Analysis of Wind Effect on Drone Relay Communications
<p>Use of relays and directional antennas in drones.</p> "> Figure 2
<p>Directional beam radiation pattern.</p> "> Figure 3
<p>Transmission speed versus transmission distance when the beam width is different.</p> "> Figure 4
<p>Beam axis based on drone tilt.</p> "> Figure 5
<p>Relationship between beam width and drone tilt.</p> "> Figure 6
<p>Configuration of the wind tunnel experiment.</p> "> Figure 7
<p>Experiment scenery.</p> "> Figure 8
<p>Shaking characteristics against wind speed.</p> "> Figure 8 Cont.
<p>Shaking characteristics against wind speed.</p> "> Figure 9
<p>Results of the evaluation of the fluid and pressure distribution.</p> "> Figure 10
<p>Simulated force properties.</p> "> Figure 10 Cont.
<p>Simulated force properties.</p> "> Figure 11
<p>Relationship between lift and drag.</p> "> Figure 12
<p>Theoretical tilt caused by fluid dynamics.</p> "> Figure 13
<p>Ratio of transmission rate to wind speed.</p> "> Figure 14
<p>Average transmission rate.</p> "> Figure A1
<p>The sum of antenna gains (<inline-formula><mml:math id="mm43"><mml:semantics><mml:msub><mml:mi>G</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>l</mml:mi></mml:mrow></mml:msub></mml:semantics></mml:math></inline-formula> ) in the transmitter and receiver.</p> "> Figure A2
<p>Relationship between roll axis and transmission rate.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Communication Speed Issues with Directional Antennas
4. Analysis of Drone Tilt Based on Wind Speed
4.1. Evaluation of Inclination through Wind Tunnel Experiment
4.2. Hydrodynamic Verification
5. Evaluation of Communication Speed Based on Shake Angle Accumulation Frequency
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Effects of Roll Axis Tilt
References
- Shiraki, N.; Hiraguri, T.; Shitara, I.; Honma, N. Theoretical analysis of interference between directional beams in drone-based 3D mesh network. IEICE Commun. Express 2020, 9, 72–76. [Google Scholar] [CrossRef]
- Hiraguri, T.; Nishimori, K.; Shitara, I.; Mitsui, T.; Shindo, T.; Kimura, T.; Matsuda, T.; Yoshino, H. A cooperative transmission scheme in drone-based networks. IEEE Trans. Veh. Technol. 2020, 69, 2905–2914. [Google Scholar] [CrossRef]
- Matsuda, T.; Kaneko, M.; Hiraguri, T.; Nishimori, K.; Kimura, T.; Nakao, A. Adaptive direction control for UAV full-duplex relay networks using multiple directional antennas. IEEE Access 2020, 8, 85083–85093. [Google Scholar] [CrossRef]
- Nakayama, Y.; Hisano, D.; Maruta, K. Adaptive C-RAN Architecture with Moving Nodes Toward Beyond the 5G Era. IEEE Netw. 2020, 34, 249–255. [Google Scholar] [CrossRef]
- Yu, T.; Takaku, Y.; Kaieda, Y.; Sakaguchi, K. Design and PoC Implementation of Mmwave-Based Offloading-Enabled UAV Surveillance System. IEEE Open J. Veh. Technol. 2021, 2, 436–447. [Google Scholar] [CrossRef]
- IEEE Std. 802.11; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standards Association: Piscataway, NJ, USA, 2012.
- Morino, Y.; Hiraguri, T.; Yoshino, H.; Nishimori, K.; Matsuda, T. A novel collision avoidance scheme using optimized contention window in dense wireless LAN environments. IEICE Trans. Commun. 2016, 99, 2426–2434. [Google Scholar] [CrossRef]
- Hiraguri, T.; Nishimori, K. Survey of transmission methods and efficiency using MIMO technologies for wireless LAN systems. IEICE Trans. Commun. 2015, 98, 1250–1267. [Google Scholar] [CrossRef] [Green Version]
- Nishimori, K.; Yomo, H.; Popovski, P. Distributed interference cancellation for cognitive radios using periodic signals of the primary system. IEEE Trans. Wirel. Commun. 2011, 10, 2971–2981. [Google Scholar] [CrossRef]
- Pandi, S.; Gabriel, F.; Zhdanenko, O.; Wunderlich, S.; HP Fitzek, F. MESHMERIZE: An interactive demo of resilient mesh networks in drones. In Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–2. [Google Scholar]
- So, H.; Maruta, K. Directional Antenna With Lightweight Metamaterial Reflector for UAV-Based Networks. IEEE Access 2021, 9, 78735–78741. [Google Scholar] [CrossRef]
- So, H.; Maruta, K. Sector Design Using Multiband Antenna With Metamaterial Reflector for Cellular UAV System. IEEE Access 2022, 10, 4924–4933. [Google Scholar] [CrossRef]
- Moorthy, S.K.; Guan, Z. Beam Learning in MmWave/THz-Band Drone Networks Under In-Flight Mobility Uncertainties. IEEE Trans. Mob. Comput. 2022, 21, 1945–1957. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, V.; Magarini, M.; Pervaiz, H.; Alam, M.M.; Moullec, Y.L. Cell Coverage Analysis of a Low Altitude Aerial Base Station in Wind Perturbations. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhou, E.; Cui, J.; Dong, Z.; Fan, P. A Double-Beam Soft Handover Scheme and Its Performance Analysis for Mmwave UAV Communications in Windy Scenarios. IEEE Trans. Veh. Technol. 2022. [Google Scholar] [CrossRef]
- Mardani, A.; Chiaberge, M.; Giaccone, P. Communication-Aware UAV Path Planning. IEEE Access 2019, 7, 52609–52621. [Google Scholar] [CrossRef]
- Xu, D.; Sun, Y.; Ng, D.W.K.; Schober, R. Multiuser MISO UAV Communications in Uncertain Environments with No-Fly Zones: Robust Trajectory and Resource Allocation Design. IEEE Trans. Commun. 2020, 68, 3153–3172. [Google Scholar] [CrossRef] [Green Version]
- Nie, S.; Lunar, M.M.; Bai, G.; Ge, Y.; Pitla, S.; Koksal, C.E.; Vuran, M.C. mmWave on a Farm: Channel Modeling for Wireless Agricultural Networks at Broadband Millimeter-Wave Frequency. In Proceedings of the 2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Stockholm, Sweden, 20–23 September 2022; pp. 388–396. [Google Scholar] [CrossRef]
- IEEE 802.11. 2008. Available online: http://www.ieee802.org/11/ (accessed on 2 February 2023).
- Kraus, J.D. Antennas, 2nd ed.; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Motive2.0.2. 2018. Available online: https://www.optitrack.jp/products/software/ (accessed on 2 February 2023).
- Ministry of Land, Infrastructure, Transport and Tourism. Learn more about the registration system and remote ID! In Handbook for Unmanned Aircraft Registration; Ministry of Land, Infrastructure, Transport and Tourism: Tokyo, Japan, 2022. [Google Scholar]
- Ministry of Land, Infrastructure, Transport and Tourism. Unmanned Aerial Vehicle Manual (DID/Night/Out of Visual Line of Sight/30m/Hazardous Material/Object Drop). In Ministry of Land, Infrastructure, Transport and Tourism Civil Aviation Bureau Standard Manual; Ministry of Land, Infrastructure, Transport and Tourism: Tokyo, Japan, 2020. [Google Scholar]
- Mavic Air2. 2022. Available online: https://www.dji.com/jp/mavic-air-2/specs (accessed on 2 February 2023).
- Flowsquare+. 2021. Available online: http://flowsquare.com/ (accessed on 2 February 2023).
- Janszen, J.; Shahzaad, B.; Alkouz, B.; Bouguettaya, A. Constraint-aware trajectory for drone delivery services. In Proceedings of the Service-Oriented Computing–ICSOC 2021 Workshops: AIOps, STRAPS, AI-PA and Satellite Events, Dubai, United Arab Emirates, 22–25 November 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 306–310. [Google Scholar]
- Drela, M. Power balance in aerodynamic flows. AIAA J. 2009, 47, 1761–1771. [Google Scholar] [CrossRef] [Green Version]
- Cambridge University Aeronautics Laboratory. Measurement of Profile Drag by the Pitot-Traverse Method; HM Stationery Office: Richmond, UK, 1936. [Google Scholar]
- Schiano, F.; Alonso-Mora, J.; Rudin, K.; Beardsley, P.; Siegwart, R.; Sicilianok, B. Towards estimation and correction of wind effects on a quadrotor UAV. In Proceedings of the International Micro Air Vehicle Conference and Competition 2014 (IMAV 2014), Delft, The Netherlands, 12–15 August 2014; pp. 134–141. [Google Scholar]
- Pflimlin, J.M.; Soueres, P.; Hamel, T. Hovering flight stabilization in wind gusts for ducted fan UAV. In Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), Nassau, Bahamas, 14–17 December 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 4, pp. 3491–3496. [Google Scholar]
- Jakes, W.C. Microwave Mobile Communications; IEEE Press: Piscataway, NJ, USA, 1974. [Google Scholar]
Transmission Speed [Mbps] | Receiver Sensitivity Power [dBm] |
---|---|
6 | |
9 | |
12 | |
18 | |
24 | |
36 | |
48 | |
54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajima, Y.; Hiraguri, T.; Matsuda, T.; Imai, T.; Hirokawa, J.; Shimizu, H.; Kimura, T.; Maruta, K. Analysis of Wind Effect on Drone Relay Communications. Drones 2023, 7, 182. https://doi.org/10.3390/drones7030182
Tajima Y, Hiraguri T, Matsuda T, Imai T, Hirokawa J, Shimizu H, Kimura T, Maruta K. Analysis of Wind Effect on Drone Relay Communications. Drones. 2023; 7(3):182. https://doi.org/10.3390/drones7030182
Chicago/Turabian StyleTajima, Yuya, Takefumi Hiraguri, Takahiro Matsuda, Tetsuro Imai, Jiro Hirokawa, Hiroyuki Shimizu, Tomotaka Kimura, and Kazuki Maruta. 2023. "Analysis of Wind Effect on Drone Relay Communications" Drones 7, no. 3: 182. https://doi.org/10.3390/drones7030182
APA StyleTajima, Y., Hiraguri, T., Matsuda, T., Imai, T., Hirokawa, J., Shimizu, H., Kimura, T., & Maruta, K. (2023). Analysis of Wind Effect on Drone Relay Communications. Drones, 7(3), 182. https://doi.org/10.3390/drones7030182