Determining Quasi-Static Load Carrying Capacity of Composite Sandwich Rotor Blades for Copter-Type Drones
<p>Quadcopter drone.</p> "> Figure 2
<p>Rotor blade: (<b>a</b>) Dimensions; (<b>b</b>) NACA 4418 Airfoil showing skin and core.</p> "> Figure 3
<p>Lamination arrangement of composite sandwich blade (<b>a</b>) Type 1 blade, (<b>b</b>) Type 2 blade.</p> "> Figure 3 Cont.
<p>Lamination arrangement of composite sandwich blade (<b>a</b>) Type 1 blade, (<b>b</b>) Type 2 blade.</p> "> Figure 4
<p>Blade element.</p> "> Figure 5
<p>Elemental airfoil aerodynamics.</p> "> Figure 6
<p>Experimental setup for rotor blade thrust measurement.</p> "> Figure 7
<p>Iterative procedure for updating vertical uplifting force.</p> "> Figure 8
<p>Locations of blade elements and resultant thrust.</p> "> Figure 9
<p>Rotational speed vs. rotor blade thrust.</p> "> Figure 10
<p>Finite element mesh for composite sandwich blade. (<b>a</b>) Type 1 blade, (<b>b</b>) Type 2 blade.</p> "> Figure 11
<p>Iterative procedure for updating incipient failure rotational speed.</p> "> Figure 12
<p>Finished rotor blade product.</p> "> Figure 13
<p>Experimental setup.</p> "> Figure 14
<p>Experimental failure pattern of composite blade (<b>a</b>) Type 1 blade, (<b>b</b>) Type 2 blade.</p> "> Figure 15
<p>Failure analysis results for Type 1 blade under resultant thrust. (<b>a</b>) Failure index for Maximum stress criterion (Failure location: x = −0.48, y = 10.99). (<b>b</b>) Failure index for Tsai–Wu criterion (Failure location: x = −0.48, y = 10.59). (<b>c</b>) Buckling mode shape (Failure location: x = −0.323, y = 10.7).</p> "> Figure 15 Cont.
<p>Failure analysis results for Type 1 blade under resultant thrust. (<b>a</b>) Failure index for Maximum stress criterion (Failure location: x = −0.48, y = 10.99). (<b>b</b>) Failure index for Tsai–Wu criterion (Failure location: x = −0.48, y = 10.59). (<b>c</b>) Buckling mode shape (Failure location: x = −0.323, y = 10.7).</p> "> Figure 16
<p>Failure analysis results for Type 2 blade under resultant thrust (<b>a</b>) Failure index for Maximum stress criterion (Failure location: x = 0.12, y = 3.5). (<b>b</b>) Failure index for Tsai–Wu criterion (Failure location: x = 0.12, y = 3.5). (<b>c</b>) Buckling mode shape (Failure location: x = −0.398, y = 4.88).</p> "> Figure 16 Cont.
<p>Failure analysis results for Type 2 blade under resultant thrust (<b>a</b>) Failure index for Maximum stress criterion (Failure location: x = 0.12, y = 3.5). (<b>b</b>) Failure index for Tsai–Wu criterion (Failure location: x = 0.12, y = 3.5). (<b>c</b>) Buckling mode shape (Failure location: x = −0.398, y = 4.88).</p> "> Figure 17
<p>Failure index distribution of composite sandwich blade under elemental thrusts, drag forces, and centrifugal force. (<b>a</b>) Type 1 blade, (<b>b</b>) Type 2 blade.</p> "> Figure 17 Cont.
<p>Failure index distribution of composite sandwich blade under elemental thrusts, drag forces, and centrifugal force. (<b>a</b>) Type 1 blade, (<b>b</b>) Type 2 blade.</p> "> Figure 18
<p>Effects of Region 2 length on blade load carrying capacity and weight.</p> "> Figure 19
<p>Effects of Region 2 on failure rotational speed and specific load carrying capacity.</p> "> Figure 20
<p>Relation between blade rotational speed and displacement.</p> ">
Abstract
:1. Introduction
2. Composite Sandwich Rotor Blade
3. Load Carrying Capacity Determination
3.1. Blade Aerodynamic Load Analysis
3.2. Finite Element-Based Blade Failure Analysis
- (1)
- Maximum Stress criterion
- (2)
- Tsai–Wu failure criterion
3.3. Optimization Method for Load Carrying Capacity Determination
4. Experimental Investigation of Blade Failure Characteristics
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussein, M.; Aidaros, O.A.; Raahim, B.; Dhahri, M.A.; Neyadi, S.A.; Asad, M. Development of autonomous drone for gas sensing application. In Proceedings of the 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 21–23 November 2017. [Google Scholar]
- Hallermann, N.; Morgenthal, G. Visual inspection strategies for large bridges using Unmanned Aerial Vehicles (UAV). In Proceedings of the International Conference on Bridge Maintenance, Safety and Management (IABMAS) 2014, Shanghai, China, 7–11 July 2014. [Google Scholar]
- Daponte, P.; Vito, L.D.; Glielmo, L.; Iannelli, L.; Liuzza, D.; Picariello, F.; Silano, G. A review on the use of drones for precision agriculture. IOP Conf. Ser. Earth Environ. Sci. 2018, 275, 1–10. [Google Scholar] [CrossRef]
- Eichleay, M.; Evens, E.; Stankevitz, K.; Parker, C. Using the unmanned aerial vehicle delivery decision tool to consider transporting medical supplies via drone. Glob. Health Sci. Pract. 2019, 7, 500–506. [Google Scholar] [CrossRef]
- Nawaz, H.; Ali, H.M.; Massan, S.U.R. Applications of unmanned aerial vehicles: A review. 3C Tecnol. Glosas Innovación Apl. La Pyme 2019, 85–105. [Google Scholar] [CrossRef]
- Molina, A.A.; Huang, Y.; Jiang, Y. A review of unmanned aerial vehicle applications in construction management: 2016–2021. Standards 2023, 3, 95–109. [Google Scholar] [CrossRef]
- Outay, F.; Mengash, H.A.; Adnan, M. Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Transp. Res. Part A Policy Pract. 2020, 141, 116–129. [Google Scholar] [CrossRef]
- Dumitrache, A.; Pricop, M.V.; Niculescu, M.L.; Cojocaru, M.G.; Ionescu, T. Design and analysis methods for UAV rotor blades. Sci. Res. Educ. Air Force 2017, 19, 115–126. [Google Scholar] [CrossRef]
- Adkins, C.N.; Liebeck, R.H. Design of optimum propellers. J. Propuls. Power 1994, 10, 676–682. [Google Scholar] [CrossRef]
- You, K.; Zhao, X.; Zhao, S.Z.; Faisal, M. Design and optimization of a high-altitude long endurance UAV propeller. IOP Conf. Ser. Mater. Sci. Eng. 2020, 926, 1–6. [Google Scholar] [CrossRef]
- Kutty, H.A.; Rajendran, P. 3D CFD simulation and experimental validation of small APC slow flyer propeller blade. Aerospace 2017, 4, 10. [Google Scholar] [CrossRef]
- Chung, P.H.; Ma, D.M.; Shiau, J.K. Design, manufacturing, and flight testing of an experimental flying wing UAV. Appl. Sci. 2019, 9, 3043. [Google Scholar] [CrossRef]
- Rwigema, M.K. Propeller blade element momentum theory with vortex wake deflection, manufacturing and testing. In Proceedings of the 27th International Congress of the Aeronautical Sciences (ICAS), Nice, France, 19–24 September 2010; pp. 1–9. [Google Scholar]
- Kong, C.; Park, H.; Lee, K.; Choi, W. A study on structural design and analysis of composite propeller blade of turboprop for high efficiency and light weight. In Proceedings of the European Conference on Composite Materials (ECCM), Venice, Italy, 24–28 June 2012; pp. 1–12. [Google Scholar]
- Cruzatty, C.; Sarmiento, E.; Valencia, E.; Cando, E. Design methodology of a UAV propeller implemented in monitoring activities. Mater. Today Proc. 2021, 49, 115–121. [Google Scholar] [CrossRef]
- Prathapanayaka, R.; Kumar, N.V.; Krishnamurthy, S.J. Design, analysis, fabrication and testing of mini propeller for MAVS. In Proceedings of the Symposium on Applied Aerodynamics and Design of Aerospace Vehicle (SAROD 2011), Bangalore, India, 16–18 November 2011. [Google Scholar]
- Ramesh, M.; Vijayanandh, R.; Kumar, G.R.; Mathaiyan, V.; Jagadeeshwaran, P.; Kumar, M.S. Comparative structural analysis of various composite materials based unmanned aerial vehicle’s propeller by using advanced methodologies. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1017, 012032. [Google Scholar] [CrossRef]
- Sarmiento, E.; Campoverde, C.D.; Rivera, J.; Cruzatty, C.; Cando, E.; Valencia, E. Aero-structural numerical analysis of a blended wing body unmanned aerial vehicle using a jute-based composite material. Mater. Today Proc. 2021, 49, 50–57. [Google Scholar] [CrossRef]
- Shaheen, M.; Latif, M.A.E. Reverse engineering using laser scanned and manufacturing of a powered paraglider propeller. J. Multidiscip. Eng. Sci. Technol. (JMEST) 2020, 7, 12810–12815. [Google Scholar]
- Rutkay, B.D. A Process for the Design and Manufacture of Propellers for Small Unmanned Aerial Vehicles. Master’s Thesis, Aerospace Engineering, Carleton University, Ottawa, ON, Canada, 2014. [Google Scholar]
- Toleos, L.R., Jr.; Luna, N.J.A.B.D.; Manuel, M.C.E.; Chua, J.M.R.; Sangalang, E.M.A.; So, P.C. Feasibility study for Fused Deposition Modeling (FDM) 3D-printed propellers for unmanned aerial vehicles. Int. J. Mech. Eng. Robot. Res. 2020, 9, 548–558. [Google Scholar] [CrossRef]
- Wojtas, M.; Wyszkowski, P.; Kmita, P.; Osiewicz, M. Prototype carbon fibre propeller dedicated for hybrid power unmanned aerial vehicles with mtow up to 300 KG. In Proceedings of the 48th European Rotorcraft Forum, Winterthur, Switzerland, 6–8 September 2022. [Google Scholar]
- Rutkay, B.; Laliberte, J. Design and manufacture of propellers for small unmanned aerial vehicles. J. Unmanned Veh. Syst. 2016, 228–245. [Google Scholar] [CrossRef]
- Gatti, M. Design and Prototyping High Endurance Multi-Rotor. PhD Thesis, Università di Bologna, Meccanica e Scienze Avanzate Dell’ingegneria, Bologna, Italy, 2015. [Google Scholar]
- Grodzki, W.; Łukaszewicz, A. Design and manufacture of Umanned Aerial Vehicles (UAV) wing structure using composite materials. Mater. Und Werkst. 2015, 46, 269–278. [Google Scholar] [CrossRef]
- Verma, A.K.; Pradhan, N.K.; Nehra, R.; Prateek. Challenge and advantage of materials in design and fabrication of composite UAV. IOP Conf. Ser. Mater. Sci. Eng. 2018, 455, 012005. [Google Scholar] [CrossRef]
- Arif, M.; Asif, M.; Ahmed, I. Advanced composite material for aerospace application—A review. Int. J. Eng. Manuf. Sci. 2017, 7, 393–409. [Google Scholar]
- Borchardt, J.K. Unmanned aerial vehicles spur composites use. Reinf. Plast. 2004, 48, 28–31. [Google Scholar] [CrossRef]
- Hadar, A.; Voicu, A.D.; Baciu, F.; Vlasceanu, D.; Tudose, D.I.; Pastrama, S.D. A Novel Composite helicopter tail rotor blade with enhanced mechanical properties. Aerospace 2023, 10, 647. [Google Scholar] [CrossRef]
- Pao, W.Y.; Haldar, S.; Singh, C.V. Performance analysis of composite helicopter blade using synergistic damage mechanics approach. AIAA J. 2019, 58, 968–976. [Google Scholar] [CrossRef]
- Ahmad, K.; Baig, Y.; Bahman, H.; Hasham, H.J. Progressive failure analysis of helicopter rotor blade under aeroelastic loading. Aviation 2020, 24, 33–41. [Google Scholar] [CrossRef]
- Kliza, R.; Scislowski, K.; Siadkowska, K.; Padyjasek, J.; Wendeker, M. Strength analysis of a prototype composite helicopter rotor blade spar. Appl. Comput. Sci. (ACS) 2022, 18, 5–19. [Google Scholar] [CrossRef]
- Gladys, N.; Laura, V. Analysis of rotor-blade failure due to high-temperature corrosion/erosion. Surf. Coat. Technol. 1999, 120–121, 145–150. [Google Scholar] [CrossRef]
- Chen, C.P.; Kam, T.Y. Failure analysis of small composite sandwich turbine blade subjected to extreme wind load. Procedia Eng. 2011, 14, 1973–1981. [Google Scholar] [CrossRef]
- Mazhar, F.; Khan, A.M. Structural design of a UAV wing using finite element method. In Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, USA, 12–15 April 2010. [Google Scholar]
- Shelare, S.D.; Aglawe, K.R.; Khope, P.B. Computer aided modeling and finite element analysis of 3-D printed drone. Mater. Today Proc. 2011, 47, 3375–3379. [Google Scholar] [CrossRef]
- Brischetto, S.; Torre, R. Preliminary finite element analysis and flight simulations of a modular drone built through fused filament fabrication. J. Compos. Sci. 2021, 5, 293. [Google Scholar] [CrossRef]
- Ahmad, F.; Kumar, P.; Patil, P.P.; Kumar, V. FEA based frequency analysis of unmanned aerial vehicle (UAV). Mater. Today Proc. 2021, 46, 10396–10403. [Google Scholar] [CrossRef]
- Ahmad, F.; Kumar, P.; Patil, P.P. Structural analysis of a quadcopter propeller using finite element method. In Proceedings of the 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), Dehradun, India, 21–22 August 2020; pp. 59–64. [Google Scholar]
- James, F.M.; Jon, G.M.; Anthony, L.R. Wind Energy Explained; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2009; pp. 91–155. [Google Scholar]
- Zhu, H.; Jiang, Z.; Zhao, H.; Pei, S.; Li, H.; Lan, Y. Aerodynamic performance of propellers for multirotor unmanned aerial vehicles: Measurement, analysis, and experiment. Shock. Vib. 2021, 2021, 9538647. [Google Scholar] [CrossRef]
- ANSYS 12.1; ANSYS Inc.: Canonsburg, PA, USA, 2010.
- Tsai, S.W.; Hahn, H.T. Introduction to Composite Materials. Technomic Publishing Co.: Westport, CO, USA, 1980. [Google Scholar]
- Available online: https://en.wikipedia.org/wiki/Golden-section_search (accessed on 19 June 2024).
Airfoil Type | Blade Span R (m) | r/R | Chord Length (m) | Inflow Angle | Angle of Attack α (Rotational Speed of 3630 rpm) | Twist Angle β |
---|---|---|---|---|---|---|
NACA 4418 | 0.82 | 0.95 | 0.0287 | 3.3° | 5.0° | 8.3° |
0.85 | 0.0518 | 3.7° | 8.7° | |||
0.75 | 0.0650 | 4.1° | 9.1° | |||
0.65 | 0.0723 | 4.8° | 9.8° | |||
0.55 | 0.0746 | 5.6° | 10.6° | |||
0.45 | 0.0713 | 6.9° | 11.9° | |||
0.35 | 0.0637 | 8.8° | 13.8° | |||
0.25 | 0.0515 | 12.3° | 17.3° | |||
0.15 | 0.0360 | 19.9° | 24.9° |
Rotational Speed (rpm) | Section | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
3630 | (m) | 0.061 | 0.102 | 0.142 | 0.183 | 0.224 | 0.264 | 0.305 | 0.345 | 0.386 | |
(N) | 0.582 | 0.217 | 1.731 | 4.893 | 8.789 | 12.763 | 15.545 | 16.164 | 10.596 | 70.7 N (=7.21 kgf) | |
(N) | 0.23 | 0.13 | 0.57 | 1.19 | 1.76 | 2.28 | 2.54 | 2.48 | 1.64 | 12.82 N (=1.3 kgf) |
Material Type | Woven Carbon Fabric (Orthotropic) | PU Foam (Isotropic) |
---|---|---|
5.417 × 1010 | 1.81 × 107 | |
5.417 × 1010 | -- | |
0.042 | 0.3 | |
9.37 × 108 | -- | |
9.37 × 108 | -- | |
9.37 × 108 | -- | |
Strength | ||
7.42 × 108 | 5.67 × 105 | |
7.42 × 108 | 5.67 × 105 | |
4.55 × 108 | 5.6 × 105 | |
4.55 × 108 | 5.6 × 105 | |
4.67 × 108 | 4.13 × 105 |
Blade Type | Failure Mode | Failure Loading (kgf) | Failure Location (cm) | |
---|---|---|---|---|
Type 1 | Experimental | First-ply material failure | 11 | (−0.45, 10.24) |
First-ply failure (Max. stress) | 14.78 (+34.36%) * | (−0.48, 10.99) (+7.32%) | ||
First-ply failure (Tsai–Wu) | 11.1 (+0.91%) | (−0.48, 10.59) (+3.42%) | ||
Buckling | 17.9 (+62.72%) | (−0.323, 10.7) (+4.49%) | ||
Type 2 | Experimental | First-ply material failure | 15.71 | (−0.2, 3.48) |
First-ply failure (Max. stress) | 16.46 (+14.77%) | (0.12, 3.50) (+0.57%) | ||
First-ply failure (Tsai–Wu) | 15.9 (+1.2%) | (0.12, 3.50) (+0.57%) | ||
Buckling | 20.62 (+31.25%) | (−0.398, 4.88) (+40.22%) |
Blade Type | Loading Condition | Failure Resultant Thrust (kgf) | Failure Location (x, y) cm |
---|---|---|---|
Type 1 | Thrust, drag, and centrifugal force | 11.52 | (−0.48, 10.59) |
Thrust and drag | 10.75 | (−0.48, 10.59) | |
Thrust alone | 11.1 | (−0.48, 10.59) | |
Type 2 | Thrust, drag, and centrifugal force | 18.83 | (0.12, 3.50) |
Thrust and drag | 14.99 | (0.12, 3.50) | |
Thrust alone | 15.9 | (0.12, 3.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jan, C.W.; Kam, T.Y. Determining Quasi-Static Load Carrying Capacity of Composite Sandwich Rotor Blades for Copter-Type Drones. Drones 2024, 8, 355. https://doi.org/10.3390/drones8080355
Jan CW, Kam TY. Determining Quasi-Static Load Carrying Capacity of Composite Sandwich Rotor Blades for Copter-Type Drones. Drones. 2024; 8(8):355. https://doi.org/10.3390/drones8080355
Chicago/Turabian StyleJan, Chien Wei, and Tai Yan Kam. 2024. "Determining Quasi-Static Load Carrying Capacity of Composite Sandwich Rotor Blades for Copter-Type Drones" Drones 8, no. 8: 355. https://doi.org/10.3390/drones8080355
APA StyleJan, C. W., & Kam, T. Y. (2024). Determining Quasi-Static Load Carrying Capacity of Composite Sandwich Rotor Blades for Copter-Type Drones. Drones, 8(8), 355. https://doi.org/10.3390/drones8080355