Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System
<p>Schematic diagram of a small-scale solar ORC system.</p> ">
<p>Experimental setup for the solar ORC system investigation.</p> ">
<p>Variation of the solar collector heat input and solar ORC efficiency as a function of the degree of superheat temperature for different solar source temperatures.</p> ">
<p>Variation of expander power output and thermal efficiency as a function of pressure ratio (off-design condition).</p> ">
<p>Variation of the solar collector area at different months of the year for different solar source temperatures.</p> ">
<p>Variation of the solar power output at different months of the year for different solar source temperatures.</p> ">
<p>Variation of performance of solar ORC system power output during the year.</p> ">
<p>Cost significance of subsystem in the SORC system.</p> ">
<p>Net present values during the life cycle of the system (prototype and low cost solar ORC).</p> ">
Abstract
:1. Introduction
2. Methodology
3. Investigated SORC Technology Design
4. Thermodynamic Fundamentals
- All the thermodynamic processes and systems are in a steady state.
- The working fluid feed and expansion devices are adiabatic devices.
- The simple ORC system has negligible pressure losses in the heat exchanger and piping system so it is neglected.
- The reference state (dead state) temperature and pressure are 25 °C and 1 bar, respectively, for the system’s performance calculations.
5. Results and Discussion: Solar ORC System Performance
6. Economic and Thermoeconomic Analysis
6.1. Estimation of Investment Cost
6.2. Economic Analysis of the SORC System
6.3. Sensitivity Analysis
- It provides hot water as byproduct, at no extra cost.
- It allows using simpler, locally produced, solar collectors with minimum labor cost.
- It is possible to accumulate the heat for delayed use, e.g., it is possible to accumulate heat during the day for evening or night use (thermal storage tank).
- The heat downstream from the conversion system can be further used for heating or cooling (in an absorption chiller) purposes.
6.4. Sustainable Development through Solar ORC System
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Niez, A. Comparative Study on Rural Electrification Policies in Emerging Economies; International Energy Agency (IEA): Paris, France, 2010. [Google Scholar]
- Rayegan, R.; Tao, Y.X. A procedure to select working fluids for solar organic Rankine cycles (ORCs). Renew. Energy. 2011, 36, 659–670. [Google Scholar]
- Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working fluids for low-temperature organic Rankine cycles. Energy 2007, 32, 1210–1221. [Google Scholar]
- Hung, T.C.; Wang, S.K.; Kuo, C.H.; Pei, B.S.; Tsai, K.F. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy 2010, 35, 1403–1411. [Google Scholar]
- Qiu, G. Selection of working fluids for micro-CHP systems with ORC. Renew. Energy. 2012, 48, 565–570. [Google Scholar]
- Tchanche, B.F.; Papadakis, G.; Lambrinos, G.; Frangoudakis, A. Fluid selection for a low-temperature solar organic Rankine cycle. Appl. Therm. Eng. 2009, 29, 2468–2476. [Google Scholar]
- Baral, S.; Kim, K.C. Thermodynamic modeling of the solar organic Rankine cycle with selected organic working fluids for cogeneration. Distrib. Gener. Altern. Energy J 2014, 29, 7–34. [Google Scholar]
- Quoilin, S.; Orosz, M.; Hemond, H.; Lemort, V. Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Sol. Energy. 2011, 85, 955–966. [Google Scholar]
- Orosz, M.S.; Quoilin, S.; Hemond, H. Technologies for heating, cooling and powering rural health facilities in sub-Saharan Africa. J. Power Energy 2013, 227, 717–726. [Google Scholar]
- Wolpert, J.L.; Riffat, S.B. Solar-powered Rankine system for domestic applications. Appl. Therm. Eng. 1996, 16, 281–289. [Google Scholar]
- Nguyen, V.M.; Doherty, P.S.; Riffat, S.B. Development of a prototype low-temperature Rankine cycle electricity generation system. Appl. Therm. Eng. 2001, 21, 169–181. [Google Scholar]
- Kane, M.; Larrain, D.; Favrat, D.; Allani, Y. Small hybrid solar power system. Energy 2003, 28, 1427–1443. [Google Scholar]
- Baral, S.; Kim, D.; Yun, E.; Kim, K.C. Energy, exergy and performance analysis of small-scale organic Rankine cycle systems for electrical power generation applicable in rural areas of developing countries. Energies 2015, 8, 684–713. [Google Scholar]
- Delgado-Torres, A.M.; García-Rodríguez, L. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC). Energy Convers. Manag. 2010, 51, 2846–2856. [Google Scholar]
- Pei, G.; Li, J.; Ji, J. Analysis of low temperature solar thermal electric generation using regenerative organic Rankine cycle. Appl. Therm. Eng. 2010, 30, 998–1004. [Google Scholar]
- Delgado-Torres, A.M. Solar thermal heat engines for water pumping: An update. Renew. Sustain. Energy Rev 2009, 13, 462–472. [Google Scholar]
- Korea Meteorological Administration. Available online: http://web.kma.go.kr accessed on 1 March 2015.
- Beck, M.; Schött, C. Rural electrification using renewable energy resources—Case Study of Rayal; Nepal: Minor Field Study, 2013; Volume diva2, p. 697692. [Google Scholar]
- Kosmadakis, G.; Manolakos, D.; Kyritsis, S.; Papadakis, G. Economic assessment of a two-stage solar organic Rankine cycle for reverse osmosis desalination. Renew. Energy. 2009, 34, 1579–1586. [Google Scholar]
- Orosz, M.; Mueller, A.; Quoilin, S.; Hemond, H. Small scale solar ORC system for distributed power, Proceedings of SolarPACES 2009, Berlin, Germany, 15–18 September 2009.
- Park, C.S. Engineering Economics; Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Yamaguchi, H.; Zhang, X.R.; Fujima, K.; Enomoto, M.; Sawada, N. Solar energy powered Rankine cycle using supercritical CO2. Appl. Therm. Eng. 2006, 26, 2345–2354. [Google Scholar]
- Dincer, I.; Rosen, M.A. Exergy: Energy, Environment and Sustainable Development, 2nd ed.; Elsevier: New York, NY, USA, 2013. [Google Scholar]
Month | Solar Insolation (kWh/m2/day) | Daylight Hours | Ambient Temperature (°C) |
---|---|---|---|
January | 2.9 | 10 | 5.7 |
February | 3.55 | 10.9 | 10.8 |
March | 4.22 | 11.9 | 16.1 |
April | 5.26 | 13 | 20.3 |
May | 5.57 | 14 | 23.5 |
June | 5.05 | 14.5 | 26.1 |
July | 4.4 | 14.2 | 27.1 |
August | 4.3 | 13.4 | 27.2 |
September | 3.72 | 12.4 | 24.4 |
October | 3.56 | 11.3 | 19.7 |
November | 2.83 | 10.3 | 14.3 |
December | 2.64 | 9.86 | 8.6 |
ORC unit parameters | Source Temperature (°C) | Solar Collector | ||||
---|---|---|---|---|---|---|
Source Temperature | 90 | 100 | 110 | 120 | Collector | Evacuated tubular |
Evaporator Pressure (bar) | 7.1 | 9.9 | 10.2 | 13 | Type | Heat Pipe |
Expander Inlet (°C) | 79.9 | 90.49 | 99.41 | 113 | No. of tubes | 10 |
Condenser Pressure (bar) | 1.3 | 1.7 | 1.7 | 2.1 | Heat capacity (kCal/m2 day) | 3342.47 |
Heat Supplied (kW) | 11.05 | 12.3 | 12.6 | 17 | Gross area (m2) | 2.55 |
Heat Released (kW) | 9.8 | 11.6 | 12.1 | 15.68 | Aperture area (m2) | 1.87 |
Expander power output (kW) | 0.63 | 0.77 | 0.87 | 1.38 | Copper, titanium-coated | Co (α ≤ 95%, ε ≥ 5%) |
Expander Efficiency (%) | 64 | 66 | 67 | 70.2 | Dimension (L × W × H) (mm) | 2185 × 1165 × 162 |
Pump efficiency (%) | 70 | 70 | 70 | 70 | Collector Efficiency (%) | 72.95 |
Cycle efficiency (%) | 5.7 | 6.6 | 0.69 | 8.1 | Filled with water (kg) | 62.8 |
Components | Solar Source T = 90 °C | Solar Source T = 100 °C | Solar Source T = 110 °C | Solar Source T = 120 °C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ed (kW) | IP (kW) | Ed (kW) | IP (kW) | Ed (kW) | IP (kW) | Ed (kW) | IP (kW) | |||||
Solar collector | 14.00 | 0.95 | 13.30 | 15.30 | 0.95 | 14.54 | 16.90 | 0.95 | 15.89 | 21.30 | 0.94 | 19.81 |
Evaporator | 0.42 | 0.03 | 0.40 | 0.50 | 0.03 | 0.48 | 0.57 | 0.03 | 0.54 | 0.76 | 0.03 | 0.71 |
Scroll Expander | 0.19 | 0.01 | 0.18 | 0.24 | 0.01 | 0.23 | 0.27 | 0.02 | 0.25 | 0.36 | 0.02 | 0.33 |
Condenser | 0.09 | 0.01 | 0.09 | 0.11 | 0.01 | 0.10 | 0.13 | 0.01 | 0.12 | 0.17 | 0.01 | 0.16 |
Pump | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 |
Total | 14.71 | 1.00 | 13.97 | 16.16 | 1.00 | 15.35 | 17.88 | 1.00 | 16.81 | 22.60 | 1.00 | 21.02 |
Parameters | Cost ($) | % of the total cost | Economic life (years) |
---|---|---|---|
Thermal energy production unit | |||
Installation of solar collectors | 3100 | 9.89 | – |
Solar collectors (15 collectors @ $900) | 13500 | 43.06 | 20 |
Collectors pump | 450 | 1.44 | 20 |
ORC Unit | |||
R245fa/water Evaporator | 450 | 1.44 | 20 |
R245fa/Water Condenser | 1650 | 5.26 | 20 |
Scroll Expander | 3950 | 12.60 | 20 |
R245fa Pump | 750 | 2.39 | 10 |
Fluid (R245fa) | 150 | 0.48 | – |
Refrigerant tank and piping | 250 | 0.80 | 20 |
Labor cost | 200 | 0.64 | – |
Power Block | |||
Generator | 550 | 1.75 | 20 |
Control systems | 300 | 0.96 | 20 |
Others | |||
Water tank | 150 | 0.48 | 20 |
Measuring devices | 200 | 0.64 | 15 |
Miscellaneous | 150 | 0.48 | – |
Total Investment cost | 25800 | 100.00 | – |
Parameters | Cost ($) |
---|---|
Operational cost | 247.5 |
Maintenance cost | 247.5 |
Insurance (Electromechanical equipment) | 117.15 |
Total annual cost | 612.15 |
Scenario | Economic parameters |
---|---|
1 | Standard Scenario |
2 | 20% increase in investment cost (IC) |
3 | 20% decrease in investment cost (IC) |
4 | 20% increase in annual benefit (AB) |
5 | 20% decrease in annual benefit (AB) |
6 | 20% increase in annual cost (AC) |
7 | 20% decrease in annual cost (AC) |
8 | 20% increase in interest rate (IR) |
9 | 20% decrease in interest rate (IR) |
Scenario | Investment cost ($) | Annual benefit ($) | Annual cost ($) | Interest rate (%) | NPV ($) |
---|---|---|---|---|---|
1 | 25800 | 2107.85 | 612.15 | 5 | 0 |
2 | 30960 | 2107.85 | 612.15 | 5 | −5042 |
3 | 20640 | 2107.85 | 612.15 | 5 | 5216 |
4 | 25800 | 2651.85 | 612.15 | 5 | 6834.71 |
5 | 25800 | 1686.28 | 612.15 | 5 | −6724.17 |
6 | 25800 | 2107.85 | 734.58 | 5 | −1553.11 |
7 | 25800 | 2107.85 | 489.72 | 5 | 1663.66 |
8 | 25800 | 2107.85 | 612.15 | 6 | −1991.59 |
9 | 25800 | 2107.85 | 612.15 | 4 | 2382.31 |
Scenario | Investment cost ($) | Annual benefit ($) | Annual cost ($) | Interest rate (%) | NPV ($) |
---|---|---|---|---|---|
1 | 11410 | 964.19 | 230.81 | 5 | 0 |
2 | 13692 | 964.19 | 230.81 | 5 | −2274.19 |
3 | 10954 | 964.19 | 230.81 | 5 | 465.80 |
4 | 11410 | 1203.19 | 230.81 | 5 | 2946.89 |
5 | 11410 | 725.20 | 230.81 | 5 | −2922.81 |
6 | 11410 | 964.19 | 276.97 | 5 | −507.13 |
7 | 11410 | 964.19 | 184.50 | 5 | 643.50 |
8 | 11410 | 964.19 | 230.81 | 6 | −833.97 |
9 | 11410 | 964.19 | 230.81 | 4 | 1093.70 |
Scenario | NPV ($) | BCR | Payback period (years) | IRR (%) | Selling price of electricity ($/kWh) |
---|---|---|---|---|---|
1 | 0 | 1.01 | 19 | 5.01 | 0.68 |
2 | −5154.57 | 0.87 | – | 2.94 | 0.81 |
3 | 5165.42 | 1.18 | 15 | 7.82 | 0.54 |
4 | 6834.71 | 1.2 | 14 | 7.82 | 0.6 |
5 | −5198.42 | 0.8 | – | 2.47 | 0.86 |
6 | −1520.24 | 0.95 | – | 4.29 | 0.64 |
7 | 1531.17 | 1.05 | 18 | 6 | 0.72 |
8 | −1991.6 | 0.93 | – | 5.06 | 0.75 |
9 | 2382.31 | 1.06 | 17 | 5.06 | 0.52 |
Case | NPV ($) | BCR | Payback period (years) | IRR (%) | Selling price of electricity ($/kWh) |
---|---|---|---|---|---|
1 | 0 | 1.01 | 19 | 5.01 | 0.29 |
2 | −2274.19 | 0.87 | – | 2.93 | 0.38 |
3 | 465.8 | 1.045 | 18 | 5.5 | 0.25 |
4 | 2946.89 | 1.21 | 14 | 7.9 | 0.22 |
5 | −2922.81 | 0.81 | – | 1.7 | 0.39 |
6 | −507.13 | 0.96 | – | 4.46 | 0.28 |
7 | 643.5 | 1.06 | 17 | 5.66 | 0.32 |
8 | −833.97 | 0.95 | – | 5.07 | 0.33 |
9 | 1093.7 | 1.08 | 17 | 5.07 | 0.29 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baral, S.; Kim, D.; Yun, E.; Kim, K.C. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System. Entropy 2015, 17, 2039-2061. https://doi.org/10.3390/e17042039
Baral S, Kim D, Yun E, Kim KC. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System. Entropy. 2015; 17(4):2039-2061. https://doi.org/10.3390/e17042039
Chicago/Turabian StyleBaral, Suresh, Dokyun Kim, Eunkoo Yun, and Kyung Chun Kim. 2015. "Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System" Entropy 17, no. 4: 2039-2061. https://doi.org/10.3390/e17042039
APA StyleBaral, S., Kim, D., Yun, E., & Kim, K. C. (2015). Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System. Entropy, 17(4), 2039-2061. https://doi.org/10.3390/e17042039