Microstructures of Al7.5Cr22.5Fe35Mn20Ni15 High-Entropy Alloy and Its Polarization Behaviors in Sulfuric Acid, Nitric Acid and Hydrochloric Acid Solutions
"> Figure 1
<p>SEM micrographs of the as-received Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy at (<b>a</b>) low-magnitude, and (<b>b</b>) high-magnitude. Marks of DR and ID indicate the dendrite and interdendrite of the alloy, respectively.</p> "> Figure 2
<p>XRD pattern of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy.</p> "> Figure 3
<p>TEM micrographs of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy: (<b>a</b>) a BF image of the dendrite, which shows several precipitates dispersed in the dendrite matrix; (<b>b</b>) a BF image of the dendrite, inserts are the corresponding lattice image and SAD taken from the [001] direction; (<b>c</b>) a BF image of the interdendrite, inserts are the corresponding lattice image and SAD taken from the [011] direction; (<b>d</b>) a BF image of the precipitate, inserts are the corresponding lattice image and SAD taken from the [001] direction; and (<b>e</b>) a high resolution lattice image taken from the [001] direction of the interface between the precipitate and dendrite matrix.</p> "> Figure 4
<p>Polarization behaviors of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy in 1M H<sub>2</sub>SO<sub>4</sub> solution, (<b>a</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy measured at different temperatures; (<b>b</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy and 304SS at 30 °C; and (<b>c</b>) a SEM micrograph of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy after polarization test indicates that the corrosion area is dendrite matrix.</p> "> Figure 5
<p>Polarization behaviors of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy in 1M HNO<sub>3</sub> solution, (<b>a</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy measured at different temperatures; (<b>b</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy in both of 1M H<sub>2</sub>SO<sub>4</sub> and 1M HNO<sub>3</sub> solutions at 30 °C; (<b>c</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy and 304SS at 30 °C; and (<b>d</b>) a SEM micrograph of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy after polarization test shows the concave areas are interdendrites and interdendrite fragments of the alloy.</p> "> Figure 6
<p>Polarization behaviors of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy in 1M HCl solution, (<b>a</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy measured at different temperatures; (<b>b</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy and 304SS at 30 °C; and (<b>c</b>) a SEM micrograph of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy after the polarization test shows the concave areas are interdendrites and interdendrite fragments of the alloy.</p> "> Figure 6 Cont.
<p>Polarization behaviors of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy in 1M HCl solution, (<b>a</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy measured at different temperatures; (<b>b</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy and 304SS at 30 °C; and (<b>c</b>) a SEM micrograph of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy after the polarization test shows the concave areas are interdendrites and interdendrite fragments of the alloy.</p> "> Figure 7
<p>Polarization behaviors of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy, (<b>a</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy in 1M H<sub>2</sub>SO<sub>4</sub> acid, 1M NaCl and the mixed solution of 1M NaCl and 1M H<sub>2</sub>SO<sub>4</sub> at 30 °C; (<b>b</b>) polarization curves of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy and 304SS at 30 °C; (<b>c</b>) a SEM micrograph of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy after the polarization test in the mixed solution of 1M H<sub>2</sub>SO<sub>4</sub> and 1M NaCl; and (<b>d</b>) a SEM micrograph of the Al<sub>7.5</sub>Cr<sub>22.5</sub>Fe<sub>35</sub>Mn<sub>20</sub>Ni<sub>15</sub> alloy after the polarization test in 1M NaCl solution.</p> ">
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgement
Author Contributions
Conflicts of Interest
References
- Huang, P.K.; Yeh, J.W.; Shun, T.T.; Chen, S.K. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004, 6, 74–78. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. High-entropy alloys with multi-principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S. High-Entropy Alloys; Elsevier: London, UK, 2014; pp. 1–35. [Google Scholar]
- Zhang, Y.; Lu, Z.P.; Ma, S.G.; Liaw, P.K.; Tang, Z.; Cheng, Y.Q.; Gao, M.C. Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 2014, 4, 57–62. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, C.L.; Yi, J.Z.; Zhang, C.H. Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying. Surf. Coat. Technol. 2015, 262, 64–69. [Google Scholar] [CrossRef]
- Dolique, V.; Thomann, A.L.; Brault, P.; Tessier, Y.; Gillon, P. Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis. Surf. Coat. Technol. 2010, 204, 1989–1992. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Lilensten, L.; Couzinié, J.P.; Perrière, L.; Bourgon, J.; Emery, N.; Guillot, I. New structure in refractory high-entropy alloys. Mater. Lett. 2014, 132, 123–125. [Google Scholar] [CrossRef]
- Wang, W.H. High-entropy metallic glasses. JOM 2014, 66, 2067–2077. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Hong, U.T.; Shih, H.C.; Yeh, J.W.; Duval, T. Electrochemical kinetics of the high entropy alloys in aqueous environments - comparison with type 304 stainless steel. Corros. Sci. 2005, 47, 2679–2699. [Google Scholar] [CrossRef]
- Qiu, X.W.; Zhang, Y.P.; Hea, L.; Liu, C.G. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J. Alloy. Compd. 2013, 549, 195–199. [Google Scholar] [CrossRef]
- Li, J.M.; Yang, X.; Zhu, R.L.; Zhang, Y. Corrosion and Serration Behaviors of TiZr0.5NbCr0.5VxMoy High Entropy Alloys in Aqueous Environments. Metals 2014, 4, 597–608. [Google Scholar] [CrossRef]
- Chen, S.T.; Tang, W.Y.; Kuo, Y.F.; Chen, S.Y.; Tsau, C.H.; Shun, T.T.; Yeh, J.W. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Mater. Sci. Eng. A 2010, 547, 5818–5825. [Google Scholar] [CrossRef]
- Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W.; Shih, H.C. Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid. Thin Solid Films 2008, 517, 1301–1305. [Google Scholar] [CrossRef]
- Revie, R.W.; Uhlig, H.H. Corrosion and Corrosion Control, 4th ed.; John Wiley & Sons: New York, NJ, USA, 2008; p. 36. [Google Scholar]
- Bates, R.G.; MacAskill, J.B. Standard Potential of the Silver-Silver Chloride Electrode. Pure Appl. Chem. 1978, 50, 1701–1706. [Google Scholar] [CrossRef]
- Abdallah, M. Corrosion behavior of 304 stainless steel in sulphuric acid solutions and its inhibition by some substituted pyrazolones. Mater. Chem. Phys. 2003, 81, 786–792. [Google Scholar] [CrossRef]
- Ashworth, V.; Boden, P.J. Potential-pH diagrams at elevated temperatures. Corros. Sci. 1970, 10, 709–718. [Google Scholar] [CrossRef]
- Clayton, C.R.; Lu, Y.C. A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition. J. Electrochem. Soc. 1986, 133, 2465–2473. [Google Scholar] [CrossRef]
Phases | Al | Cr | Fe | Mn | Ni |
---|---|---|---|---|---|
Overall | 8 | 22 | 36 | 18 | 16 |
Precipitate | 20 | 8 | 10 | 19 | 43 |
Interdendrite | 6 | 15 | 40 | 23 | 16 |
Dendrite | 6 | 28 | 34 | 23 | 8 |
30 °C | 40 °C | 50 °C | 60 °C | |
---|---|---|---|---|
Ecorr (V vs. SSE) | −0.49 | −0.52 | −0.52 | −0.51 |
icorr (mA/cm2) | 0.13 | 0.45 | 2.81 | 7.28 |
Epp (V vs. SSE) | −0.46 | −0.47 | −0.46 | −0.44 |
ipp (mA/cm2) | 0.06 | 2.05 | 5.39 | 4.03 |
Esp (V vs. SSE) | −0.07 | −0.12 | −0.10 | −0.09 |
isp (mA/cm2) | 2.10 | 4.76 | 11.24 | 34.86 |
ipass (mA/cm2) | 0.03 | 0.05 | 0.05 | 0.09 |
Eb (V vs. SSE) | 0.98 | 0.98 | 0.98 | 0.98 |
Etp (V vs. SSE) | 1.46 | 1.47 | 1.50 | 1.62 |
itp (mA/cm2) | 15.36 | 44.06 | 92.49 | 147.73 |
30 °C | 40 °C | 50 °C | 60 °C | |
---|---|---|---|---|
Ecorr (V vs. SSE) | −0.24 | −0.22 | −0.15 | −0.15 |
icorr (mA/cm2) | 0.67 | 1.08 | 1.49 | 2.59 |
Epp (V vs. SSE) | −0.08 | −0.08 | −0.08 | −0.10 |
ipp (mA/cm2) | 2.20 | 3.90 | 2.03 | 2.30 |
ipass (mA/cm2) | 0.04 | 0.05 | 0.07 | 0.08 |
Eb (V vs. SSE) | 0.97 | 0.96 | 0.94 | 0.93 |
Esp (V vs. SSE) | 1.20 | 1.27 | 1.36 | 1.39 |
isp (mA/cm2) | 11.06 | 23.36 | 44.58 | 64.12 |
30 °C | 40 °C | 50 °C | 60 °C | |
---|---|---|---|---|
Ecorr (V vs. SSE) | −0.55 | −0.48 | −0.46 | −0.43 |
icorr (mA/cm2) | 4.50 | 7.50 | 8.95 | 11.36 |
Epp (V vs. SSE) | −0.44 | −0.40 | - | - |
ipp (mA/cm2) | 4.48 | 7.00 | - | - |
ipass (mA/cm2) | 1.00 | 3.65 | - | - |
Esp (V vs. SSE) | −0.31 | - | - | - |
isp (mA/cm2) | 2.00 | - | - | - |
Eb (V vs. SSE) | −0.26 | −0.30 | - | - |
1M H2SO4 | 1M H2SO4 + 1M NaCl | 1M NaCl | |
---|---|---|---|
Ecorr (V vs. SSE) | −0.49 | −0.50 | −0.41 |
icorr (mA/cm2) | 0.13 | 8.00 | 0.01 |
Epp (V vs. SSE) | −0.46 | −0.40 | - |
ipp (mA/cm2) | 0.06 | 2.10 | - |
Esp (V vs. SSE) | −0.07 | −0.01 | - |
isp (mA/cm2) | 2.10 | 10.00 | - |
ipass (mA/cm2) | 0.03 | 0.04 | - |
Eb (V vs. SSE) | 0.98 | 0.20 | - |
Etp (V vs. SSE) | 1.46 | - | - |
itp (mA/cm2) | 15.36 | - | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsau, C.-H.; Lee, P.-Y. Microstructures of Al7.5Cr22.5Fe35Mn20Ni15 High-Entropy Alloy and Its Polarization Behaviors in Sulfuric Acid, Nitric Acid and Hydrochloric Acid Solutions. Entropy 2016, 18, 288. https://doi.org/10.3390/e18080288
Tsau C-H, Lee P-Y. Microstructures of Al7.5Cr22.5Fe35Mn20Ni15 High-Entropy Alloy and Its Polarization Behaviors in Sulfuric Acid, Nitric Acid and Hydrochloric Acid Solutions. Entropy. 2016; 18(8):288. https://doi.org/10.3390/e18080288
Chicago/Turabian StyleTsau, Chun-Huei, and Po-Yen Lee. 2016. "Microstructures of Al7.5Cr22.5Fe35Mn20Ni15 High-Entropy Alloy and Its Polarization Behaviors in Sulfuric Acid, Nitric Acid and Hydrochloric Acid Solutions" Entropy 18, no. 8: 288. https://doi.org/10.3390/e18080288
APA StyleTsau, C. -H., & Lee, P. -Y. (2016). Microstructures of Al7.5Cr22.5Fe35Mn20Ni15 High-Entropy Alloy and Its Polarization Behaviors in Sulfuric Acid, Nitric Acid and Hydrochloric Acid Solutions. Entropy, 18(8), 288. https://doi.org/10.3390/e18080288