Optimization-Assisted Filter for Flow Angle Estimation of SUAV Without Adequate Measurement
<p>Illustration of coordinates and flow angles (<math display="inline"><semantics> <mrow> <mi>D</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>Y</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>L</mi> </mrow> </semantics></math> are the drag, lateral, and lift forces).</p> "> Figure 2
<p>OAFE method structure.</p> "> Figure 3
<p>Pseudo-measurements of [<math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>C</mi> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <msub> <mrow> <mi>Y</mi> </mrow> <mrow> <mi>β</mi> </mrow> </msub> </mrow> </msub> <mo> </mo> <msub> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>C</mi> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <mi>L</mi> </mrow> </msub> </mrow> <mrow> <mi>α</mi> </mrow> </msub> </mrow> </semantics></math>] in flight tests.</p> "> Figure 4
<p>The construction of the unknown sequence <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mover accent="true"> <mrow> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <mi>r</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>b</mi> </mrow> </msubsup> <mo>.</mo> </mrow> </semantics></math> Yellow arrows are unused recursive constructors, while the blue arrows are the direct constructors.</p> "> Figure 5
<p>Hardware scheme for the simulation.</p> "> Figure 6
<p>Simulation framework.</p> "> Figure 7
<p>Waypoints for simulation setup.</p> "> Figure 8
<p><math display="inline"><semantics> <mrow> <mi>ϕ</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>θ</mi> </mrow> </semantics></math> in different wind fields.</p> "> Figure 9
<p>Comparison of estimated <math display="inline"><semantics> <mrow> <mi>v</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>w</mi> </mrow> </semantics></math> with the reference.</p> "> Figure 10
<p>Comparison of estimated <math display="inline"><semantics> <mrow> <mi>β</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> </mrow> </semantics></math> with the reference.</p> "> Figure 11
<p>Comparison of estimated <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>Y</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>L</mi> </mrow> </msub> </mrow> </semantics></math> with the reference.</p> "> Figure 12
<p>Comparison of estimated <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="bold-italic">f</mi> </mrow> <mrow> <mi>b</mi> <mo>,</mo> <mi>y</mi> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="bold-italic">f</mi> </mrow> <mrow> <mi>b</mi> <mo>,</mo> <mi>z</mi> </mrow> </msup> </mrow> </semantics></math> with the reference.</p> "> Figure 13
<p>Convergence of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>α</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> with different initial values.</p> "> Figure 14
<p>Fixed-wing SUAV for field tests.</p> "> Figure 15
<p>(<b>a</b>) standard model airplane flight field; and (<b>b</b>) four-side route in flight test.</p> "> Figure 16
<p>Comparison of <math display="inline"><semantics> <mrow> <mfenced open="[" close="]" separators="|"> <mrow> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> </mrow> </mfenced> </mrow> </semantics></math> results from OAFE with the reference in the flight test.</p> "> Figure 17
<p>Comparison of <math display="inline"><semantics> <mrow> <mfenced open="[" close="]" separators="|"> <mrow> <mi>α</mi> <mo>,</mo> <mi>β</mi> </mrow> </mfenced> </mrow> </semantics></math> results from the OAFE with the reference in flight tests.</p> "> Figure 18
<p>“Error-<math display="inline"><semantics> <mrow> <mi>α</mi> </mrow> </semantics></math>” relationship of estimated <math display="inline"><semantics> <mrow> <mi>w</mi> </mrow> </semantics></math>. The orange straight line is a linear fit between the error of <math display="inline"><semantics> <mrow> <mi>w</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> </mrow> </semantics></math>.</p> "> Figure 19
<p>Estimated <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>Y</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>L</mi> </mrow> </msub> </mrow> </semantics></math> compared with CFD results.</p> "> Figure 20
<p>Estimated <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="bold-italic">f</mi> </mrow> <mrow> <mi>b</mi> <mo>,</mo> <mi>y</mi> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="bold-italic">f</mi> </mrow> <mrow> <mi>b</mi> <mo>,</mo> <mi>z</mi> </mrow> </msup> </mrow> </semantics></math> compared with measurements.</p> "> Figure 21
<p>Convergence of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <msub> <mrow> <mi>Y</mi> </mrow> <mrow> <mi>β</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>α</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> with different initial values.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
2.1. Kinematics Model
2.2. Dynamics Model
2.3. Dynamics Simplification
2.4. Cubature Kalman Filter (CKF)
3. OAFE Method
Algorithm 1 Optimizer for generating pseudo-measurement |
3.1. Filter Loop
3.1.1. State Dynamic and Measurement
3.1.2. Filtering Noise
3.2. Optimizer Loop
3.2.1. Objective Function
3.2.2. Improving Optimization Efficiency
3.2.3. Noises of Selected Derivatives
4. Simulation
4.1. Initialization of OAFE
4.2. HIL Simulation System
4.3. Simulation Setup
4.3.1. Simulation Scenes
4.3.2. Simulation Process
4.4. Simulation Results and Analysis
5. Field Tests
5.1. SUAV for Flight Tests
5.2. Hardware Modules
5.3. Field Test Setup
5.4. Results and Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Relative velocity | |
Airspeed | |
Pitot airspeed | |
Trim airspeed | |
Angle of attack | |
Side slip angle | |
Dynamic pressure | |
Ground velocity | |
Wind velocity over ground | |
Aerodynamic force vector | |
Air density | |
Mean aerodynamic chord | |
Mass of SUAV | |
Reference area | |
Gravity | |
Thrust | |
Rotation matrix from frame to frame | |
Sample time interval | |
Control input | |
Nonlinear system process equations | |
Measurement equations | |
Process error covariance matrix | |
Measurement error covariance matrix | |
Elevator and rudder deflections | |
Lift, drag, and lateral forces | |
Relative velocity components along the x, y, and z axes in body frame | |
Euler angles | |
Gravitational acceleration | |
, , or | Angular rates |
Specific force in body frame | |
Aircraft side and lift force coefficient derivatives | |
Superscripts: | |
denotes values in body frame | |
denotes values in navigation frame | |
denotes values in wind frame |
Appendix A
Appendix A.1. Rotation Matrix
Appendix A.2. Derivation of Process Noise of
Appendix A.3. Aerodynamic Parameters
Components | Values | Components | Values | Components | Values | Components | Values |
---|---|---|---|---|---|---|---|
0.52 | −0.20 | 0.19 | −4.44 | ||||
5.10 | 0.07 | −0.23 | −6.97 | ||||
4.67 | 3.31 | −0.90 | 0.37 | ||||
1.07 | 0.17 | −6.50 | −0.003 | ||||
−0.53 | −0.14 | −35.89 | −0.06 | ||||
0.14 | −0.59 | −89.23 |
References
- Kai, J.-M.; Hamel, T.; Samson, C. A Unified Approach to Fixed-Wing Aircraft Path Following Guidance and Control. Automatica 2019, 108, 108491. [Google Scholar] [CrossRef]
- Yang, D.; Zang, J.; Liu, J.; Liu, K. Time-Domain Identification Method Based on Data-Driven Intelligent Correction of Aerodynamic Parameters of Fixed-Wing UAV. Drones 2023, 7, 594. [Google Scholar] [CrossRef]
- Liu, F.; Lu, L.; Zhang, Z.; Xie, Y.; Chen, J. Intelligent Trajectory Prediction Algorithm for Hypersonic Vehicle Based on Sparse Associative Structure Model. Drones 2024, 8, 505. [Google Scholar] [CrossRef]
- Sankaralingam, L.; Ramprasadh, C. A Comprehensive Survey on the Methods of Angle of Attack Measurement and Estimation in UAVs. Chin. J. Aeronaut. 2020, 33, 749–770. [Google Scholar] [CrossRef]
- Tian, P.; Chao, H.; Flanagan, H.P.; Hagerott, S.G.; Gu, Y. Design and Evaluation of UAV Flow Angle Estimation Filters. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 371–383. [Google Scholar] [CrossRef]
- Sankaralingam, L.; Ramprasadh, C. Angle of Attack Measurement Using Low-Cost 3D Printed Five Hole Probe for UAV Applications. Measurement 2021, 168, 108379. [Google Scholar] [CrossRef]
- Borup, K.T.; Fossen, T.I.; Johansen, T.A. A Machine Learning Approach for Estimating Air Data Parameters of Small Fixed-Wing UAVs Using Distributed Pressure Sensors. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 2157–2173. [Google Scholar] [CrossRef]
- Mersha, B.W.; Jansen, D.N.; Ma, H. Angle of Attack Prediction Using Recurrent Neural Networks in Flight Conditions with Faulty Sensors in the Case of F-16 Fighter Jet. Complex Intell. Syst. 2023, 9, 2599–2611. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Yan, X.; Liu, W. Flush Air Data Sensing Based on Dimensionless Input and Output Neural Networks with Less Data. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 1411–1425. [Google Scholar] [CrossRef]
- Popowski, S.; Dąbrowski, W. Measurement and Estimation of the Angle of Attack and the Angle of Sideslip. Aviation 2015, 19, 19–24. [Google Scholar] [CrossRef]
- Lim, H.; Ryu, H.; Rhudy, M.B.; Lee, D.; Jang, D.; Lee, C.; Park, Y.; Youn, W.; Myung, H. Deep Learning-Aided Synthetic Airspeed Estimation of UAVs for Analytical Redundancy With a Temporal Convolutional Network. IEEE Robot. Autom. Lett. 2022, 7, 17–24. [Google Scholar] [CrossRef]
- Wenz, A.; Johansen, T.A.; Cristofaro, A. Combining Model-Free and Model-Based Angle of Attack Estimation for Small Fixed-Wing UAVs Using a Standard Sensor Suite. In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 624–632. [Google Scholar]
- Wenz, A.; Johansen, T.A. Moving Horizon Estimation of Air Data Parameters for UAVs. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 2101–2121. [Google Scholar] [CrossRef]
- Cho, A.; Kim, J.; Lee, S.; Kee, C. Wind Estimation and Airspeed Calibration Using a UAV with a Single-Antenna GPS Receiver and Pitot Tube. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 109–117. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Liu, X.; Guo, Y.; Zhang, W. Model-Free Integrated Navigation of Small Fixed-Wing UAVs Full State Estimation in Wind Disturbance. IEEE Sens. J. 2022, 22, 2771–2781. [Google Scholar] [CrossRef]
- Lerro, A.; Brandl, A.; Gili, P. Model-Free Scheme for Angle-of-Attack and Angle-of-Sideslip Estimation. J. Guid. Control Dyn. 2021, 44, 595–600. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A. Nonlinear Aircraft System Identification Using Artificial Neural Networks Enhanced by Empirical Mode Decomposition. Aerosp. Sci. Technol. 2018, 75, 155–171. [Google Scholar] [CrossRef]
- Freeman, D.B. Angle of Attack Computation System; AFFDL-TR-73-89; Air Force Flight Dynamics Laboratory: Wright-Patterson AFB, OH, USA, 1973. [Google Scholar]
- Tian, P.; Chao, H. Model Aided Estimation of Angle of Attack, Sideslip Angle, and 3D Wind without Flow Angle Measurements. In Proceedings of the 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar]
- Youn, W.; Choi, H.; Cho, A.; Kim, S.; Rhudy, M.B. Aerodynamic Model-Aided Estimation of Attitude, 3-D Wind, Airspeed, AOA, and SSA for High-Altitude Long-Endurance UAV. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4300–4314. [Google Scholar] [CrossRef]
- Youn, W.; Lim, H.; Choi, H.S.; Rhudy, M.B.; Ryu, H.; Kim, S.; Myung, H. State Estimation for HALE UAVs With Deep-Learning-Aided Virtual AOA/SSA Sensors for Analytical Redundancy. IEEE Robot. Autom. Lett. 2021, 6, 5276–5283. [Google Scholar] [CrossRef]
- Karali, H.; Uzun, M.; Yuksek, B.; Inalhan, G. Data-Driven Synthetic Air Data Estimation System Development for a Fighter Aircraft. In Proceedings of the AIAA AVIATION 2023 Forum, American Institute of Aeronautics and Astronautics. San Diego, CA, USA, 12–16 June 2023; p. 3439. [Google Scholar]
- Youn, W.; Choi, H.S.; Ryu, H.; Kim, S.; Rhudy, M.B. Model-Aided State Estimation of HALE UAV With Synthetic AOA/SSA for Analytical Redundancy. IEEE Sens. J. 2020, 20, 7929–7940. [Google Scholar] [CrossRef]
- Lu, H.; Gao, L.; Yan, Y.; Hou, M.; Wang, C. Wind Disturbance Compensated Path-Following Control for Fixed-Wing UAVs in Arbitrarily Strong Winds. Chin. J. Aeronaut. 2023, 37, 431–445. [Google Scholar] [CrossRef]
- Langelaan, J.W.; Alley, N.; Neidhoefer, J. Wind Field Estimation for Small Unmanned Aerial Vehicles. J. Guid. Control Dyn. 2011, 34, 1016–1030. [Google Scholar] [CrossRef]
- PX4 Autopilot Software. Available online: https://github.com/PX4/PX4-Autopilot (accessed on 1 July 2023).
- Yuan, L.; Zheng, J.; Wang, X.; Ma, L. Attitude Control of a Mass-Actuated Fixed-Wing UAV Based on Adaptive Global Fast Terminal Sliding Mode Control. Drones 2024, 8, 305. [Google Scholar] [CrossRef]
- Seo, G.; Kim, Y.; Saderla, S. Kalman-Filter Based Online System Identification of Fixed-Wing Aircraft in Upset Condition. Aerosp. Sci. Technol. 2019, 89, 307–317. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature Kalman Filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Li, K.; Chen, X.; Liu, H.; Wang, S.; Li, K.; Li, B. Performance Analysis of the Thermal Automatic Tracking Method Based on the Model of the UAV Dynamic Model in a Thermal and Cubature Kalman Filter. Drones 2023, 7, 102. [Google Scholar] [CrossRef]
- Beard, R.W.; McLain, T.W. Small Unmanned Aircraft; Princeton University Press: Princeton, NJ, USA, 2012; ISBN 978-0-691-14921-9. [Google Scholar]
- Bonnor, N. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd ed.; Groves, P.D., Ed.; Artech House: London, UK, 2013; p. 776. ISBN 978-1-60807-005-3. [Google Scholar]
- Wenz, A.; Johansen, T.A. Estimation of Wind Velocities and Aerodynamic Coefficients for UAVs Using Standard Autopilot Sensors and a Moving Horizon Estimator. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 1267–1276. [Google Scholar]
- Minaev, E.; Quijada Pioquinto, J.G.; Shakhov, V.; Kurkin, E.; Lukyanov, O. Airfoil Optimization Using Deep Learning Models and Evolutionary Algorithms for the Case Large-Endurance UAVs Design. Drones 2024, 8, 570. [Google Scholar] [CrossRef]
- Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-Manifold Preintegration for Real-Time Visual--Inertial Odometry. IEEE Trans. Robot. 2017, 33, 1–21. [Google Scholar] [CrossRef]
- Nijboer, J.; Armanini, S.F.; Karasek, M.; de Visser, C.C. Longitudinal Grey-Box Model Identification of a Tailless Flapping-Wing MAV Based on Free-Flight Data. In Proceedings of the AIAA Scitech 2020 Forum; American Institute of Aeronautics and Astronautics, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Wang, Z.; Xiong, J.; Cheng, X.; Li, J. Establishment and Verification of Longitudinal Aerodynamic Model of Tandem Wing Aircraft. IOP Conf. Ser. Mater. Sci. Eng. 2019, 563, 032022. [Google Scholar] [CrossRef]
- Zhao, Y. Performance Evaluation of Cubature Kalman Filter in a GPS/IMU Tightly-Coupled Navigation System. Signal Process. 2016, 119, 67–79. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Li, J.; Yang, Y.; Li, J.; Zhang, Z.; Ye, B. Design, Implementation, and Verification of a Low-cost Terminal Guidance System for Small Fixed-wing UAVs. J. Field Robot. 2021, 38, 801–827. [Google Scholar] [CrossRef]
OAFE Estimates | Reference for Simulation |
---|---|
Truth values from the HIL Syst | |
Derivatives of SUAV in the HIL Syst |
Input Noise | |||
---|---|---|---|
(Equation (50)) | |||
(Equation (50)) | |||
Sensors | Type | Noise/Error |
---|---|---|
BMI160 | IMU | |
MS5525 | pressure sensor and pitot tube | |
HEX Here3 | GPS Module |
Wind Field Conditions | Wind Fields (m/s) |
---|---|
Case 1 | |
Case 2 | |
Case 3 | |
Case 4 | |
Case 5 |
Case | (m/s) | (m/s) | (°) | (°) |
---|---|---|---|---|
C1 | 0.038 | 0.127 | 0.072 | 0.239 |
C2 | 0.041 | 0.151 | 0.076 | 0.234 |
C3 | 0.028 | 0.137 | 0.051 | 0.257 |
C4 | 0.076 | 0.091 | 0.141 | 0.170 |
C5 | 0.069 | 0.155 | 0.129 | 0.293 |
OAFE Estimates | Reference for Field Test |
---|---|
Model-aided method | |
Parameters from a CFD work; Derivatives convergence | |
measured by IMU |
Parameters | Values |
---|---|
Aerodynamic configuration | Tandem wing |
Fuselage length | 0.92 m |
Wingspan | 1.56 m |
Reference area | |
Aspect ratio | 11 |
Mean aerodynamic chord | 0.19 m |
Mass | 8.9 kg |
Cruise speed | 30 m/s |
Estimates | (m/s) | (m/s) | (°) | (°) |
---|---|---|---|---|
mf1 | 1.920 | 1.062 | 3.581 | 1.909 |
mf2 | 0.987 | 1.001 | 1.830 | 1.837 |
OAFE | 0.407 | 0.324 | 0.748 | 0.593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, J.; Liu, C.; Yang, Y.; Li, J.; Wu, X.; Yang, Y.; Ye, B. Optimization-Assisted Filter for Flow Angle Estimation of SUAV Without Adequate Measurement. Drones 2024, 8, 758. https://doi.org/10.3390/drones8120758
Wang Z, Li J, Liu C, Yang Y, Li J, Wu X, Yang Y, Ye B. Optimization-Assisted Filter for Flow Angle Estimation of SUAV Without Adequate Measurement. Drones. 2024; 8(12):758. https://doi.org/10.3390/drones8120758
Chicago/Turabian StyleWang, Ziyi, Jie Li, Chang Liu, Yu Yang, Juan Li, Xueyong Wu, Yachao Yang, and Bobo Ye. 2024. "Optimization-Assisted Filter for Flow Angle Estimation of SUAV Without Adequate Measurement" Drones 8, no. 12: 758. https://doi.org/10.3390/drones8120758
APA StyleWang, Z., Li, J., Liu, C., Yang, Y., Li, J., Wu, X., Yang, Y., & Ye, B. (2024). Optimization-Assisted Filter for Flow Angle Estimation of SUAV Without Adequate Measurement. Drones, 8(12), 758. https://doi.org/10.3390/drones8120758