 | 2 | 5 | 3 | 7 | 4 | 1 | |
average rank | 5.67 | 2.25 | 4.42 | 3.58 | 4.42 | 5.58 | 2.08 | |
overall rank | 7 | 2 | 4.5 | 3 | 4.5 | 6 | 1 |
Image | ME-DE | ME-BA | ME-ALO | ME-DA | ME-MVO | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
12003 | mean | 0.7775 | 0.7537 | 0.9412 | 0.7589 | 0.8207 | 0.8203 | 0.8128 |
std.dev. | 0.0634 | 0.0706 | 0.0000 | 0.0676 | 0.0000 | 0.0000 | 0.0662 | |
rank | 5 | 7 | 1 | 6 | 2 | 3 | 4 | |
181079 | mean | 0.3865 | 0.6533 | 0.7601 | 0.6533 | 0.7848 | 0.7847 | 0.6533 |
std.dev. | 0.0651 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
rank | 7 | 4 | 3 | 6 | 1 | 2 | 5 | |
175043 | Mean | 0.8148 | 0.8421 | 0.8355 | 0.8416 | 0.8314 | 0.8537 | 0.9438 |
std.dev. | 0.0053 | 0.0521 | 0.0484 | 0.0523 | 0.0426 | 0.0578 | 0.0557 | |
rank | 7 | 3 | 5 | 4 | 6 | 2 | 1 | |
101085 | mean | 0.6533 | 0.9412 | 0.6533 | 0.8207 | 0.8203 | 0.6533 | 0.9412 |
std.dev. | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
rank | 5 | 1.5 | 6.5 | 3 | 4 | 6.5 | 1.5 | |
147091 | mean | 0.7967 | 0.9412 | 0.7875 | 0.8224 | 0.8271 | 0.7615 | 0.9412 |
std.dev. | 0.0268 | 0.0000 | 0.0563 | 0.0058 | 0.0102 | 0.0579 | 0.0000 | |
rank | 5 | 1.5 | 6 | 4 | 3 | 7 | 1.5 | |
101087 | mean | 0.6533 | 0.9412 | 0.6533 | 0.8207 | 0.8203 | 0.6533 | 0.9412 |
std.dev. | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
rank | 5 | 1.5 | 6.5 | 3 | 4 | 6.5 | 1.5 | |
253027 | mean | 0.8228 | 0.9412 | 0.7889 | 0.8225 | 0.8218 | 0.7966 | 0.9412 |
std.dev. | 0.0004 | 0.0000 | 0.0387 | 0.0008 | 0.0013 | 0.0389 | 0.0000 | |
rank | 3 | 1.5 | 7 | 4 | 5 | 6 | 1.5 | |
average rank | 5.29 | 2.86 | 5.00 | 4.29 | 3.57 | 4.71 | 2.29 | |
overall rank | 7 | 2 | 6 | 4 | 3 | 5 | 1 |
Image | ME-DE | ME-BA | ME-ALO | ME-DA | ME-MVO | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
12003 | mean | 0.7749 | 0.7608 | 0.9394 | 0.7622 | 0.7934 | 0.8192 | 0.7031 |
std.dev. | 0.0539 | 0.0617 | 0.0000 | 0.0611 | 0.0197 | 0.0000 | 0.0893 | |
rank | 4 | 6 | 1 | 5 | 3 | 2 | 7 | |
181079 | mean | 0.4388 | 0.4603 | 0.7601 | 0.5376 | 0.6531 | 0.7847 | 0.5424 |
std.dev. | 0.0500 | 0.0326 | 0.0000 | 0.0024 | 0.0000 | 0.0000 | 0.0140 | |
rank | 7 | 6 | 2 | 5 | 3 | 1 | 4 | |
175043 | mean | 0.8226 | 0.8430 | 0.8329 | 0.8287 | 0.8442 | 0.8787 | 0.8383 |
std.dev. | 0.0157 | 0.0513 | 0.0421 | 0.0353 | 0.0524 | 0.0637 | 0.0471 | |
rank | 7 | 3 | 5 | 6 | 2 | 1 | 4 | |
101085 | mean | 0.5367 | 0.8196 | 0.5406 | 0.6531 | 0.8192 | 0.4894 | 0.9394 |
std.dev. | 0.0000 | 0.0000 | 0.0080 | 0.0000 | 0.0000 | 0.0403 | 0.0000 | |
rank | 6 | 2 | 5 | 4 | 3 | 7 | 1 | |
147091 | mean | 0.7885 | 0.8221 | 0.7607 | 0.7862 | 0.8251 | 0.7467 | 0.9394 |
std.dev. | 0.0311 | 0.0056 | 0.0635 | 0.0450 | 0.0081 | 0.0676 | 0.0000 | |
rank | 4 | 3 | 6 | 5 | 2 | 7 | 1 | |
101087 | mean | 0.5367 | 0.8196 | 0.5367 | 0.6531 | 0.8192 | 0.4496 | 0.9394 |
std.dev. | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
rank | 6 | 2 | 5 | 4 | 3 | 7 | 1 | |
253027 | mean | 0.8133 | 0.8196 | 0.7710 | 0.8155 | 0.8192 | 0.7820 | 0.9394 |
std.dev. | 0.0029 | 0.0000 | 0.0351 | 0.0008 | 0.0000 | 0.0407 | 0.0000 | |
rank | 5 | 2 | 7 | 4 | 3 | 6 | 1 | |
average rank | 5.57 | 3.43 | 4.43 | 4.71 | 2.71 | 4.43 | 2.71 | |
overall rank | 7 | 3 | 4.5 | 6 | 1.5 | 4.5 | 1.5 |
Image | ME-DE | ME-BA | ME-ALO | ME-DA | ME-MVO | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
12003 | mean | 0.7644 | 0.8196 | 0.9360 | 0.9360 | 0.7414 | 0.7268 | 0.9381 |
std.dev. | 0.0405 | 0.0000 | 0.0000 | 0.0000 | 0.0567 | 0.0615 | 0.0000 | |
rank | 5 | 4 | 2.5 | 2.5 | 6 | 7 | 1 | |
181079 | mean | 0.4826 | 0.7847 | 0.7597 | 0.7597 | 0.5485 | 0.6527 | 0.7589 |
std.dev. | 0.0401 | 0.0000 | 0.0000 | 0.0000 | 0.0247 | 0.0000 | 0.0000 | |
rank | 7 | 1 | 2.5 | 2.5 | 6 | 5 | 4 | |
175043 | mean | 0.8285 | 0.8266 | 0.8265 | 0.8398 | 0.8331 | 0.8672 | 0.8436 |
std.dev. | 0.0164 | 0.0491 | 0.0347 | 0.0459 | 0.0422 | 0.0665 | 0.0502 | |
rank | 5 | 6 | 7 | 3 | 4 | 1 | 2 | |
101085 | mean | 0.8196 | 0.9360 | 0.9360 | 0.5455 | 0.6527 | 0.8199 | 0.9381 |
std.dev. | 0.0000 | 0.0000 | 0.0000 | 0.0224 | 0.0000 | 0.0000 | 0.0000 | |
R | 5 | 2.5 | 2.5 | 7 | 6 | 4 | 1 | |
147091 | mean | 0.8233 | 0.9360 | 0.9360 | 0.7557 | 0.7748 | 0.8215 | 0.9381 |
std.dev. | 0.0049 | 0.0000 | 0.0000 | 0.0711 | 0.0455 | 0.0025 | 0.0000 | |
rank | 4 | 2.5 | 2.5 | 7 | 6 | 5 | 1 | |
101087 | mean | 0.8196 | 0.9360 | 0.9360 | 0.5368 | 0.6527 | 0.8199 | 0.9381 |
std.dev. | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
rank | 5 | 2.5 | 2.5 | 7 | 6 | 4 | 1 | |
253027 | mean | 0.8196 | 0.9360 | 0.9360 | 0.7290 | 0.7342 | 0.8199 | 0.9381 |
std.dev. | 0.0000 | 0.0000 | 0.0000 | 0.0249 | 0.0285 | 0.0000 | 0.0000 | |
rank | 5 | 2.5 | 2.5 | 7 | 6 | 4 | 1 | |
average rank | 5.14 | 3.00 | 3.14 | 5.14 | 5.71 | 4.29 | 1.57 | |
overall rank | 5.5 | 2 | 3 | 5.5 | 7 | 4 | 1 |
Image | ME-DE | ME-BA | ME-ALO | ME-DA | ME-MVO | ME-WOA | ME-GDEAR | |
---|---|---|---|---|---|---|---|---|
12003 | mean | 0.6094 | 0.5869 | 0.5886 | 0.6294 | 0.5824 | 0.5020 | 0.6506 |
std.dev. | 0.0840 | 0.0210 | 0.1445 | 0.0711 | 0.0472 | 0.0769 | 0.0786 | |
rank | 3 | 5 | 4 | 2 | 6 | 7 | 1 | |
181079 | mean | 0.6346 | 0.6297 | 0.5256 | 0.6322 | 0.6273 | 0.7311 | 0.6383 |
std.dev. | 0.0147 | 0.0176 | 0.2312 | 0.0100 | 0.0147 | 0.0666 | 0.0274 | |
rank | 3 | 5 | 7 | 4 | 6 | 1 | 2 | |
175043 | mean | 0.8067 | 0.8171 | 0.7149 | 0.8165 | 0.8105 | 0.6004 | 0.7849 |
std.dev. | 0.0248 | 0.0173 | 0.1576 | 0.0136 | 0.0237 | 0.0864 | 0.0419 | |
rank | 4 | 1 | 6 | 2 | 3 | 7 | 5 | |
101085 | mean | 0.6779 | 0.5834 | 0.5608 | 0.6248 | 0.6573 | 0.6934 | 0.7201 |
std.dev. | 0.1409 | 0.0375 | 0.2307 | 0.1022 | 0.1205 | 0.2814 | 0.0711 | |
rank | 3 | 6 | 7 | 5 | 4 | 2 | 1 | |
147091 | mean | 0.5510 | 0.4469 | 0.6957 | 0.4718 | 0.4815 | 0.5239 | 0.6560 |
std.dev. | 0.1039 | 0.0235 | 0.0927 | 0.0452 | 0.0333 | 0.1151 | 0.0479 | |
rank | 3 | 7 | 1 | 6 | 5 | 4 | 2 | |
101087 | mean | 0.4310 | 0.4334 | 0.4041 | 0.4234 | 0.4646 | 0.3783 | 0.4421 |
std.dev. | 0.0333 | 0.0246 | 0.1592 | 0.0247 | 0.0062 | 0.0971 | 0.0677 | |
rank | 4 | 3 | 6 | 5 | 1 | 7 | 2 | |
253027 | mean | 0.5256 | 0.5191 | 0.5210 | 0.5157 | 0.5136 | 0.5233 | 0.5205 |
std.dev. | 0.0228 | 0.0268 | 0.0216 | 0.0215 | 0.0406 | 0.0238 | 0.0303 | |
rank | 1 | 5 | 3 | 6 | 7 | 2 | 4 | |
average rank | 3.00 | 4.57 | 4.86 | 4.29 | 4.57 | 4.29 | 2.43 | |
overall rank | 2 | 4.5 | 7 | 3.5 | 4.5 | 3.5 | 1 |
p-Value | |
---|---|
ME-GDEAR vs. ME-DE | |
ME-GDEAR vs. ME-BA | |
ME-GDEAR vs. ME-GWO | |
ME-GDEAR vs. ME-DA | |
ME-GDEAR vs. ME-MVO | |
ME-GDEAR vs. ME-WOA |
Algorithm | Rank |
---|---|
ME-DE | 4.24 |
ME-BA | 3.92 |
ME-GWO | 5.27 |
ME-DA | 2.91 |
ME-MVO | 4.90 |
ME-WOA | 4.81 |
ME-GDEAR | 1.96 |
p-value | |
chi-squared | 87.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavirad, S.J.; Zabihzadeh, D.; Oliva, D.; Perez-Cisneros, M.; Schaefer, G. A Grouping Differential Evolution Algorithm Boosted by Attraction and Repulsion Strategies for Masi Entropy-Based Multi-Level Image Segmentation. Entropy 2022, 24, 8. https://doi.org/10.3390/e24010008
Mousavirad SJ, Zabihzadeh D, Oliva D, Perez-Cisneros M, Schaefer G. A Grouping Differential Evolution Algorithm Boosted by Attraction and Repulsion Strategies for Masi Entropy-Based Multi-Level Image Segmentation. Entropy. 2022; 24(1):8. https://doi.org/10.3390/e24010008
Chicago/Turabian StyleMousavirad, Seyed Jalaleddin, Davood Zabihzadeh, Diego Oliva, Marco Perez-Cisneros, and Gerald Schaefer. 2022. "A Grouping Differential Evolution Algorithm Boosted by Attraction and Repulsion Strategies for Masi Entropy-Based Multi-Level Image Segmentation" Entropy 24, no. 1: 8. https://doi.org/10.3390/e24010008
APA StyleMousavirad, S. J., Zabihzadeh, D., Oliva, D., Perez-Cisneros, M., & Schaefer, G. (2022). A Grouping Differential Evolution Algorithm Boosted by Attraction and Repulsion Strategies for Masi Entropy-Based Multi-Level Image Segmentation. Entropy, 24(1), 8. https://doi.org/10.3390/e24010008