Assessment of the Maize Crop Water Stress Index (CWSI) Using Drone-Acquired Data Across Different Phenological Stages
<p>Location of the Swayimane study area, study site, and smallholder maize field.</p> "> Figure 2
<p>Flowchart showing the data collection (blue), data preparation RF analysis (orange), and data analysis (green).</p> "> Figure 3
<p>(<b>a</b>) An automated in-field meteorological tower in the maize field, (<b>b</b>) meteorological tower-mounted infrared radiometers (IRRs), and (<b>c</b>) a CR1000 data logger, an Em50 datalogger, and a 12 V battery.</p> "> Figure 4
<p>(<b>a</b>) UAV system, DJI Matrice 300, (<b>b</b>) MicaSense Altum camera, (<b>c</b>) DJI M-300 flight plan, and (<b>d</b>) MicaSense Altum calibration reflectance panel.</p> "> Figure 5
<p>Non-water-stressed baselines used to calculate the CWSI for maize growth stages.</p> "> Figure 6
<p>The variation in the CWSI for maize over different DOYs in 2021.</p> "> Figure 7
<p>Linear relationships between the actual and predicted CWSI for maize crop’s vegetative stages (<b>ai</b>) V5, (<b>bi</b>) V10, and (<b>ci</b>) V14 and (<b>di</b>) reproductive stages (R1), as well as the corresponding variables’ importance (<b>ai</b>–<b>dii</b>).</p> "> Figure 8
<p>The maize CWSI over the smallholder field for vegetative stages (<b>a</b>–<b>c</b>) and reproductive stages (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Methodological Framework
2.3. Maize Phenotyping
2.4. Maize Canopy Temperature Measurement
2.5. Meteorological Data Collection
2.6. UAV Multispectral-Thermal System
2.7. Image Acquisition and Processing
2.8. Selection of Vegetation Indices
2.9. Crop Water Stress Index (CWSI) Calculation
2.10. Statistical Analysis
2.11. Accuracy Assessment
3. Results
3.1. Non-Water-Stressed Baselines (NWSBs) and the Maize Crop Water Stress Index (CWS) for Vegetative and Reproductive Stages
3.2. Predicting the Crop Water Stress Index (CWSI) of Maize During the Vegetative and Reproductive Growth Stages Using Random Forest
3.3. Spatial Distribution of the Maize Crop Water Stress Index (CWSI) at Different Phenological Stages
4. Discussion
4.1. Determination of the Baselines and the Maize CWSI for the Vegetative and Reproductive Stages
4.2. Comparative Estimation of the CWSI in Maize Across Different Growth Stages
4.3. Implication of the Findings
5. Conclusions
- The RF regression model demonstrated high predictive accuracies for the CWSI in the investigated maize growth stages, i.e., V10, V14, and R1, with the NDWI, Red band, NDRE, and thermal band being the most influential variables in all the stages, respectively (R2 > 0.80 and RMSE ≤ 0.1 for all stages).
- The optimal RF model was identified at the V10 growth stage, with the Red band being the most influential variable, followed by the thermal band (R2 = 0.85 and RMSE = 0.028).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nhamo, L.; Mabhaudhi, T.; Modi, A. Preparedness or repeated short-term relief aid? Building drought resilience through early warning in southern Africa. Water SA 2019, 45, 75–85. [Google Scholar] [CrossRef]
- Ubisi, N.R.; Mafongoya, P.L.; Kolanisi, U.; Jiri, O. Smallholder farmer’s perceived effects of climate change on crop production and household livelihoods in rural Limpopo province, South Africa. Change Adapt. Socio-Ecol. Syst. 2017, 3, 27–38. [Google Scholar] [CrossRef]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.; Chakravarty, M.; Narayan, S.; Rana, M.; Moharana, D. Impact of water deficit stress in maize: Phenology and yield components. Sci. Rep. 2020, 10, 2944. [Google Scholar] [CrossRef] [PubMed]
- Chivasa, W.; Mutanga, O.; Biradar, C. Application of remote sensing in estimating maize grain yield in heterogeneous African agricultural landscapes: A review. Int. J. Remote Sens. 2017, 38, 6816–6845. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, P.; Jiang, B.; Li, M.; Gong, Z. Early detection of water stress in maize based on digital images. Comput. Electron. Agric. 2017, 140, 461–468. [Google Scholar] [CrossRef]
- Steele, D.D.; Stegman, E.C.; Knighton, R.E. Irrigation management for corn in the northern Great Plains, USA. Irrig. Sci. 2000, 19, 107–114. [Google Scholar] [CrossRef]
- Cakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Li, Y.-H.; Lu, Q.; Wu, B.; Zhu, Y.-J.; Liu, D.-J.; Zhang, J.-X.; JIN, Z.-H. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chin. J. Plant Ecol. 2012, 36, 88. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Reginato, R.J. Remote-Sensing of Crop Yields: Canopy temperature and albedo measurements have been quantitatively correlated with final harvests of wheat. Science 1977, 196, 19–25. [Google Scholar] [CrossRef]
- Bazrgar, G.; Kalat, S.M.N.; Khorasani, S.K.; Ghasemi, M.; Kelidari, A. Effect of deficit irrigation on physiological, biochemical, and yield characteristics in three baby corn cultivars (Zea mays L.). Heliyon 2023, 9, e15477. [Google Scholar] [CrossRef]
- Gardner, B.; Blad, B.; Garrity, D.; Watts, D. Relationships between crop temperature, grain yield, evapotranspiration and phenological development in two hybrids of moisture stressed sorghum. Irrig. Sci. 1981, 2, 213–224. [Google Scholar] [CrossRef]
- Upchurch, D.R.; Wanjura, D.F.; Burke, J.J.; Mahan, J.R. US Department of Agriculture USDA, Biologically-Identified Optimal Temperature Interactive Console (BIOTIC) for Managing Irrigation. U.S. Patent No 5,539,637, 23 July 1996. [Google Scholar]
- Nanda, M.K.; Giri, U.; Bera, N. Canopy temperature-based water stress indices: Potential and limitations. In Advances in Crop Environment Interaction; Springer: Berlin/Heidelberg, Germany, 2018; pp. 365–385. [Google Scholar]
- Gerhards, M.; Schlerf, M.; Rascher, U.; Udelhoven, T.; Juszczak, R.; Alberti, G.; Miglietta, F.; Inoue, Y. Analysis of airborne optical and thermal imagery for detection of water stress symptoms. Remote Sens. 2018, 10, 1139. [Google Scholar] [CrossRef]
- Jackson, R.D.; Idso, S.; Reginato, R.; Pinter Jr, P. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Ekinzog, E.K.; Schlerf, M.; Kraft, M.; Werner, F.; Riedel, A.; Rock, G.; Mallick, K. Revisiting crop water stress index based on potato field experiments in Northern Germany. Agric. Water Manag. 2022, 269, 107664. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping maize water stress based on UAV multispectral remote sensing. Remote Sens. 2019, 11, 605. [Google Scholar] [CrossRef]
- Yetik, A.K.; Candoğan, B.N. Chlorophyll response to water stress and the potential of using crop water stress index in sugar beet farming. Sugar Tech 2023, 25, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Romero-Trigueros, C.; Bayona Gambín, J.M.; Nortes Tortosa, P.A.; Alarcón Cabañero, J.J.; Nicolás Nicolás, E. Determination of crop water stress index by infrared thermometry in grapefruit trees irrigated with saline reclaimed water combined with deficit irrigation. Remote Sens. 2019, 11, 757. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.; Wang, W.; Ran, H.; Song, T.; Guo, Y. Evaluation of the crop water stress index as an indicator for the diagnosis of grapevine water deficiency in greenhouses. Horticulturae 2020, 6, 86. [Google Scholar] [CrossRef]
- Sezen, S.M.; Yazar, A.; Daşgan, Y.; Yucel, S.; Akyıldız, A.; Tekin, S.; Akhoundnejad, Y. Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Agric. Water Manag. 2014, 143, 59–70. [Google Scholar] [CrossRef]
- Irmak, S.; Haman, D.Z.; Bastug, R. Determination of crop water stress index for irrigation timing and yield estimation of corn. Agron. J. 2000, 92, 1221–1227. [Google Scholar] [CrossRef]
- Han, M.; Zhang, H.; DeJonge, K.C.; Comas, L.H.; Gleason, S. Comparison of three crop water stress index models with sap flow measurements in maize. Agric. Water Manag. 2018, 203, 366–375. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol. 2019, 19, 18. [Google Scholar] [CrossRef]
- Gao, S.; Zhong, R.; Yan, K.; Ma, X.; Chen, X.; Pu, J.; Gao, S.; Qi, J.; Yin, G.; Myneni, R.B. Evaluating the saturation effect of vegetation indices in forests using 3D radiative transfer simulations and satellite observations. Remote Sens. Environ. 2023, 295, 113665. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Naidoo, L.; Main, R.; Cho, M.A.; Madonsela, S.; Majozi, N. Machine learning modelling of crop structure within the Maize Triangle of South Africa. Int. J. Remote Sens. 2022, 43, 27–51. [Google Scholar] [CrossRef]
- Boulesteix, A.L.; Janitza, S.; Kruppa, J.; König, I.R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 493–507. [Google Scholar] [CrossRef]
- Magidi, J.; Nhamo, L.; Mpandeli, S.; Mabhaudhi, T. Application of the random forest classifier to map irrigated areas using Google Earth Engine. Remote Sens. 2021, 13, 876. [Google Scholar] [CrossRef]
- Wang, D.; Gartung, J. Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation. Agric. Water Manag. 2010, 97, 1787–1794. [Google Scholar] [CrossRef]
- Brewer, K.; Clulow, A.; Sibanda, M.; Gokool, S.; Odindi, J.; Mutanga, O.; Naiken, V.; Chimonyo, V.G.; Mabhaudhi, T. Estimation of maize foliar temperature and stomatal conductance as indicators of water stress based on optical and thermal imagery acquired using an unmanned aerial vehicle (UAV) platform. Drones 2022, 6, 169. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Kapari, M.; Sibanda, M.; Magidi, J.; Mabhaudhi, T.; Nhamo, L.; Mpandeli, S. Comparing Machine Learning Algorithms for Estimating the Maize Crop Water Stress Index (CWSI) Using UAV-Acquired Remotely Sensed Data in Smallholder Croplands. Drones 2024, 8, 61. [Google Scholar] [CrossRef]
- Du Plessis, J. Maize Production; Department of Agriculture Pretoria, South Africa: Pretoria, South Africa, 2003; p. 38. [Google Scholar]
- Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O.; Clulow, A.; Chimonyo, V.G.; Mabhaudhi, T. A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely sensed data. Remote Sens. 2021, 13, 4091. [Google Scholar] [CrossRef]
- Zou, X.; Mõttus, M. Sensitivity of common vegetation indices to the canopy structure of field crops. Remote Sens. 2017, 9, 994. [Google Scholar] [CrossRef]
- Radočaj, D.; Šiljeg, A.; Marinović, R.; Jurišić, M. State of major vegetation indices in precision agriculture studies indexed in Web of Science: A review. Agriculture 2023, 13, 707. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage: Crop Evapotranspiration; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998; p. e156. [Google Scholar]
- Gu, S.; Liao, Q.; Gao, S.; Kang, S.; Du, T.; Ding, R. Crop water stress index as a proxy of phenotyping maize performance under combined water and salt stress. Remote Sens. 2021, 13, 4710. [Google Scholar] [CrossRef]
- Taghvaeian, S.; Chávez, J.L.; Hansen, N.C. Infrared thermometry to estimate crop water stress index and water use of irrigated maize in Northeastern Colorado. Remote Sens. 2012, 4, 3619–3637. [Google Scholar] [CrossRef]
- Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling water stress in a Shiraz vineyard using hyperspectral imaging and machine learning. Remote Sens. 2018, 10, 202. [Google Scholar] [CrossRef]
- Wright, M.N.; König, I.R. Splitting on categorical predictors in random forests. PeerJ 2019, 7, e6339. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Eugenio, F.C.; Grohs, M.; Venancio, L.P.; Schuh, M.; Bottega, E.L.; Ruoso, R.; Schons, C.; Mallmann, C.L.; Badin, T.L.; Fernandes, P. Estimation of soybean yield from machine learning techniques and multispectral RPAS imagery. Remote Sens. Appl. Soc. Environ. 2020, 20, 100397. [Google Scholar] [CrossRef]
- Veysi, S.; Naseri, A.A.; Hamzeh, S.; Bartholomeus, H. A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agric. Water Manag. 2017, 189, 70–86. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, X.; Gao, X.; Liang, W.; Li, J.; Zhang, B. Spatially explicit assessment of water scarcity and potential mitigating solutions in a large water-limited basin: The Yellow River basin in China. Hydrol. Earth Syst. Sci. Discuss. 2024, 2024, 1–36. [Google Scholar]
- Peng, X.; Hu, X.; Chen, D.; Zhou, Z.; Guo, Y.; Deng, X.; Zhang, X.; Yu, T. Prediction of grape sap flow in a greenhouse based on random forest and partial least squares models. Water 2021, 13, 3078. [Google Scholar] [CrossRef]
- Gontia, N.; Tiwari, K. Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry. Agric. Water Manag. 2008, 95, 1144–1152. [Google Scholar] [CrossRef]
- Meiyan, S.; Qizhou, D.; ShuaiPeng, F.; Xiaohong, Y.; Jinyu, Z.; Lei, M.; Baoguo, L.; Yuntao, M. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images. Comput. Electron. Agric. 2022, 197, 106982. [Google Scholar] [CrossRef]
- Berni, J.; Zarco-Tejada, P.; Sepulcre-Cantó, G.; Fereres, E.; Villalobos, F. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sens. Environ. 2009, 113, 2380–2388. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Girona, J.; Gonzalez-Dugo, V.; Fereres, E.; Ustin, S.L.; Zarco-Tejada, P.J. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and Saturn peach orchards. Remote Sens. 2016, 8, 39. [Google Scholar] [CrossRef]
- Jamshidi, S.; Zand-Parsa, S.; Kamgar-Haghighi, A.A.; Shahsavar, A.R.; Niyogi, D. Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions. Agric. Water Manag. 2020, 227, 105838. [Google Scholar] [CrossRef]
- Tanrıverdı, C.; Degırmencı, H.; Gonen, E.; Boyacı, S. A comparison of the gravimetric and TDR methods in terms of determining the soil water content of the corn plant. Sci. Pap. Ser. A Agron. 2016, 59, 153–158. [Google Scholar]
- Ihuoma, S.O.; Madramootoo, C.A. Recent advances in crop water stress detection. Comput. Electron. Agric. 2017, 141, 267–275. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, D.; Srivastava, H.S.; Patel, P. Assessment of different methods for soil moisture estimation: A review. J. Remote Sens. GIS 2018, 9, 57–73. [Google Scholar]
- Kumar, N.; Shankar, V.; Poddar, A. Agro-hydrologic modelling for simulating soil moisture dynamics in the root zone of Potato based on crop coefficient approach under limited climatic data. ISH J. Hydraul. Eng. 2022, 28, 310–326. [Google Scholar] [CrossRef]
- Wijewardana, C.; Alsajri, F.A.; Irby, J.T.; Krutz, L.J.; Golden, B.; Henry, W.B.; Gao, W.; Reddy, K.R. Physiological assessment of water deficit in soybean using midday leaf water potential and spectral features. J. Plant Interact. 2019, 14, 533–543. [Google Scholar] [CrossRef]
- Li, Q.; Gao, M.; Li, Z.-L. Ground hyper-spectral remote-sensing monitoring of wheat water stress during different growing stages. Agronomy 2022, 12, 2267. [Google Scholar] [CrossRef]
- Raper, T.; Varco, J. Canopy-scale wavelength and vegetative index sensitivities to cotton growth parameters and nitrogen status. Precis. Agric. 2015, 16, 62–76. [Google Scholar] [CrossRef]
- Hallik, L.; Kazantsev, T.; Kuusk, A.; Galmés, J.; Tomás, M.; Niinemets, Ü. Generality of relationships between leaf pigment contents and spectral vegetation indices in Mallorca (Spain). Reg. Environ. Chang. 2017, 17, 2097–2109. [Google Scholar] [CrossRef]
- Imran, H.A.; Gianelle, D.; Rocchini, D.; Dalponte, M.; Martín, M.P.; Sakowska, K.; Wohlfahrt, G.; Vescovo, L. VIS-NIR, red-edge and NIR-shoulder based normalized vegetation indices response to co-varying leaf and Canopy structural traits in heterogeneous grasslands. Remote Sens. 2020, 12, 2254. [Google Scholar] [CrossRef]
- Shashikant, V.; Mohamed Shariff, A.R.; Wayayok, A.; Kamal, M.R.; Lee, Y.P.; Takeuchi, W. Utilizing TVDI and NDWI to classify severity of agricultural drought in Chuping, Malaysia. Agronomy 2021, 11, 1243. [Google Scholar] [CrossRef]
- Wang, C.; He, J.; Zhao, T.-H.; Cao, Y.; Wang, G.; Sun, B.; Yan, X.; Guo, W.; Li, M.-H. The smaller the leaf is, the faster the leaf water loses in a temperate forest. Front. Plant Sci. 2019, 10, 58. [Google Scholar] [CrossRef]
- Ustin, S.L.; Jacquemoud, S. How the optical properties of leaves modify the absorption and scattering of energy and enhance leaf functionality. Remote Sens. Plant Biodivers. 2020, 110, 349–384. [Google Scholar]
- Xie, C.; Yang, C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agric. 2020, 178, 105731. [Google Scholar] [CrossRef]
- Zúñiga Espinoza, C.; Khot, L.R.; Sankaran, S.; Jacoby, P.W. High resolution multispectral and thermal remote sensing-based water stress assessment in subsurface irrigated grapevines. Remote Sens. 2017, 9, 961. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of multi-/Hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Espinace, D.; Sepúlveda-Reyes, D.; Zúñiga, M.; Sanchez, M. Analysis of crop water stress index (CWSI) for estimating stem water potential in grapevines: Comparison between natural reference and baseline approaches. In Proceedings of the VIII International Symposium on Irrigation of Horticultural Crops 1150, Lleida, Spain, 8–11 June 2015; pp. 189–194. [Google Scholar]
- Quemada, C.; Pérez-Escudero, J.M.; Gonzalo, R.; Ederra, I.; Santesteban, L.G.; Torres, N.; Iriarte, J.C. Remote sensing for plant water content monitoring: A review. Remote Sens. 2021, 13, 2088. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Pradawet, C.; Khongdee, N.; Pansak, W.; Spreer, W.; Hilger, T.; Cadisch, G. Thermal imaging for assessment of maize water stress and yield prediction under drought conditions. J. Agron. Crop Sci. 2023, 209, 56–70. [Google Scholar] [CrossRef]
Days After Emergence | Growth Stage | Description | Pictures | |
---|---|---|---|---|
21–31 | V5 | Vegetative stages. | The plant population is established at this stage as potential cobs and tassel forms. Thus, the yield potential is determined. A growth point of 20 to 25 mm below the surface. | |
38–43 | V10 | Early cob development and ear initiation. | ||
49–55 | V14 | Tassel begins to grow fast at the growth point. From the sixth to the eighth node above the surface, active development of lateral shoots and cobs. Brace root development. Highly sensitive to heat and drought stress; thus, farmers should avoid any nutrient and water shortages to ensure maximum cod and kernel development. | ||
63–69 | R1 | Reproductive stage. | Pollination takes over for a 5–10-day period. Maize is sensitive to stress during this period; thus, if leaves are already wilted from moisture stress in the morning, a crop loss of about 7% per day is experienced. Maize begins to translocate nutrients from other parts of the plant to the cob. |
Band | Spectral Colour | Band Range | Ground Sampling Distance at a Flying Height of 120 m |
---|---|---|---|
1 | Blue | 475 nm | 5.2 cm per pixel |
2 | Green | 560 nm | 5.2 cm per pixel |
3 | Red | 668 nm | 5.2 cm per pixel |
4 | Red-edge | 717 nm | 5.2 cm per pixel |
5 | Near-infrared | 842 nm | 5.2 cm per pixel |
6 | Thermal infrared | 8000–14,000 nm | 81 cm per pixel |
Parameters | Specifications |
---|---|
Altitude | 100 m |
Ground sampling distance (multispectral) | 7 cm |
Ground sampling distance (thermal infrared) | 109 cm |
Speed | 16 m/s |
Flight duration | 14 min 36 s |
Composite images | 321 |
Image overlap | 80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapari, M.; Sibanda, M.; Magidi, J.; Mabhaudhi, T.; Mpandeli, S.; Nhamo, L. Assessment of the Maize Crop Water Stress Index (CWSI) Using Drone-Acquired Data Across Different Phenological Stages. Drones 2025, 9, 192. https://doi.org/10.3390/drones9030192
Kapari M, Sibanda M, Magidi J, Mabhaudhi T, Mpandeli S, Nhamo L. Assessment of the Maize Crop Water Stress Index (CWSI) Using Drone-Acquired Data Across Different Phenological Stages. Drones. 2025; 9(3):192. https://doi.org/10.3390/drones9030192
Chicago/Turabian StyleKapari, Mpho, Mbulisi Sibanda, James Magidi, Tafadzwanashe Mabhaudhi, Sylvester Mpandeli, and Luxon Nhamo. 2025. "Assessment of the Maize Crop Water Stress Index (CWSI) Using Drone-Acquired Data Across Different Phenological Stages" Drones 9, no. 3: 192. https://doi.org/10.3390/drones9030192
APA StyleKapari, M., Sibanda, M., Magidi, J., Mabhaudhi, T., Mpandeli, S., & Nhamo, L. (2025). Assessment of the Maize Crop Water Stress Index (CWSI) Using Drone-Acquired Data Across Different Phenological Stages. Drones, 9(3), 192. https://doi.org/10.3390/drones9030192