Diagnosis of Combined Cycle Power Plant Based on Thermoeconomic Analysis: A Computer Simulation Study
<p>300-MW CCPP in Incheon, Korea.</p> "> Figure 2
<p>Cost structure for the 300-MW CCPP.</p> "> Figure 3
<p>Distributions of MF and DYS (<b>a</b>) and RMF and RDLC (<b>b</b>) for components of the CCPP with the 0.5% degraded isentropic efficiency in the air compressor at 100% load condition.</p> "> Figure 4
<p>Distributions of MF and DYS (<b>a1</b>,<b>b1</b>) and RMF and RDLC (<b>a2</b>,<b>b2</b>) for components of the CCPP with the 1% (<b>a1</b>,<b>a2</b>) and 2% (<b>b1</b>,<b>b2</b>) degraded isentropic efficiency in the gas turbine at 100% load condition.</p> "> Figure 5
<p>Distributions of MF and DYS (<b>a1</b>,<b>b1</b>) and RMF and RDLC (<b>a2</b>,<b>b2</b>) for components of the CCPP with the 1% (<b>a1</b>,<b>a2</b>) and 2% (<b>b1</b>,<b>b2</b>) degraded isentropic efficiency in the steam turbine at 100% load condition.</p> "> Figure 6
<p>Distributions of MF and DYS (<b>a</b>) and RMF and RDLC (<b>b</b>) for components of the CCPP with the 2% degraded efficiency in the HPSH (1) at 100% load condition.</p> "> Figure 7
<p>Distributions of MF and DYS (<b>a</b>) and RMF and RDLC (<b>b</b>) for components of the CCPP with the 0.5% degraded efficiency in the air compressor and 1% in the gas turbine at 100% load condition.</p> "> Figure 8
<p>Distributions of MF and DYS (<b>a1</b>,<b>a2</b>) and RMF and RDLC (<b>b1</b>,<b>b2</b>) for components of the CCPP with the 1% degraded isentropic efficiency in the gas turbine and 2% degraded efficiency in steam turbine (<b>a1</b>,<b>b1</b>) and with the 2% degraded isentropic efficiency in the gas turbine and the 4% degraded efficiency in steam turbine (<b>a2</b>,<b>b2</b>) at 100% load condition.</p> "> Figure 9
<p>Distributions of MF and DYS (<b>a</b>) and RDLC (<b>b</b>) for components of the CCPP with the 0.5% degraded efficiency in the air compressor, 1% in the gas turbine, and 2% in the steam turbine at 100% load condition.</p> "> Figure 10
<p>Distributions of MF and DYS (<b>a</b>) and RDLC (<b>b</b>) for components of the CCPP during operation two months after a major maintenance.</p> ">
Abstract
:1. Introduction
2. Cost-Balance Equations for a 300-MW Combined Power Plant
2.1. Modified Productive Structure Analysis (MOPSA) Method [3]
2.2. Levelized Cost of a Plant Component
2.3. 300-MW CCPP
2.4. Cost-Balance Equations for Each Component in a 300-MW CCPP
- (1)
- Air compressor (AC)
- (2)
- Gas turbine (GT)
- (3)
- Combustor (COM)
- (4)
- Fuel preheater (FP)
- (5)
- Steam turbine (ST)
- (6)
- Condenser (CON)
- (7)
- Pump (PP)
- (8)
- Heat recovery steam generator (HRSG)
- (9)
- Gas pipes
- (10)
- Steam pipes
- (1)
- Gas streams
- (2)
- Steam streams
3. Exergy and Thermoeconomic Analyses at a Reference Condition and Identification of Malfunctioning Components
4. Simulation at Full Load
5. Simulation on Performance Degradation for a CCPP
5.1. Thermoeconomic Evaluation of Different Single-Fault Scenarios
5.2. Thermoeconomic Evaluation of Multiple-Fault Scenarios
5.3. Data during Operation Obtained at Two Months after Major Maintenance
6. Conclusions
Author Contributions
Conflicts of Interest
Nomenclature
AC | Air compressor |
Ci | Initial investment cost (US$) |
Co | Unit cost of exergy of fuel (US$/kJ) |
Cs,ref | Unit cost of exergy of fuel at design point (US$/kJ) |
Cs,op | Unit cost of exergy of fuel at off-design point (US$/kJ) |
Cw | Unit cost of exergy of work (or electricity) (US$/kJ) |
Monetary flow rate (US$/year or US$/h) | |
CCPP | Combined cycle power plant |
COM | Combustor |
CON | Condenser |
CRF | Capital recovery factor |
D | Unit cost of production for steam (US$/MJ) |
DYS | Dysfunction |
Rate of exergy flow (MW) | |
FP | Fuel preheater |
GT | Gas turbine |
HRSG | Heat recovery steam generator |
Irreversibility rate (MW or kW) | |
Mass flow rate (kg/s) | |
MF | Malfunction (kW) |
MOPSA | Modified productive structure analysis |
P | Pressure |
PP | Pump |
PW | Present worth |
PWF | Present worth factor |
Heat transfer rate (MW or kW) | |
RDLC | Relative difference in the lost cost flow rate between real operation and reference condition |
RMF | Relative MF value |
Entropy flow rate (MW/K) | |
ST | Steam turbine |
T | Temperature (K) |
T0 | Ambient temperature (K) |
Work flow rate | |
Capital cost rate of unit k (US$/hr) |
Subscripts
boun | Boundary system |
cv | Control system |
k | kth component |
op | Operational condition |
P | Mechanical |
ref | Reference condition |
S | Entropy |
T | Thermal |
W | Work or electricity |
GS | Gas streams |
SS | Steam streams |
Superscripts
BQ | Steam |
CHE | Chemical |
F | Fuel |
LOST | Entropy generation |
P | Mechanical, production |
S | Entropy |
T | Thermal |
W | Work or electricity |
WG | Electricity produced by gas turbine |
WS | Electricity produced by steam turbine |
References
- Gay, R.; MacFarland, M. Model-based performance monitoring and optimization. In Proceedings of the Sixth IFIP/IEEE International Symposium on Integrated Network Management Distributed Management for the Networked Millennium, Boston, MA, USA, 24–28 May 1999. [Google Scholar]
- Valero, A.; Correas, L.; Zaleta, A.; Lazzaretto, A.; Verda, V.; Reini, M.; Rangel, V. On the thermoeconomic approach to the diagnosis of energy system malfunctions Part 1: The TADEUS problem. Energy 2004, 29, 1875–1887. [Google Scholar] [CrossRef]
- Kwak, H.; Kim, D.; Jeon, J. Exergetic and thermoeconomic analyses of power plants. Energy 2003, 28, 343–360. [Google Scholar] [CrossRef]
- Lozano, M.A.; Bartolome, J.L.; Valero, A.; Reini, M. Thermoeconomic diagnosis of energy systems. In Proceedings of the FLOWERS’ 94: Florence World Energy Research Symposium, Florence, Italy, 6–8 July 1994. [Google Scholar]
- Valero, A.; Lozano, M.A.; Bartolome, J.L. On-line monitoring of power-plant performance, using exergetic cost techniques. Appl. Therm. Eng. 1996, 16, 933–948. [Google Scholar] [CrossRef]
- Correas, L.; Martinez, A.; Valero, A. Operation diagnosis of a combined cycle based on the structural theory of thermoeconomics. In Proceedings of the ASME Advanced Energy Systems Division; American Society of Mechanical Engineers: New York, NY, USA, 1999; pp. 381–388. [Google Scholar]
- Verda, V.; Serra, L.; Valero, A. Thermodynamic diagnosis: Zooming strategy applied to highly complex energy systems. Part 1: Detection and localization anomalies. J. Energy Resour. Technol. 2005, 27, 42–49. [Google Scholar] [CrossRef]
- Verda, V.; Serra, L.; Valero, A. Thermoeconomic diagnosis: Zooming strategy applied to highly complex energy systems. Part 2: On the choice of the productive structure. J. Energy Resour. Technol. 2005, 27, 50–58. [Google Scholar] [CrossRef]
- Torres, C.; Valero, A.; Serra, L.; Royo, J. Structural theory and thermodynamic diagnosis, Part 1. On malfunction and dysfunction analysis. Energy Convers. Manag. 2002, 43, 1503–1518. [Google Scholar] [CrossRef]
- Valero, A.; Correas, L.; Zaleta, A.; Lazzaretto, A.; Verda, V.; Reini, M.; Rangel, V. On the thermoeconomic approach to the diagnosis of energy system malfunctions. Part 2. Malfunction definitions and assessment. Energy 2004, 29, 1889–1907. [Google Scholar] [CrossRef]
- Lazzaretto, A.; Toffolo, A. A critical review of the thermoeconomic diagnosis methodologies for the location of causes of malfunctions in energy systems. J. Energy Resour. Technol. 2006, 128, 335–341. [Google Scholar] [CrossRef]
- Lazzaretto, A.; Toffolo, A. A new thermoeconomic method for the location of causes of malfunctions in energy systems. J. Energy Resour. Technol. 2007, 129. [Google Scholar] [CrossRef]
- Valero, A.; Lerch, F.; Serra, L.; Royo, J. Structural theory and thermoeconomic diagnosis. Part II: Application to an actual power plant. Energy Convers. Manag. 2002, 43, 1519–1535. [Google Scholar] [CrossRef]
- Lazzaretto, A.; Toffolo, A.; Reini, M.; Taccani, R.; Zaleta-Aguilar, A.; Rangel-Hernandez, V.; Verda, V. Four approaches compared on the TADEUS (thermoeconomic approach to the diagnosis of energy utility systems) test case. Energy 2006, 31, 1586–1613. [Google Scholar] [CrossRef]
- Ommen, T.; Sigthorsson, O.; Elmegaard, B. Two thermoeconomic diagnosis method applied to representative operating data of a commertial transcrital refrigeration plant. Entropy 2017, 19, 69. [Google Scholar] [CrossRef]
- Piacenttino, A.; Talamo, M. Critical analysis of conventional thermoeconomic approaches to the diagnosis of multiple fault in air conditioning units: Capabilities, drawbacks and improvement directions. A case study for an air-cooled system with 120 kW capacity. Int. J. Refrig. 2013, 36, 24–44. [Google Scholar] [CrossRef]
- Cziesla, F.; Tsatsaronis, G. Exergoeconomic assessment of the performance degradation in a power plant at full and partial load. In Proceedings of the 2003 ASME International Mechanical Engineering Congress, Washington, DC, USA, 15–21 November 2003. [Google Scholar]
- Kim, S.M.; Joo, Y. Implementation of on-line performance monitoring system at Seoincheon and Sinincheon combined cycle plant. Energy 2005, 30, 2383–2401. [Google Scholar] [CrossRef]
- Usón, S.; Valero, A.; Correas, L. Energy efficiency assessment and improvement in energy intensive systems through thermoeconomic diagnosis of the operation. Appl. Energy 2010, 87, 1989–1995. [Google Scholar] [CrossRef]
- Ozgener, L.; Ozgener, O. Monetering of energy exergy efficiencies and exergoeconomic parameters of geothermal district heating systems (GDHSs). Appl. Energy 2009, 86, 1704–1711. [Google Scholar] [CrossRef]
- Oh, S.; Bang, H.; Kim, S.; Kwak, H. Exergy analysis for a gas turbine cogeneration system. J. Eng. Gas Turbine Power 1996, 118, 782–791. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.H.; Barry, K.F.; Kwak, H. Thermoeconomic analysis of high-temperature gas-cooled reactors with steam methane reforming for hydrogen production. Nucl. Technol. 2011, 176, 337–351. [Google Scholar] [CrossRef]
- Uysal, C.; Kurt, H.; Kwak, H. Exergetic and thermoeconomic analyses of a coal-fired power plant. Int. J. Therm. Sci. 2017, 117, 106–120. [Google Scholar] [CrossRef]
- Moran, J. Availability Analysis: A Guide to Efficient Energy Use; Prentice-Hill: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
- Toffolo, A.; Lazzaretto, A. On the thermoeconomic approach to the diagnosis of energy system malfunction. Int. J. Thermodyn. 2004, 7, 41–49. [Google Scholar]
- Verda, V.; Borchiellini, R. Exergy method for the diagnosis of energy systems using measured data. Energy 2007, 32, 490–498. [Google Scholar] [CrossRef]
- Torres, C.; Varelo, A.; Rangel, V.; Zaleta, A. On the cost formation process of the residues. Energy 2008, 33, 144–152. [Google Scholar] [CrossRef]
- Lozano, M.A.; Valero, A. Thermoeconomic analysis of a gas turbine cogeneration system. In Thermodynamics and the Design, Analysis, and Improvement of Energy Systems; American Society of Mechanical Engineers: New York, NY, USA, 1993; Volume 30, pp. 312–320. [Google Scholar]
- Cotton, K. Evaluating and Improving Steam Turbine Performance; Cotton Fact Inc.: Rexford, NY, USA, 1998. [Google Scholar]
States | (ton/h) | P (Mpa) | T (°C) | S (kJ/kg-K) | (kJ/kg) | (kJ/kg) |
---|---|---|---|---|---|---|
1 | 1565.111 | 0.1033 | 15.000 | 0.1366 | 0.000 | 0.0161 |
2 | 1565.111 | 1.6099 | 388.9335 | 0.2020 | 139.7690 | 228.1459 |
21 | 1597.340 | 1.5536 | 1235.976 | 1.2912 | 883.9721 | 228.3680 |
22 | 1597.340 | 0.1071 | 546.8433 | 1.3299 | 255.7211 | 3.0750 |
31 | 1565.111 | 1.6099 | 388.9335 | 0.2020 | 139.7690 | 228.1459 |
32 | 1597.340 | 1.5536 | 1235.976 | 1.2912 | 883.9721 | 228.3680 |
33 | 32.229 | 2.8128 | 110.000 | −0.9940 | 29.5701 | 429.3575 |
41 | 32.229 | 2.8128 | 21.111 | −1.6042 | 0.1362 | 422.8056 |
42 | 32.229 | 2.8128 | 110.000 | −0.9940 | 29.5701 | 429.3575 |
99 | 1597.340 | 0.1071 | 546.8433 | 1.3299 | 255.7211 | 3.0750 |
100 | 1597.340 | 0.1033 | 93.3225 | 0.4572 | 9.4904 | 0.0245 |
111 | 197.203 | 1.7577 | 292.0264 | 6.8060 | 1052.3238 | 1.6550 |
112 | 140.813 | 10.3267 | 537.778 | 6.7013 | 1526.5190 | 10.2075 |
113 | 140.813 | 10.8976 | 117.6855 | 1.4931 | 62.0872 | 10.7761 |
114 | 197.203 | 1.6874 | 518.5048 | 7.5658 | 1331.1685 | 1.5847 |
121 | 56.390 | 1.9715 | 116.3201 | 1.4861 | 60.8700 | 1.8689 |
122 | 56.390 | 1.7577 | 271.9138 | 6.7210 | 1029.6400 | 1.6551 |
131 | 225.284 | 0.3164 | 33.0516 | 0.4783 | 2.2686 | 0.2132 |
132 | 27.856 | 0.1687 | 165.2006 | 7.4341 | 661.2790 | 0.0655 |
133 | 19.000 | 4.8340 | 55.000 | 0.7650 | 10.6010 | 4.7290 |
134 | 19.000 | 4.9210 | 152.900 | 1.8661 | 106.4457 | 4.8161 |
136 | 197.203 | 0.1758 | 115.5952 | 1.4798 | 60.1326 | 0.0725 |
403 | 19.000 | 4.9210 | 150.900 | 1.8460 | 103.6750 | 4.8160 |
404 | 19.000 | 4.8340 | 55.000 | 0.7650 | 10.6010 | 4.7290 |
501 | 140.813 | 10.3267 | 537.7778 | 6.7013 | 1526.5187 | 10.2075 |
502 | 140.813 | 1.7577 | 300.2474 | 6.8392 | 1061.6510 | 1.6551 |
521 | 197.203 | 1.6874 | 518.5048 | 7.5658 | 1331.1685 | 1.5847 |
522 | 197.203 | 0.1758 | 228.0304 | 7.6842 | 715.2606 | 0.0725 |
541 | 225.059 | 0.1687 | 220.118 | 7.6716 | 703.3274 | 0.0655 |
542 | 225.059 | 0.0051 | −0.950 | 7.9916 | 140.1875 | −0.0983 |
601 | 225.059 | 0.0051 | −0.950 | 7.9916 | 140.1875 | −0.0983 |
602 | 225.2794 | 0.0051 | 33.0154 | 0.4779 | 2.2601 | −0.0983 |
603 | 0.225 | 0.1055 | 15.5556 | 0.2324 | 0.0022 | 0.0022 |
619 | 18,106.420 | 0.2110 | 10.000 | 0.1510 | 0.1839 | 0.1078 |
620 | 18,106.420 | 0.2110 | 16.800 | 0.2504 | 0.0234 | 0.1078 |
701 | 225.284 | 0.0051 | 33.0154 | 0.4779 | 2.2601 | −0.0983 |
702 | 225.284 | 0.3164 | 33.0516 | 0.4783 | 2.2686 | 0.2132 |
711 | 56.390 | 0.1758 | 115.5953 | 1.4798 | 60.1327 | 0.0725 |
712 | 56.390 | 1.9715 | 116.3201 | 1.4861 | 60.8700 | 1.8689 |
721 | 140.813 | 1.9715 | 116.3201 | 1.4861 | 60.8700 | 1.8689 |
722 | 140.813 | 10.8976 | 117.6855 | 1.4931 | 62.0872 | 10.7761 |
Component | Net Exergy Flow Rate (MW) | Irreversibility Rate (MW) | |||
---|---|---|---|---|---|
Air Compressor | −168.1440 | 0.0000 | 60.7650 | 99.1801 | 8.1991 |
Gas turbine | 373.7762 | 0.0000 | −278.7580 | −99.9638 | 4.9460 |
Combustor | 0.0000 | −452.0920 | 331.1936 | −1.7028 | 122.6009 |
Fuel preheater | 0.0000 | 0.0000 | −0.2277 | 0.0582 | 0.1695 |
Steam turbine | 78.3664 | 0.0000 | −87.1272 | −0.4276 | 9.1884 |
Condenser | 0.0000 | 0.0000 | −9.4296 | 0.0000 | 9.4296 |
Pump | −0.5699 | 0.0000 | 0.0597 | 0.3960 | 0.1142 |
HRSG | 0.0000 | 0.0000 | −12.6930 | −1.3664 | 14.0678 |
Gas pipe | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Steam pipes | 0.0000 | 0.0000 | −0.3796 | 0.0449 | 0.3263 |
Total | 283.4284 | −452.0920 | 3.4027 | −3.7813 | 169.0418 |
Component | Initial Investment Cost | Annualized Cost | Monetary Flow Rate |
---|---|---|---|
($106) | (×$103/year) | ($/h) | |
Compressor | 20.032 | 2571.634 | 340.609 |
Combustor | 1.175 | 150.784 | 19.979 |
Gas turbine | 15.827 | 2031.022 | 269.110 |
Fuel preheater | 4.056 | 520.492 | 68.965 |
HRSG | 0.015 | 1.951 | 0.258 |
Steam turbine | 12.965 | 1663.752 | 220.447 |
Condenser | 3.889 | 499.061 | 66.126 |
Pump | 0.729 | 93.550 | 12.395 |
Construction | 36.250 | 4651.832 | 616.368 |
Total | 94.938 | 12,183.077 | 1614.258 |
Component | ($/h) | ($/h) | ($/h) | ($/h) | ($/h) | ($/h) |
---|---|---|---|---|---|---|
Air Compressor | −19,081.232 | 0.000 | 6267.648 | 13,239.012 | −84.819 | −340.609 |
Gas turbine | 42,416.618 | 0.000 | −28,752.726 | −13,343.615 | −51.166 | −269.110 |
Combustor | 0.000 | −32,550.602 | 34,066.173 | −227.296 | −1268.296 | −19.979 |
Fuel preheater | 0.000 | 0.000 | 62.988 | 7.730 | −1.754 | −68.965 |
Steam turbine | 10,908.810 | 0.000 | −10,500.758 | −92.552 | −95.053 | −220.447 |
Condenser | 0.000 | 0.000 | 163.675 | −0.001 | −97.548 | −66.126 |
Pump | −79.336 | 0.000 | 7.193 | 85.720 | −1.182 | −12.395 |
HRSG | 0.000 | 0.000 | 329.253 | −183.464 | −145.530 | −0.258 |
Gas pipe | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Steam pipes | 0.000 | 0.000 | −6.346 | 9.722 | −3.376 | 0.000 |
Boundary | 0.000 | 0.000 | −1637.101 | 504.746 | 1748.723 | −616.368 |
Total | 34,164.860 | −32,550.602 | 0.000 | 0.000 | 0.000 | −1614.258 |
Component | Net Exergy Flow Rate (MW) | Irreversibility Rate (MW) | (MW) | |||
---|---|---|---|---|---|---|
Air Compressor | −170.1639 | 0.0000 | 61.7605 | 99.7557 | 8.6478 | 0.4487 |
Gas turbine | 375.6655 | 0.0000 | −280.1635 | −100.5385 | 5.0365 | 0.0905 |
Combustor | 0.0000 | −452.7963 | 331.1638 | −1.7036 | 123.3361 | 0.7352 |
Fuel preheater | 0.0000 | 0.0000 | −0.2275 | 0.0583 | 0.1692 | −0.0003 |
Steam turbine | 78.5909 | 0.0000 | −87.3925 | −0.4289 | 9.2305 | 0.0421 |
Condenser | 0.0000 | 0.0000 | −9.4621 | 0.0000 | 9.4621 | 0.0325 |
Pump | −0.5717 | 0.0000 | 0.0599 | 0.3972 | 0.1146 | 0.0004 |
HRSG | 0.0000 | 0.0000 | −12.7446 | −1.3722 | 14.1252 | 0.0574 |
Gas pipe | 0.0000 | 0.0000 | 0.7975 | 0.0000 | −0.7975 | −0.7975 |
Component | ($/h) | ($/h) | ($/h) | ($/h) | ($/h) | ($/h) | |
---|---|---|---|---|---|---|---|
Air Compressor | −19,345.287 | 0.000 | 6364.469 | 13,410.606 | −89.179 | −340.609 | 0.0514 |
Gas turbine | 42,707.972 | 0.000 | −28,871.084 | −13,515.841 | −51.938 | −269.110 | 0.0151 |
Combustor | 0.000 | −32,601.333 | 34,122.225 | −229.028 | −1271.885 | −19.979 | 0.0028 |
Fuel preheater | 0.000 | 0.000 | 62.915 | 7.795 | −1.745 | −68.965 | −0.0051 |
Steam turbine | 10,932.430 | 0.000 | −10,524.061 | −92.734 | −95.188 | −220.447 | 0.0014 |
Condenser | 0.000 | 0.000 | 163.704 | −0.001 | −97.577 | −66.126 | 0.0003 |
Pump | −79.525 | 0.000 | 7.211 | 85.892 | −1.182 | −12.395 | 0.0000 |
HRSG | 0.000 | 0.000 | 331.458 | −185.536 | −145.664 | −0.258 | 0.0009 |
Gas pipe | 0.000 | 0.000 | −8.224 | 0.000 | 8.224 | 0.000 | - |
Steam pipes | 0.000 | 0.000 | −6.532 | 9.756 | −3.223 | 0.000 | −0.0453 |
Boundary | 0.000 | 0.000 | −1642.081 | 509.091 | 1749.357 | −616.368 | 0.0004 |
Total | 34,215.590 | −32,601.333 | 0.000 | 0.000 | 0.000 | −1614.258 | - |
Component | (MW) | (MW) | (MW) | (MW) | rop/rref | (MW) | MF (MW)/RMF |
---|---|---|---|---|---|---|---|
Air Compressor | 170.1639 | 168.1440 | 161.5161 | 159.9449 | 1.0535/1.0513 | 0.0471/0.0370 | 0.3646/0.0445 |
Gas turbine | 380.7020 | 378.7222 | 375.6655 | 373.7762 | 1.0134/1.0132 | 0.0041/0.0213 | 0.0652/0.0131 |
Combustor | 452.7963 | 452.0920 | 329.4602 | 329.4911 | 1.3744/1.3721 | −0.5325/0.5210 | 0.7468/0.0061 |
Fuel preheater | 0.2275 | 0.2277 | 0.0583 | 0.0582 | 3.9022/3.9124 | 0.0000/0.0003 | −0.0006/−0.0035 |
Steam turbine | 87.8214 | 87.5548 | 78.5909 | 78.3664 | 1.1174/1.1172 | −0.0054/0.0317 | 0.0157/0.0017 |
Condenser | 9.4621 | 9.4296 | 0.0000 | 0.0000 | - | -/0.0325 | - |
Pump | 0.5717 | 0.5699 | 0.4571 | 0.4557 | 1.2507/1.2506 | 0.0000/0.0004 | 0.0000 |
HRSG | 12.7446 | 12.6930 | −1.3806 | −1.3748 | −9.2312/−9.2327 | 0.0110/0.0486 | −0.0021/−0.0015 |
Gas pipe | 0.0000 | 0.0000 | 0.7975 | 0.0000 | 0.0000/- | −0.7941/−0.0034 | - |
Steam pipes | 0.3660 | 0.3796 | 0.0535 | 0.0533 | 6.8411/7.1220 | 0.0001/0.0011 | −0.0150/−0.0770 |
Point Number/System Condition (Properties) | 2 | 42 | 21 | 22 | 501 | 502 | 521 | |
---|---|---|---|---|---|---|---|---|
Normal condition | [ton/h] | 1565.11 | 32.23 | 1597.34 | 1597.34 | 140.81 | 140.81 | 197.20 |
P [MPa] | 1.610 | 2.813 | 1.554 | 0.107 | 10.327 | 1.758 | 1.687 | |
T [°C] | 388.9 | 110.0 | 1236.0 | 546.8 | 537.8 | 300.2 | 518.5 | |
AC(0.5) | 1571.81 | 32.28 | 1604.09 | 1604.09 | 141.21 | 141.21 | 197.87 | |
P | 1.617 | 2.812 | 1.560 | 0.107 | 10.327 | 1.758 | 1.687 | |
T | 391.7 | 110.0 | 1236.3 | 546.5 | 537.8 | 300.2 | 518.2 | |
GT(1) | 1578.36 | 32.32 | 1610.69 | 1610.69 | 141.58 | 141.58 | 198.51 | |
P | 1.623 | 2.812 | 1.566 | 0.107 | 10.327 | 1.758 | 1.687 | |
T | 394.5 | 109.9 | 1236.5 | 546.1 | 537.8 | 300.2 | 517.9 | |
GT(2) | 1590.99 | 32.66 | 1623.65 | 1623.65 | 141.68 | 141.68 | 199.33 | |
P | 1.636 | 2.812 | 1.579 | 0.107 | 10.327 | 1.758 | 1.687 | |
T | 392.0 | 109.5 | 1236.2 | 544.5 | 537.8 | 300.2 | 516.3 | |
AC(0.5), GT(1) | 1584.70 | 32.49 | 1617.19 | 1617.19 | 141.61 | 141.61 | 198.90 | |
P | 1.630 | 2.812 | 1.573 | 0.107 | 10.327 | 1.758 | 1.687 | |
T | 393.2 | 109.7 | 1236.5 | 545.3 | 537.8 | 300.2 | 517.1 | |
HPST(1) | 1567.96 | 32.28 | 1600.23 | 1600.23 | 140.92 | 140.92 | 197.44 | |
P | 1.613 | 2.812 | 1.556 | 0.107 | 10.327 | 1.758 | 1.687 | |
T | 389.3 | 109.9 | 1236.1 | 546.6 | 537.8 | 300.4 | 518.3 | |
HPST(2) | 1568.35 | 32.28 | 1600.63 | 1600.63 | 141.24 | 141.24 | 197.72 | |
P | 1.613 | 2.812 | 1.557 | 0.107 | 10.327 | 1.758 | 1.687 | |
T | 389.3 | 109.9 | 1236.1 | 546.16 | 537.8 | 300.2 | 518.2 | |
HPSH(2) | 1566.17 | 32.25 | 1598.42 | 1598.42 | 140.62 | 140.62 | 197.12 | |
P | 1.611 | 2.813 | 1.555 | 0.107 | 10.327 | 1.758 | 1.687 | |
T | 389.5 | 109.8 | 1236.1 | 546.4 | 537.8 | 306.2 | 518.0 | |
GT(1), HPST(2) | 1581.16 | 32.50 | 1613.66 | 1613.66 | 141.69 | 141.69 | 198.78 | |
P | 1.569 | 2.812 | 1.569 | 0.107 | 10.327 | 1.758 | 1.687 | |
T | 390.8 | 109.6 | 1236.2 | 545.4 | 537.8 | 302.1 | 517.1 | |
GT(2), HPST(4) | 1598.25 | 32.79 | 1631.04 | 1631.04 | 142.66 | 142.66 | 200.50 | |
P | 1.644 | 2.812 | 1.586 | 0.107 | 10.327 | 1.758 | 1.687 | |
T | 392.8 | 109.3 | 1236.3 | 543.7 | 537.8 | 305.8 | 515.6 | |
AC(0.5), GT(1), HPST(2) | 1605.80 | 32.85 | 1638.64 | 1638.64 | 142.26 | 142.26 | 200.60 | |
P | 1.651 | 2.812 | 1.594 | 0.107 | 10.327 | 1.758 | 1.687 | |
T | 395.7 | 109.3 | 1236.6 | 543.3 | 537.8 | 300.1 | 515.5 |
Condition | (MW) | (MW) | (MW) | ($/h) | ($/h) |
---|---|---|---|---|---|
Normal condition | 452.09 | 283.43 | 169.04 | 32,550.6 | 34,164.9 |
AC(0.5) | 452.79 | 283.52 | 169.64 | 32,601.3 | 34,215.6 |
GT(1) | 453.16 | 283.14 | 169.39 | 32,601.3 | 34,215.6 |
GT(2) | 458.20 | 287.22 | 171.35 | 32,990.1 | 34,604.3 |
AC(0.5), GT(1) | 455.83 | 285.41 | 170.78 | 32,819.4 | 34,433.7 |
HPST(1) | 452.77 | 283.86 | 169.28 | 32,599.4 | 34,213.6 |
HPST(2) | 452.86 | 283.86 | 169.38 | 32,606.1 | 34,220.4 |
HPSH(2) | 452.34 | 283.50 | 169.22 | 32,568.8 | 34,183.1 |
GT(1), HPST(2) | 455.89 | 285.77 | 170.49 | 32,823.8 | 34,438.1 |
GT(2), HPST(4) | 459.91 | 288.07 | 172.2 | 33,113.2 | 34,727.5 |
AC(0.5), GT(1), HPST(2) | 456.60 | 285.80 | 171.16 | 32,875.2 | 34,489.5 |
States | (ton/h) | P (Mpa) | T (°C) | S (kJ/kg-K) | (kJ/kg) | (kJ/kg) |
---|---|---|---|---|---|---|
1 | 1467.9940 | 0.1026 | 22.5500 | 0.1647 | 0.0984 | −0.5649 |
2 | 1467.9940 | 1.5400 | 405.8500 | 0.2419 | 150.1276 | 224.4588 |
21 | 1500.7810 | 1.5400 | 1327.0000 | 1.3747 | 978.6522 | 227.8980 |
22 | 1500.7810 | 0.1070 | 625.0300 | 1.4444 | 317.8108 | 2.9447 |
31 | 1467.9940 | 1.5400 | 405.8500 | 0.2419 | 150.1276 | 224.4588 |
32 | 1500.7810 | 1.5400 | 1327.0000 | 1.3747 | 978.6522 | 227.8980 |
33 | 32.7870 | 2.8128 | 137.0700 | −0.8244 | 47.6984 | 430.7454 |
41 | 32.7870 | 3.3650 | 8.6400 | −1.7916 | 0.1506 | 441.8269 |
42 | 32.7870 | 3.3650 | 137.0700 | −0.9118 | 47.6984 | 452.7995 |
99 | 1500.7810 | 0.1070 | 625.0300 | 1.4444 | 317.8108 | 2.9447 |
100 | 1500.7810 | 0.1033 | 111.7200 | 0.5128 | 14.0510 | 0.0245 |
111 | 214.1150 | 2.3620 | 357.3000 | 6.9002 | 1158.6905 | 2.2593 |
112 | 188.9010 | 9.8560 | 543.0500 | 6.7435 | 1532.8301 | 9.7385 |
113 | 188.9010 | 12.9200 | 153.6000 | 1.8643 | 106.9363 | 12.7892 |
114 | 218.5820 | 2.1760 | 543.8900 | 7.5136 | 1396.8735 | 2.0733 |
121 | 29.6810 | 5.9180 | 151.2200 | 1.8480 | 104.0568 | 5.8115 |
122 | 29.6810 | 2.5630 | 293.5600 | 6.6049 | 1088.4774 | 2.4602 |
131 | 236.5269 | 1.2190 | 37.9900 | 0.5448 | 3.6376 | 1.1163 |
132 | 17.7730 | 0.5533 | 254.3500 | 7.2400 | 883.2743 | 0.4503 |
133 | 29.9700 | 3.8330 | 74.8500 | 1.0112 | 22.8384 | 3.7294 |
134 | 29.9700 | 3.9440 | 150.3400 | 1.8413 | 102.9629 | 3.8403 |
136 | 218.5820 | 0.6713 | 151.3800 | 1.8555 | 104.5967 | 0.5684 |
403 | 29.9700 | 3.9440 | 150.3400 | 1.8413 | 102.9629 | 3.8403 |
404 | 29.9700 | 3.8330 | 74.8500 | 1.0112 | 22.8384 | 3.7294 |
501 | 188.9010 | 9.5860 | 538.5500 | 6.7453 | 1524.2647 | 9.4695 |
502 | 188.9010 | 2.3680 | 366.3000 | 6.9308 | 1170.0010 | 2.2653 |
521 | 218.5820 | 2.2340 | 538.7500 | 7.4869 | 1392.5230 | 2.1313 |
522 | 218.5820 | 0.1758 | 228.0304 | 7.6842 | 715.2606 | 0.0725 |
541 | 236.3550 | 0.1687 | 220.1180 | 7.6716 | 703.3274 | 0.0655 |
542 | 236.3550 | 0.0051 | −0.9800 | 8.2288 | 144.5405 | −0.0983 |
601 | 236.3550 | 0.0051 | −0.9800 | 8.2288 | 144.5405 | −0.0983 |
602 | 236.5269 | 0.0051 | 33.2400 | 0.4809 | 2.3157 | −0.0983 |
603 | 0.1719 | 0.1055 | 15.5556 | 0.2324 | 0.0022 | 0.0022 |
619 | 20,154.0000 | 0.2140 | 20.6100 | 0.3050 | 0.2255 | 0.1108 |
620 | 20,154.0000 | 0.2140 | 27.4600 | 0.4013 | 1.0946 | 0.1108 |
701 | 236.5269 | 0.0051 | 33.2400 | 0.4809 | 2.3157 | −0.0983 |
702 | 236.5269 | 1.2190 | 37.9900 | 0.5448 | 3.6376 | 1.1163 |
711 | 29.6810 | 0.6713 | 151.3800 | 1.8555 | 104.5967 | 0.5684 |
712 | 29.6810 | 5.9180 | 151.2200 | 1.8480 | 104.0568 | 5.8115 |
721 | 188.9010 | 5.9180 | 151.2200 | 1.8480 | 104.0568 | 5.8115 |
722 | 188.9010 | 12.9200 | 153.6000 | 1.8643 | 106.9363 | 12.7892 |
Component | Net Exergy Flow Rate (MW) | Irreversibility Rate (MW) | (MW) | |||
---|---|---|---|---|---|---|
Air Compressor | −162.0079 | 0.0000 | 61.1784 | 91.7593 | 9.0702 | 0.8711/1.2867 |
Gas turbine | 360.9029 | 0.0000 | −275.4940 | −93.7794 | 8.3704 | 3.4244/3.7320 |
Combustor | 0.0000 | −459.6061 | 346.3312 | −0.4450 | 113.7199 | −8.8810/−14.2714 |
Fuel preheater | 0.0000 | 0.0000 | −0.2340 | 0.0990 | 0.1350 | −0.0345/−0.0901 |
Steam turbine | 80.1131 | 0.0000 | −96.3973 | −0.5138 | 16.7979 | 7.6095/7.2433 |
Condenser | 0.0000 | 0.0000 | −4.4717 | 0.0000 | 4.4717 | −4.9579/- |
Pump | −2.1602 | 0.0000 | 0.2335 | 0.4892 | 1.4375 | 1.3233/0.7922 |
HRSG | 0.0000 | 0.0000 | −16.4668 | −1.4182 | 17.9001 | 3.8323/3.1015 |
Gas pipe | 0.0000 | 0.0000 | 0.0000 | −0.2009 | 0.2009 | 0.2009/- |
Steam pipes | 0.0000 | 0.0000 | −3.9973 | 0.2264 | 3.7558 | 3.4295/0.5026 |
Total | 276.8480 | −459.6061 | 10.6820 | −3.7834 | 175.8595 |
Component | ($/h) | ($/h) | or ($/h) | or ($/h) | ($/h) | ($/h) | |
---|---|---|---|---|---|---|---|
Air Compressor | −18,294.9740 | 0.0000 | 6103.3050 | 12,632.1510 | −99.8730 | −340.609 | 0.1775 |
Gas turbine | 40,755.4870 | 0.0000 | −27,483.9610 | −12,910.2490 | −92.1670 | −269.110 | 0.8013 |
Combustor | 0.0000 | −33,091.6360 | 34,425.0500 | −61.2630 | −1252.1730 | −19.979 | −0.0127 |
Fuel preheater | 0.0000 | 0.0000 | 57.3340 | 13.1180 | −1.4860 | −68.965 | −0.1528 |
Steam turbine | 12,584.7190 | 0.0000 | −11,823.3300 | −355.9800 | −184.9620 | −220.447 | 0.9459 |
Condenser | 0.0000 | 0.0000 | 115.3670 | −0.0030 | −49.2380 | −66.126 | −0.4952 |
Pump | −339.3390 | 0.0000 | 28.6380 | 338.9240 | −15.8290 | −12.395 | 12.3917 |
HRSG | 0.0000 | 0.0000 | 504.0970 | −306.7390 | −197.0990 | −0.258 | 0.3544 |
Gas pipe | 0.0000 | 0.0000 | 29.8630 | −27.6510 | −2.2120 | 0.000 | - |
Steam pipes | 0.0000 | 0.0000 | −115.4920 | 156.8470 | −41.3550 | 0.000 | 11.2497 |
Boundary | 0.0000 | 0.0000 | −1840.8710 | 520.8450 | 1936.3930 | −616.368 | 0.1775 |
Total | 34,705.8940 | −33,091.6360 | 0.0000 | 0.0000 | 0.0000 | −1614.26 | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.-S.; Lee, Y.; Kwak, H.-Y. Diagnosis of Combined Cycle Power Plant Based on Thermoeconomic Analysis: A Computer Simulation Study. Entropy 2017, 19, 643. https://doi.org/10.3390/e19120643
Oh H-S, Lee Y, Kwak H-Y. Diagnosis of Combined Cycle Power Plant Based on Thermoeconomic Analysis: A Computer Simulation Study. Entropy. 2017; 19(12):643. https://doi.org/10.3390/e19120643
Chicago/Turabian StyleOh, Hoo-Suk, Youngseog Lee, and Ho-Young Kwak. 2017. "Diagnosis of Combined Cycle Power Plant Based on Thermoeconomic Analysis: A Computer Simulation Study" Entropy 19, no. 12: 643. https://doi.org/10.3390/e19120643
APA StyleOh, H. -S., Lee, Y., & Kwak, H. -Y. (2017). Diagnosis of Combined Cycle Power Plant Based on Thermoeconomic Analysis: A Computer Simulation Study. Entropy, 19(12), 643. https://doi.org/10.3390/e19120643