Inconsistency of Template Estimation by Minimizing of the Variance/Pre-Variance in the Quotient Space †
<p>Three functions defined on the interval <math display="inline"> <semantics> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics> </math>. The blue one (<math display="inline"> <semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics> </math>) is a step function, the red one (<math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math>) is a translated version of the blue one when noise has been added, and the green one (<math display="inline"> <semantics> <msub> <mi>f</mi> <mn>3</mn> </msub> </semantics> </math>) is the null function.</p> "> Figure 2
<p>Due to the invariant action, the orbits are parallel. Here the orbits are circles centred at 0. This is the case when the group <span class="html-italic">G</span> is the group of rotations.</p> "> Figure 3
<p>Representation of the three functions <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math>, <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>3</mn> </msub> </semantics> </math> with <math display="inline"> <semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics> </math>. the functions <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>3</mn> </msub> </semantics> </math> are registered with respect to <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math>. However <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>3</mn> </msub> </semantics> </math> are not registered with each other, since it is more profitable to shift <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> in order to align the highest parts of <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>3</mn> </msub> </semantics> </math>.</p> "> Figure 4
<p>We minimize the variance on each half-line <math display="inline"> <semantics> <mrow> <msup> <mi mathvariant="double-struck">R</mi> <mo>+</mo> </msup> <mi>v</mi> </mrow> </semantics> </math> where <math display="inline"> <semantics> <mrow> <mo stretchy="false">∥</mo> <mi>v</mi> <mo stretchy="false">∥</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>. The element which minimizes the variance on such a half-line is <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>λ</mi> <mo>˜</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> <mi>v</mi> </mrow> </semantics> </math>, where <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>λ</mi> <mo>˜</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> <mo>≥</mo> <mn>0</mn> </mrow> </semantics> </math>. We get a surface in <span class="html-italic">M</span> by <math display="inline"> <semantics> <mrow> <mi>S</mi> <mo>∈</mo> <mi>v</mi> <mo>↦</mo> <mover accent="true"> <mi>λ</mi> <mo>˜</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> <mi>v</mi> </mrow> </semantics> </math> (which is a curve in this figure since we draw it in dimension 2). The Proof of Theorem 1 states that if <math display="inline"> <semantics> <mrow> <mo>[</mo> <msub> <mi>m</mi> <mo>☆</mo> </msub> <mo>]</mo> </mrow> </semantics> </math> is a Fréchet mean then <math display="inline"> <semantics> <msub> <mi>m</mi> <mo>☆</mo> </msub> </semantics> </math> is an extreme point of this surface. On this picture there are four extreme points which are in the same orbit: we took here the simple example of the group of rotations of 0, 90, 180 and 270 degrees.</p> "> Figure 5
<p>Iterative minimization of the function <span class="html-italic">J</span> on the two axis, the horizontal axis represents the variable in the space <span class="html-italic">M</span>, the vertical axis represents the set of all the possible registrations <math display="inline"> <semantics> <msup> <mi>G</mi> <mi>I</mi> </msup> </semantics> </math>. Once the convergence is reached, the point <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>g</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math> is the minimum of the function <span class="html-italic">J</span> on the two axis in green. Is this point the minimum of <span class="html-italic">J</span> on its whole domain? There are two pitfalls: firstly this point could be a saddle point, it can be avoided with Proposition 2, secondly this point could be a local (but not global) minimum, this is discussed in <a href="#sec2dot5dot3-entropy-19-00288" class="html-sec">Section 2.5.3</a>.</p> "> Figure 6
<p>Template <math display="inline"> <semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics> </math> and template estimation <math display="inline"> <semantics> <mover accent="true"> <mi>m</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math> on <a href="#entropy-19-00288-f006" class="html-fig">Figure 6</a>a. Empirical variance at the template and template estimation with the max-max algorithm as a function of the size of the sample on <a href="#entropy-19-00288-f006" class="html-fig">Figure 6</a>b. (<b>a</b>) Example of a template (a step function) and the estimated template <math display="inline"> <semantics> <mover accent="true"> <mi>m</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math> with a sample size <math display="inline"> <semantics> <msup> <mn>10</mn> <mn>5</mn> </msup> </semantics> </math> in <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mn>64</mn> </msup> </semantics> </math>, <math display="inline"> <semantics> <mi>ϵ</mi> </semantics> </math> is Gaussian noise and <math display="inline"> <semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics> </math>. At the discontinuity points of the template, we observe a Gibbs-like phenomena; (<b>b</b>) Variation of <math display="inline"> <semantics> <mrow> <msub> <mi>F</mi> <mi>I</mi> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> (in blue) and of <math display="inline"> <semantics> <mrow> <msub> <mi>F</mi> <mi>I</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mover accent="true"> <mi>m</mi> <mo stretchy="false">^</mo> </mover> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> (in red) as a function of <span class="html-italic">I</span> the size of the sample. Since convergence is already reached, <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo stretchy="false">(</mo> <mover accent="true"> <mi>m</mi> <mo stretchy="false">^</mo> </mover> <mo stretchy="false">)</mo> </mrow> </semantics> </math>, which is the limit of red curve, is below <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math>: <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math> is the limit of the blue curve. Due to the inconsistency, <math display="inline"> <semantics> <mover accent="true"> <mi>m</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math> is an example of point such that <math display="inline"> <semantics> <mrow> <mi>F</mi> <mrow> <mo stretchy="false">(</mo> <mover accent="true"> <mi>m</mi> <mo stretchy="false">^</mo> </mover> <mo stretchy="false">)</mo> </mrow> <mo><</mo> <mi>F</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math>.</p> "> Figure 7
<p>Example of an other template (here a discretization of a continuous function) and template estimation with a sample size <math display="inline"> <semantics> <msup> <mn>10</mn> <mn>3</mn> </msup> </semantics> </math> in <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mn>64</mn> </msup> </semantics> </math>, <math display="inline"> <semantics> <mi>ϵ</mi> </semantics> </math> is Gaussian noise and <math display="inline"> <semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics> </math>. Even with a continuous function the inconsistency appears.</p> "> Figure 8
<p>Example of three orbits, when <math display="inline"> <semantics> <msub> <mover accent="true"> <mi>d</mi> <mo>˜</mo> </mover> <mi>Q</mi> </msub> </semantics> </math> does not satisfy the inequality triangular.</p> "> Figure 9
<p>Representation of the three cases, on each we can find an <span class="html-italic">x</span> in the support of the noise such as <math display="inline"> <semantics> <mrow> <mfenced separators="" open="〈" close="〉"> <mi>x</mi> <mo>,</mo> <msub> <mi>g</mi> <mn>0</mn> </msub> <mo>·</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mfenced> <mo>></mo> <mfenced separators="" open="〈" close="〉"> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mfenced> </mrow> </semantics> </math> and by continuity of the dot product <math display="inline"> <semantics> <mrow> <mfenced separators="" open="〈" close="〉"> <mi>ϵ</mi> <mo>,</mo> <msub> <mi>g</mi> <mn>0</mn> </msub> <mo>·</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mfenced> <mo>></mo> <mfenced separators="" open="〈" close="〉"> <mi>ϵ</mi> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mfenced> </mrow> </semantics> </math> with is an event with a non zero probability, (for instance the ball in gray). This is enough in order to show that <math display="inline"> <semantics> <mrow> <mi>θ</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> <mo>></mo> <mn>0</mn> </mrow> </semantics> </math>. (<b>a</b>) Case 1: <math display="inline"> <semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>g</mi> <mo>·</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> are linearly independent; (<b>b</b>) Case 2: <math display="inline"> <semantics> <mrow> <mi>g</mi> <mo>·</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> is proportional to <math display="inline"> <semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics> </math> with a factor <math display="inline"> <semantics> <mrow> <mo>></mo> <mn>1</mn> </mrow> </semantics> </math>; (<b>c</b>) Case 3: <math display="inline"> <semantics> <mrow> <mi>g</mi> <mo>·</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> is proportional to <math display="inline"> <semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics> </math> with a factor <math display="inline"> <semantics> <mrow> <mo><</mo> <mn>1</mn> </mrow> </semantics> </math>.</p> "> Figure 10
<p>In the case of affine translation by vectors of <span class="html-italic">V</span>, the orbits are affine subspace parallel to <span class="html-italic">V</span>. The distance between two orbits <math display="inline"> <semantics> <mrow> <mo>[</mo> <mi>x</mi> <mo>]</mo> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mo>[</mo> <mi>y</mi> <mo>]</mo> </mrow> </semantics> </math> is given by the distance between the orthogonal projection of <span class="html-italic">x</span> and <span class="html-italic">y</span> in <math display="inline"> <semantics> <msup> <mi>V</mi> <mo>⊥</mo> </msup> </semantics> </math>. This is an example where template estimation is consistent.</p> ">
Abstract
:1. Introduction
1.1. General Introduction
1.2. Why Using a Group Action? Comparison with the Standard Norm
1.3. Settings and Notation
1.4. Questions and Contributions
- Is a minimum of the variance or the pre-variance?
- What is the behavior of the consistency bias with respect to the noise level?
- How to perform such a minimization of the variance? Indeed, in practice we have only a sample and not the whole distribution.
2. Inconsistency of Template Estimation with an Isometric Action
2.1. Congruent Section and Computation of Fréchet Mean in Quotient Space
2.2. Inconsistency and Quantification of the Consistency Bias
- because the support of is not included in the set of fixed points under the action of G.
- is the consequence of the Cauchy-Schwarz inequality.
- The proof of Inequalities (3) is based on the triangular inequalities:
2.3. Remarks about Theorem 1 and Its Proof
- It follows from Equation (3) that K is the consistency bias with a null template and a standardized noise ().
- From the proof of Theorem 1 we know that . On the one hand, if G is the group of rotations then , because for all v s.t. , , by aligning v and . On the other hand if G acts trivially (which means that for all ) then . The general case for K is between two extreme cases: the group where the orbits are minimal (one point) and the group for which the orbits are maximal (the whole sphere). We can state that the more the group action has the ability to align the elements, the larger the constant K is and the larger the consistency bias is.
- The squared quotient distance between two points is:
2.4. Template Estimation with the Max-Max Algorithm
2.4.1. Max-Max Algorithm Converges to a Local Minima of the Empirical Variance
Algorithm 1 Max-Max Algorithm. |
Require: A starting point , a sample . . while Convergence is not reached do Minimizing : we get by registering with respect to . Minimizing : we get . . end while |
2.5. Simulation on Synthetic Data
2.5.1. Max-Max Algorithm with a Step Function as Template
2.5.2. Max-Max Algorithm with a Continuous Template
2.5.3. Does the Max-Max Algorithm Give Us a Global Minimum or Only a Local Minimum of the Variance?
3. Inconsistency in the Case of Non Invariant Distance under the Group Action
3.1. Notation and Hypothesis
3.2. Where Did We Need an Isometric Action Previously?
3.3. Non Invariant Group Action, with a Subgroup Acting Isometrically
3.3.1. Inconsistency when the Template Is a Fixed Point
- Thanks to Corollary 1 of Section 2.2 we know that is not the Fréchet mean of the projection of Y into : we can find such that:Note that in order to apply Corollary 1, we do not need that is included in H, because is a fixed point.
- Because we take the infimum over more elements we have:
- As is a fixed point under the action of G and under the action of H:
3.3.2. Inconsistency in the General Case for the Template
3.3.3. Proof of Proposition 4
- ,
- .
3.4. Linear Action
3.4.1. Inconsistency
3.4.2. Proofs of Proposition 5 and Proposition 6
- The vectors and are linearly independent. In this case , then we can find and . Then and , without loss of generality we can assume that (replacing x by if necessary). We also can assume that (replacing x by if necessary. Then we have and:
- If with , we take and we have:
- If with we take and we have:
3.5. Example of a Template Estimation Which is Consistent
3.6. Inconsistency with Non Invariant Action and Regularization
3.6.1. Case of Deformations Closed to the Identity Element of G
3.6.2. Inconsistency in the Case of a Group Acting Linearly with a Bounded Regularization
4. Conclusions and Discussion
Author Contributions
Conflicts of Interest
References
- Kurtek, S.A.; Srivastava, A.; Wu, W. Signal Estimation Under Random Time-Warpings and Nonlinear Signal Alignment. In Advances in Neural Information Processing Systems 24; Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2011; pp. 675–683. [Google Scholar]
- Guimond, A.; Meunier, J.; Thirion, J.P. Average Brain Models: A Convergence Study. Comput. Vis. Image Underst. 2000, 77, 192–210. [Google Scholar] [CrossRef]
- Joshi, S.; Davis, B.; Jomier, M.; Gerig, G. Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 2004, 23, S151–S160. [Google Scholar] [CrossRef] [PubMed]
- Cootes, T.F.; Marsland, S.; Twining, C.J.; Smith, K.; Taylor, C.J. Groupwise diffeomorphic non-rigid registration for automatic model building. In Computer Vision—ECCV 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 316–327. [Google Scholar]
- Bigot, J.; Charlier, B. On the consistency of Fréchet means in deformable models for curve and image analysis. Electron. J. Stat. 2011, 5, 1054–1089. [Google Scholar] [CrossRef]
- Miolane, N.; Holmes, S.; Pennec, X. Template shape estimation: Correcting an asymptotic bias. SIAM J. Imaging Sci. 2017, 10, 808–844. [Google Scholar] [CrossRef]
- Devilliers, L.; Allassonnière, S.; Trouvé, A.; Pennec, X. Template estimation in computational anatomy: Fréchet means in top and quotient spaces are not consistent. SIAM J. Imaging Sci. 2017, in press. [Google Scholar]
- Panaretos, V.M.; Zemel, Y. Amplitude and phase variation of point processes. Ann. Stat. 2016, 44, 771–812. [Google Scholar] [CrossRef]
- Devilliers, L.; Pennec, X.; Allassonnière, S. Inconsistency of Template Estimation with the Fréchet Mean in Quotient Space. In Information Processing in Medical Imaging, Proceedings of the 25th International Conference (IPMI 2017), Boone, NC, USA, 25–30 June 2017; Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.T., Shen, D., Eds.; Springer: Cham, Switzerland, 2017; pp. 16–27. [Google Scholar]
- Thompson, D.W. On Growth and Form; Cambridge University Press: Cambridge, UK, 1942. [Google Scholar]
- Durrleman, S.; Prastawa, M.; Charon, N.; Korenberg, J.R.; Joshi, S.; Gerig, G.; Trouvé, A. Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 2014, 101, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Glasbey, C.; Mardia, K. A penalized likelihood approach to image warping. J. R. Stat. Soc. Ser. B Stat. Methodol. 2001, 63, 465–492. [Google Scholar] [CrossRef]
- Charlier, B. Necessary and sufficient condition for the existence of a Fréchet mean on the circle. ESAIM Probab. Stat. 2013, 17, 635–649. [Google Scholar] [CrossRef]
- Beg, M.F.; Miller, M.I.; Trouvé, A.; Younes, L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 2005, 61, 139–157. [Google Scholar] [CrossRef]
- Huckemann, S. Inference on 3d procrustes means: Tree bole growth, rank deficient diffusion tensors and perturbation models. Scand. J. Stat. 2011, 38, 424–446. [Google Scholar] [CrossRef]
- Rohlf, F.J. Bias and error in estimates of mean shape in geometric morphometrics. J. Hum. Evol. 2003, 44, 665–683. [Google Scholar] [CrossRef]
- Goodall, C. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. Ser. B Methodol. 1991, 53, 285–339. [Google Scholar]
- Ziezold, H. On expected figures and a strong law of large numbers for random elements in quasi-metric spaces. In Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the 1974 European Meeting of Statisticians; Springer: Dordrecht, The Netherlands, 1977; pp. 591–602. [Google Scholar]
- Allassonnière, S.; Amit, Y.; Trouvé, A. Towards a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. Ser. B Stat. Methodol. 2007, 69, 3–29. [Google Scholar] [CrossRef]
- Hitziger, S.; Clerc, M.; Gramfort, A.; Saillet, S.; Bénar, C.; Papadopoulo, T. Jitter-adaptive dictionary learning-application to multi-trial neuroelectric signals. arXiv, 2013; arXiv:1301.3611. [Google Scholar]
- Kurtek, S.; Klassen, E.; Ding, Z.; Avison, M.J.; Srivastava, A. Parameterization-invariant shape statistics and probabilistic classification of anatomical surfaces. In Proceedings of the 22nd International Conference on Information Processing in Medical Imaging, Monastery Irsee, Germany, 3–8 July 2011; pp. 147–158. [Google Scholar]
- Bhattacharya, A.; Bhattacharya, R. Statistics on Riemannian manifolds: Asymptotic distribution and curvature. Proc. Am. Math. Soc. 2008, 136, 2959–2967. [Google Scholar] [CrossRef]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Lombaert, H.; Grady, L.; Pennec, X.; Ayache, N.; Cheriet, F. Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations. Int. J. Comput. Vis. 2013, 107, 254–271. [Google Scholar] [CrossRef]
- Cheng, W.; Dryden, I.L.; Huang, X. Bayesian registration of functions and curves. Bayesian Anal. 2016, 11, 447–475. [Google Scholar] [CrossRef]
Points | Template | |||||
---|---|---|---|---|---|---|
Empirical variance at these points | 96.714 | 95.684 | 95.681 | 95.676 | 95.677 | 95.682 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devilliers, L.; Allassonnière, S.; Trouvé, A.; Pennec, X. Inconsistency of Template Estimation by Minimizing of the Variance/Pre-Variance in the Quotient Space. Entropy 2017, 19, 288. https://doi.org/10.3390/e19060288
Devilliers L, Allassonnière S, Trouvé A, Pennec X. Inconsistency of Template Estimation by Minimizing of the Variance/Pre-Variance in the Quotient Space. Entropy. 2017; 19(6):288. https://doi.org/10.3390/e19060288
Chicago/Turabian StyleDevilliers, Loïc, Stéphanie Allassonnière, Alain Trouvé, and Xavier Pennec. 2017. "Inconsistency of Template Estimation by Minimizing of the Variance/Pre-Variance in the Quotient Space" Entropy 19, no. 6: 288. https://doi.org/10.3390/e19060288
APA StyleDevilliers, L., Allassonnière, S., Trouvé, A., & Pennec, X. (2017). Inconsistency of Template Estimation by Minimizing of the Variance/Pre-Variance in the Quotient Space. Entropy, 19(6), 288. https://doi.org/10.3390/e19060288