Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking
<p>The entropies of raw short-term heartbeat interval series. In order to show the changes, results from the same participants were connected by lines. (<b>A</b>) ApEn; (<b>B</b>) cApEn; (<b>C</b>) SampEn; (<b>D</b>) FuzzyEn-g; (<b>E</b>) FuzzyEn-l; (<b>F</b>) PermEn; (<b>G</b>) CE; (<b>H</b>) DistEn.</p> "> Figure 2
<p>The entropies of short-term heartbeat interval series after linear detrending. In order to show the changes, results from the same participants were connected by lines. (<b>A</b>) ApEn; (<b>B</b>) cApEn; (<b>C</b>) SampEn; (<b>D</b>) FuzzyEn-g; (<b>E</b>) FuzzyEn-l; (<b>F</b>) PermEn; (<b>G</b>) CE; (<b>H</b>) DistEn.</p> "> Figure 3
<p>The entropies of short-term heartbeat interval series after wavelet detrending. In order to show the changes, results from the same participants were connected by lines. (<b>A</b>) ApEn; (<b>B</b>) cApEn; (<b>C</b>) SampEn; (<b>D</b>) FuzzyEn-g; (<b>E</b>) FuzzyEn-l; (<b>F</b>) PermEn; (<b>G</b>) CE; (<b>H</b>) DistEn.</p> "> Figure 4
<p>Bivariate correlation analysis results. The abscissa shows between which two entropy measures the correlation analysis was performed. The codes A to H mean ApEn, cApEn, SampEn, FuzzyEn-g, FuzzyEn-l, PermEn, CE, and DistEn, respectively. The label ‘A-B’ thus indicates the correlation between ApEn and cApEn, and so do the rest labels. The <math display="inline"> <semantics> <mi>p</mi> </semantics> </math> values are shown in logarithmic scale in the ordinate, such that a significant test result is obtained if the corresponding <math display="inline"> <semantics> <mi>p</mi> </semantics> </math> value is less than the significant level, which is <math display="inline"> <semantics> <mrow> <mi>log</mi> <mrow> <mo>(</mo> <mrow> <mn>0.05</mn> <mo>/</mo> <msubsup> <mi>C</mi> <mn>8</mn> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> after Bonferroni correction.</p> "> Figure 5
<p>Bivariate correlation analysis results. Results are shown in the same way as has applied in <a href="#entropy-19-00568-f004" class="html-fig">Figure 4</a>, except that the ordinate is showing the Pearson <math display="inline"> <semantics> <mi>r</mi> </semantics> </math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Protocols
2.3. Extraction of HRV Time-Series
2.4. Entropy Measures
2.4.1. Algorithm of ApEn
2.4.2. Algorithm of SampEn
2.4.3. Algorithm of FuzzyEn
2.4.4. Algorithm of PermEn
2.4.5. Algorithm of CE
2.4.6. Algorithm of DistEn
2.5. Entropy Analysis of HRV Time-Series
2.6. Statistical Analysis
3. Results
4. Discussion
- All calculations were based on fixed input parameters which may not work well all the time. In other words, some results might not be completely true because improper parameters were applied. In the current study, we did not repeat our analyses using different combinations of parameters partly because that it would make things rather cumbersome for real application. Furthermore, there is no solid way to find out a proper choice for each individual case even though different combinations are able to be traversed. Previous studies have explored how to define parameters but the proposed approaches are mostly achieved retrospectively by maximizing the pre-hypothesized group differences [38,39,40]. However, it is not necessarily be always true that those hypothesized group differences exist.
- From the perspective of the underlying physiological mechanisms, it is still yet to be determined which branch in the ANS (i.e., sympathetic or vagal nerves) actually becomes dominant during walking at such a relatively lower but regular (for typical populations) speed. Some studies indicated that vagal withdrawal is the dominant mechanisms during lower intensity, dynamic exercise while others also points to a sympathetic HR modulation even at the onset of exercise [13,15]. Studies also suggested that the relative role of the two drives may depend on the exercise intensity [41]. It has been hypothesized that the withdrawal of parasympathetic (vagal) modulation might already be obvious during low intensity exercise, whereas the sympathetic increase may present at higher intensity exercises [17]. In addition, it is also controversial whether sympathetic drive to the heart or vagal withdrawal is the main contributor of HR complexity [21,31,42,43], let alone each specific complexity measure.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hayano, J.; Sakakibara, Y.; Yamada, A.; Yamada, M.; Mukai, S.; Fujinami, T.; Yokoyama, K.; Watanabe, Y.; Takata, K. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am. J. Cardiol. 1991, 67, 199–204. [Google Scholar] [CrossRef]
- Ziegler, D.; Voss, A.; Rathmann, W.; Strom, A.; Perz, S.; Roden, M.; Peters, A.; Meisinger, C.; Group, K.S. Increased prevalence of cardiac autonomic dysfunction at different degrees of glucose intolerance in the general population: The kora s4 survey. Diabetologia 2015, 58, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
- Felber Dietrich, D.; Schindler, C.; Schwartz, J.; Barthelemy, J.C.; Tschopp, J.M.; Roche, F.; von Eckardstein, A.; Brandli, O.; Leuenberger, P.; Gold, D.R.; et al. Heart rate variability in an ageing population and its association with lifestyle and cardiovascular risk factors: Results of the sapaldia study. Europace 2006, 8, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Venditti, F.J., Jr.; Manders, E.S.; Evans, J.C.; Larson, M.G.; Feldman, C.L.; Levy, D. Reduced heart rate variability and mortality risk in an elderly cohort. The framingham heart study. Circulation 1994, 90, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Drawz, P.; Babineau, D.; Brecklin, C.; He, J.; Kallem, R.; Soliman, E.; Xie, D.; Appleby, D.; Anderson, A.; Rahrnan, M.; et al. Heart rate variability is a predictor of mortality in chronic kidney disease: A report from the cric study. Am. J. Nephrol. 2013, 38, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Zentai, C.P.; Perz, S.; Rathmann, W.; Haastert, B.; Döring, A.; Meisinger, C.; Group, K.S. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: The monica/kora augsburg cohort study. Diabetes Care 2008, 31, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J.M.; Crow, R.S.; Folsom, A.R.; Hannan, P.J.; Liao, D.; Swenne, C.A.; Schouten, E.G. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: The aric study. Atherosclerosis risk in communities. Circulation 2000, 102, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Cai, J.; Rosamond, W.D.; Barnes, R.W.; Hutchinson, R.G.; Whitsel, E.A.; Rautaharju, P.; Heiss, G. Cardiac autonomic function and incident coronary heart disease: A population-based case-cohort study. The aric study. Atherosclerosis risk in communities study. Am. J. Epidemiol. 1997, 145, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Akintola, A.A.; van de Pol, V.; Bimmel, D.; Maan, A.C.; van Heemst, D. Comparative analysis of the equivital eq02 lifemonitor with holter ambulatory ecg device for continuous measurement of ecg, heart rate, and heart rate variability: A validation study for precision and accuracy. Front. Physiol. 2016, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, J.; Korshoj, M.; Skotte, J.H.; Jespersen, T.; Sogaard, K.; Mortensen, O.S.; Holtermann, A. Comparison of two systems for long-term heart rate variability monitoring in free-living conditions—A pilot study. Biomed. Eng. Online 2011, 10, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, C.J.; Purvis, T.E.; Hu, K.; Scheer, F.A. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc. Natl. Acad. Sci. USA 2016, 113, E1402–E1411. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.A.; Wiles, J.D.; Coleman, D.D.; Sharma, R.; O’Driscoll, J.M. Continuous cardiac autonomic and haemodynamic responses to isometric exercise. Med. Sci. Sports Exerc. 2017. [Google Scholar] [CrossRef] [PubMed]
- White, D.W.; Raven, P.B. Autonomic neural control of heart rate during dynamic exercise: Revisited. J. Physiol. 2014, 592, 2491–2500. [Google Scholar] [CrossRef] [PubMed]
- Weippert, M.; Behrens, M.; Rieger, A.; Behrens, K. Sample entropy and traditional measures of heart rate dynamics reveal different modes of cardiovascular control during low intensity exercise. Entropy 2014, 16, 5698–5711. [Google Scholar] [CrossRef]
- Fisher, J.P. Autonomic control of the heart during exercise in humans: Role of skeletal muscle afferents. Exp. Physiol. 2014, 99, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Goya-Esteban, R.; Barquero-Perez, O.; Sarabia-Cachadina, E.; de la Cruz-Torres, B.; Naranjo-Orellana, J.; Rojo-Alvarez, J.; Murray, A. Heart rate variability non linear dynamics in intense exercise. Comput. Cardiol. 2012, 39, 177–180. [Google Scholar]
- Boettger, S.; Puta, C.; Yeragani, V.K.; Donath, L.; Muller, H.J.; Gabriel, H.H.; Bar, K.J. Heart rate variability, qt variability, and electrodermal activity during exercise. Med. Sci. Sports Exerc. 2010, 42, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Leicht, A.S.; Sinclair, W.H.; Spinks, W.L. Effect of exercise mode on heart rate variability during steady state exercise. Eur. J. Appl. Physiol. 2008, 102, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Princi, T.; Accardo, A.; Peterec, D. Linear and non-linear parameters of heart rate variability during static and dynamic exercise in a high-performance dinghy sailor. Biomed. Sci. Instrum. 2004, 40, 311–316. [Google Scholar] [PubMed]
- Cottin, F.; Durbin, F.; Papelier, Y. Heart rate variability during cycloergometric exercise or judo wrestling eliciting the same heart rate level. Eur. J. Appl. Physiol. 2004, 91, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Tulppo, M.; Makikallio, T.; Takala, T.; Seppanen, T.; Huikuri, H. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. Heart Circ. Physiol. 1996, 271, H244–H252. [Google Scholar]
- Sugihara, G.; Allan, W.; Sobel, D.; Allan, K.D. Nonlinear control of heart rate variability in human infants. Proc. Natl. Acad. Sci. USA 1996, 93, 2608–2613. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [PubMed]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using fuzzyen, apen, and sampen. Med. Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Baselli, G.; Liberati, D.; Montano, N.; Cogliati, C.; Gnecchi-Ruscone, T.; Malliani, A.; Cerutti, S. Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol. Cybern. 1998, 78, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, C.; Li, K.; Zheng, D.; Liu, C.; Hou, Y. Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med. Biol. Eng. Comput. 2015, 53, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Karmakar, C.; Yan, C.; Palaniswami, M.; Liu, C. Classification of five-second epileptic eeg recordings using distribution entropy and sample entropy. Front. Physiol. 2016, 7, 136. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, C.; Zhang, M.; Che, W.; Li, J. A real-time qrs complex detection method. Acta Biophys. Sin. 2011, 27, 222–230. [Google Scholar] [CrossRef]
- Porta, A.; Gnecchi-Ruscone, T.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N. Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J. Appl. Physiol. (1985) 2007, 103, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, K.; Zhao, L.; Liu, F.; Zheng, D.; Liu, C.; Liu, S. Analysis of heart rate variability using fuzzy measure entropy. Comput. Biol. Med. 2013, 43, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, K.; Liu, C.; Zheng, D.; Li, Z.-M.; Liu, C. Detection of coupling in short physiological series by a joint distribution entropy method. IEEE Trans. Biomed. Eng. 2016, 63, 2231–2242. [Google Scholar] [CrossRef] [PubMed]
- Makowiec, D.; Kaczkowska, A.; Wejer, D.; Żarczyńska-Buchowiecka, M.; Struzik, Z. Entropic measures of complexity of short-term dynamics of nocturnal heartbeats in an aging population. Entropy 2015, 17, 1253–1272. [Google Scholar] [CrossRef]
- Karmakar, C.; Udhayakumar, R.K.; Li, P.; Venkatesh, S.; Palaniswami, M. Stability, consistency and performance of distribution entropy in analysing short length heart rate variability (hrv) signal. Front. Physiol. 2017, 8, 720. [Google Scholar] [CrossRef] [PubMed]
- Sawilowsky, S.S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Porta, A.; Bari, V.; Marchi, A.; De Maria, B.; Castiglioni, P.; di Rienzo, M.; Guzzetti, S.; Cividjian, A.; Quintin, L. Limits of permutation-based entropies in assessing complexity of short heart period variability. Physiol. Meas. 2015, 36, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, C.; Shao, P.; Li, L.; Sun, X.; Wang, X.; Liu, F. Comparison of different threshold values r for approximate entropy: Application to investigate the heart rate variability between heart failure and healthy control groups. Physiol. Meas. 2011, 32, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Chen, X.; Kanters, J.K.; Solomon, I.C.; Chon, K.H. Automatic selection of the threshold value r for approximate entropy. IEEE Trans. Biomed. Eng. 2008, 55, 1966–1972. [Google Scholar] [PubMed]
- Li, P.; Liu, C.; Wang, X.; Li, L.; Yang, L.; Chen, Y.; Liu, C. Testing pattern synchronization in coupled systems through different entropy-based measures. Med. Biol. Eng. Comput. 2013, 51, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sports Med. 2003, 33, 889–919. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Castiglioni, P.; Bari, V.; Bassani, T.; Marchi, A.; Cividjian, A.; Quintin, L.; Di Rienzo, M. K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control. Physiol. Meas. 2013, 34, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Guzzetti, S.; Furlan, R.; Gnecchi-Ruscone, T.; Montano, N.; Malliani, A. Complexity and nonlinearity in short-term heart period variability: Comparison of methods based on local nonlinear prediction. IEEE Trans. Biomed. Eng. 2007, 54, 94–106. [Google Scholar] [CrossRef] [PubMed]
Interpretation | References | |||||
---|---|---|---|---|---|---|
Embedding Dimension | Time Delay | Threshold Value | Bin Number | Quantization Level | ||
ApEn | 2 | 1 | 0.2 × SD | - | - | [24] |
cApEn | 2 | 1 | 0.2 × SD | - | - | [31] |
SampEn | 2 | 1 | 0.2 × SD | - | - | [24] |
FuzzyEn-g | 2 | 1 | 0.2 × SD | - | - | [25,32] |
FuzzyEn-l | 2 | 1 | 0.2 × SD | - | - | [25] |
PermEn | 3 | 1 | - | - | - | [34] |
CE | 2 | 1 | - | - | 6 | [27,33] |
DistEn | 2 | 1 | - | 512 | - | [28,35] |
HRV vs. Measures 1 | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
Raw | - 2 | - | - | - | - | |||
After linear detrending | - | - | - | - | ||||
After wavelet detrending | - | - | - | - | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, B.; Zhang, Y.; Yuan, C.; Wang, S.; Li, P. Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking. Entropy 2017, 19, 568. https://doi.org/10.3390/e19100568
Shi B, Zhang Y, Yuan C, Wang S, Li P. Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking. Entropy. 2017; 19(10):568. https://doi.org/10.3390/e19100568
Chicago/Turabian StyleShi, Bo, Yudong Zhang, Chaochao Yuan, Shuihua Wang, and Peng Li. 2017. "Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking" Entropy 19, no. 10: 568. https://doi.org/10.3390/e19100568
APA StyleShi, B., Zhang, Y., Yuan, C., Wang, S., & Li, P. (2017). Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking. Entropy, 19(10), 568. https://doi.org/10.3390/e19100568