Wide Range Multiscale Entropy Changes through Development
<p>MSE profiles through development. Age-specific MSE profiles are shown in the upper panel (* <span class="html-italic">p</span> < 0.001, ANOVA, Bonferroni corrected). These are generally consistent across the examined matching criteria (<span class="html-italic">r</span> = 0.2 in the inlay). Averages and standard errors for extreme scale values are shown in the bottom panels, where age bin color coding matches. Differences of opposite signs were observed for lower scales (up to ~20 ms) and higher scales (beyond ~50 ms). These are related to adults showing higher values in the lower scales range, with smaller growth gradient in this range and later inversion, determining a crossing of profiles in the intermediate scale values and relatively smaller entropy at higher scales. At lower scales, entropy estimates are in good agreement with existent studies, both in terms of age differences and numerical values (reviewed in [<a href="#B4-entropy-18-00012" class="html-bibr">4</a>]). Note that aside generally overlapping differences, <span class="html-italic">r</span> affects entropy magnitudes and relative gradients over scales, highlighting the potential dramatic impact of normalization choices.</p> "> Figure 2
<p>PSD and STD. Power spectral profiles followed typical age-related differences. Greater absolute power was observed in children, with development being accompanied by a decrease in total power and increase in the contribution of energy from higher frequencies. Global power differences are mirrored in STD changes. As the general 1/<span class="html-italic">f</span> relation observed in EEG signals remains largely unaffected, relative power differences are highlighted by PSD on signals divided by STD.</p> "> Figure 3
<p>MSE and STD. The scale dependency of the association (correlation coefficient, <span class="html-italic">R</span>) between entropy estimates and STD is shown in the left panel. Higher STD—as observed in children—are related to lower entropy values particularly at lower scales. Consistently, a strong covariance of values was observed at lower scales (e.g., scatterplot in lower left inlay), while, at higher scales, adults showed lower entropy values even beyond the portion of variability explained by STD (e.g., scatterplot in the upper left inlay). This was evident in the age-dependent distribution of deviations from the fitted linear model <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>=</mo> <mi>α</mi> <mo>+</mo> <mo> </mo> <mi>S</mi> <mi>T</mi> <mi>D</mi> <mo>×</mo> <mi>β</mi> </mrow> </semantics> </math> , <span class="html-italic">i.e.</span>, residuals (<span class="html-italic">e</span>, shown in the right panel).</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Participants
2.2. EEG Acquisition and Preprocessing
2.3. Analysis
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tognoli, E.; Kelso, J.A.S. The Metastable Brain. Neuron 2014, 81, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Rho, Y.; McIntosh, A.R.; Kötter, R.; Jirsa, V.K. Noise during Rest Enables the Exploration of the Brain’s Dynamic Repertoire. PLoS Comput. Biol. 2008, 4, e1000196. [Google Scholar] [CrossRef] [PubMed]
- Deco, G.; Jirsa, V.K.; McIntosh, A.R. Resting Brains Never Rest: Computational Insights into Potential Cognitive Architectures. Trends Neurosci. 2013, 36, 268–274. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.R.; Kovacevic, N.; Lippe, S.; Garrett, D.; Grady, C.; Jirsa, V. The Development of a Noisy Brain. Arch. Ital. Biol. 2010, 148, 323–337. [Google Scholar] [PubMed]
- Garrett, D.D.; Samanez-Larkin, G.R.; MacDonald, S.W.; Lindenberger, U.; McIntosh, A.R.; Grady, C.L. Moment-to-Moment Brain Signal Variability: A next Frontier in Human Brain Mapping? Neurosci. Biobehav. Rev. 2013, 37, 610–624. [Google Scholar] [CrossRef] [PubMed]
- Faisal, A.A.; Selen, L.P.J.; Wolpert, D.M. Noise in the Nervous System. Nat. Rev. Neurosci. 2008, 9, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Swain, P.S.; Longtin, A. Noise in Genetic and Neural Networks. Chaos 2006, 16, 026101. [Google Scholar] [CrossRef] [PubMed]
- Deco, G.; Jirsa, V.K.; McIntosh, A.R. Emerging Concepts for the Dynamical Organization of Resting-State Activity in the Brain. Nat. Rev. Neurosci. 2011, 12, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F. Stochastic Resonance. Rev. Mod. Phys. 1998, 70, 223–287. [Google Scholar] [CrossRef]
- McDonnell, M.D.; Abbott, D. What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology. PLoS Comput. Biol. 2009, 5, e1000348. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J. Nonlinear Dynamical Analysis of EEG and MEG: Review of an Emerging Field. Clin. Neurophysiol. 2005, 116, 2266–2301. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ruiz, R.; Mancini, H.; Calbet, X. A Statistical Measure of Complexity. Phys. Lett. A 1995, 209, 321–326. [Google Scholar] [CrossRef]
- Tononi, G.; Sporns, O.; Edelman, G.M. A Measure for Brain Complexity: Relating Functional Segregation and Integration in the Nervous System. Proc. Natl. Acad. Sci. USA 1994, 91, 5033–5037. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale Entropy Analysis of Biological Signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [PubMed]
- Catarino, A.; Churches, O.; Baron-cohen, S.; Andrade, A.; Ring, H. Atypical EEG Complexity in Autism Spectrum Conditions: A Multiscale Entropy Analysis. Clin. Neurophysiol. 2011, 122, 2375–2383. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.R.; Vakorin, V.; Kovacevic, N.; Wang, H.; Diaconescu, A.; Protzner, A.B. Spatiotemporal Dependency of Age-Related Changes in Brain Signal Variability. Cereb. Cortex 2014, 24, 1806–1817. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Takahashi, T.; Cho, R.Y.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. Assessment of EEG Dynamical Complexity in Alzheimer’s Disease Using Multiscale Entropy. Clin. Neurophysiol. 2010, 121, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Misić, B.; Mills, T.; Taylor, M.J.; McIntosh, A.R. Brain Noise Is Task Dependent and Region Specific. J. Neurophysiol. 2010, 104, 2667–2676. [Google Scholar] [CrossRef] [PubMed]
- Lippé, S.; Kovacevic, N.; McIntosh, A.R. Differential Maturation of Brain Signal Complexity in the Human Auditory and Visual System. Front. Hum. Neurosci. 2009, 3. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.R.; Kovacevic, N.; Itier, R.J. Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development. PLoS Comput. Biol. 2008, 4, e1000106. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M. Approximate Entropy as a Measure of System Complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Nikulin, V.V.; Brismar, T. Comment on “Multiscale Entropy Analysis of Complex Physiologic Time Series”. Phys. Rev. Lett. 2004, 92, 089803. [Google Scholar] [CrossRef] [PubMed]
- John, E.R.; Ahn, H.; Prichep, L.; Trepetin, M.; Brown, D.; Kaye, H. Developmental Equations for the Electroencephalogram. Science 1980, 210, 1255–1258. [Google Scholar] [CrossRef] [PubMed]
- Escudero, J.; Abásolo, D.; Hornero, R.; Espino, P.; López, M. Analysis of Electroencephalograms in Alzheimer’s Disease Patients with Multiscale Entropy. Physiol. Meas. 2006, 27, 1091–1106. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. Wechsler Abbreviated Scale of Intelligence (WASI); Pearson: San Antonio, TX, USA, 1999. [Google Scholar]
- Cho, R.Y.; Walker, C.P.; Polizzotto, N.R.; Wozny, T.; Fissell, C.; Chen, C.-M.A.; Lewis, D. Development of Sensory Gamma Oscillations and Cross-Frequency Coupling from Childhood to Early Adulthood. Cereb. Cortex 2015, 25, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; Sejnowski, T.J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.P.; Makeig, S.; Humphries, C.; Lee, T.W.; McKeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing Electroencephalographic Artifacts by Blind Source Separation. Psychophysiology 2000, 37, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Keren, A.S.; Yuval-Greenberg, S.; Deouell, L.Y. Saccadic Spike Potentials in Gamma-Band EEG: Characterization, Detection and Suppression. Neuroimage 2010, 49, 2248–2263. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-D.; Wu, C.-W.; Lin, S.-G.; Wang, C.-C.; Lee, K.-Y. Time Series Analysis Using Composite Multiscale Entropy. Entropy 2013, 15, 1069–1084. [Google Scholar] [CrossRef]
- Costa, M.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale Entropy Analysis of Human Gait Dynamics. Physica A 2003, 330, 53–60. [Google Scholar] [CrossRef]
- Liu, Q.; Wei, Q.; Fan, S.Z.; Lu, C.W.; Lin, T.Y.; Abbod, M.F.; Shieh, J.S. Adaptive Computation of Multiscale Entropy and Its Application in EEG Signals for Monitoring Depth of Anesthesia during Surgery. Entropy 2012, 14, 978–992. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample Entropy Analysis of Neonatal Heart Rate Variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef] [PubMed]
- Vakorin, V.A.; Lippe, S.; McIntosh, A.R. Variability of Brain Signals Processed Locally Transforms into Higher Connectivity with Brain Development. J. Neurosci. 2011, 31, 6405–6413. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polizzotto, N.R.; Takahashi, T.; Walker, C.P.; Cho, R.Y. Wide Range Multiscale Entropy Changes through Development. Entropy 2016, 18, 12. https://doi.org/10.3390/e18010012
Polizzotto NR, Takahashi T, Walker CP, Cho RY. Wide Range Multiscale Entropy Changes through Development. Entropy. 2016; 18(1):12. https://doi.org/10.3390/e18010012
Chicago/Turabian StylePolizzotto, Nicola R., Tetsuya Takahashi, Christopher P. Walker, and Raymond Y. Cho. 2016. "Wide Range Multiscale Entropy Changes through Development" Entropy 18, no. 1: 12. https://doi.org/10.3390/e18010012
APA StylePolizzotto, N. R., Takahashi, T., Walker, C. P., & Cho, R. Y. (2016). Wide Range Multiscale Entropy Changes through Development. Entropy, 18(1), 12. https://doi.org/10.3390/e18010012