ExtRanFS: An Automated Lung Cancer Malignancy Detection System Using Extremely Randomized Feature Selector
<p>Annotation of malignancy in lung tumor.</p> "> Figure 2
<p>Pipeline of the proposed methodology.</p> "> Figure 3
<p>Architecture of ExtRanFS framework.</p> "> Figure 4
<p>Detailed architecture of the proposed framework.</p> "> Figure 5
<p>Visualization of the feature maps extracted from each block in the VGG16 Model.</p> "> Figure 6
<p>Confusion matrix of the classifier upon feature extraction from different pre-trained models.</p> "> Figure 7
<p>Confusion matrix of various classifiers upon feature extraction from VGG16.</p> "> Figure 8
<p>Accuracy and loss of the MLP Classifier upon feature extraction from various pre-trained models.</p> "> Figure 9
<p>ROC curve of the classifier upon various pre-trained models as feature extractors.</p> ">
Abstract
:1. Introduction
Related Works
- Developed a framework for predicting lung cancer malignancy at an early stage. Sometimes even an expert radiologist may miss a relatively small lung tumor tissue which can be life-threatening.
- The implication of various tree splitting criteria in ExtraTreeClassifier as feature selector is compared.
- A comparative study is performed on various CNN models as feature extractors, with further consideration of the performance of the proposed framework with existing systems.
- A comparison is performed with other state-of-the-art machine learning classifiers.
2. Materials and Methods
2.1. Dataset
2.2. Proposed Methodology
Algorithm 1 ExtRanFS: Proposed Framework |
Input: Lung CT Image (IOri) Output: Classified Lung CT Image (IOut)
|
2.2.1. VGG16 as Feature Extractor
2.2.2. Extremely Randomized Ensemble Classifier as Feature Selector
2.2.3. Classification
2.2.4. Evaluation
3. Results and Discussion
3.1. Feature Extraction by VGG16
3.2. Feature Selection by ExtraTreeClassifier
3.3. Classification
Computational Complexity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christie, J.R.; Lang, P.; Zelko, L.M.; Palma, D.A.; Abdelrazek, M.; Mattonen, S.A. Artificial Intelligence in Lung Cancer: Bridging the Gap Between Computational Power and Clinical Decision-Making. Can. Assoc. Radiol. J. 2021, 72, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Rajaraman, S.; Ganesan, P.; Antani, S. Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks. PLoS ONE 2022, 17, e0262838. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, D.M.; Rong, R.; Zhan, X.; Fujimoto, J.; Liu, H.; Minna, J.; Wistuba, I.I.; Xie, Y.; Xiao, G. Artificial intelligence in lung cancer pathology image analysis. Cancers 2019, 11, 1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niki, N.; Kawata, Y.; Kubo, M. A CAD system for lung cancer based on CT image. Int. Congr. Ser. 2001, 1230, 631–638. [Google Scholar] [CrossRef]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.W.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef]
- Kazuo, A.; Awai, K.; Murao, K.; Ozawa, A.; Komi, M.; Hayakawa, H.; Hori, S.; Nishimura, Y. Pulmonary nodules at chest CT: Effect of computer-aided diagnosis on radiologists’ detection performance. Radiology 2004, 230, 347–352. [Google Scholar]
- Mozaffary, A.; Trabzonlu, T.A.; Lombardi, P.; Seyal, A.R.; Agrawal, R.; Yaghmai, V. Integration of fully automated computer-aided pulmonary nodule detection into CT pulmonary angiography studies in the emergency department: Effect on workflow and diagnostic accuracy. Emerg. Radiol. 2019, 26, 609–614. [Google Scholar] [CrossRef]
- Sahiner, B.; Chan, H.P.; Hadjiiski, L.M.; Cascade, P.N.; Kazerooni, E.A.; Chughtai, A.R.; Poopat, C.; Song, T.; Frank, L.; Stojanovska, J.; et al. Effect of CAD on radiologists’ detection of lung nodules on thoracic CT scans: Analysis of an observer performance study by nodule size. Acad. Radiol. 2009, 16, 1518–1530. [Google Scholar] [CrossRef] [Green Version]
- Chaganti, S.Y.; Nanda, I.; Pandi, K.R.; Prudhvith, T.G.N.R.S.N.; Kumar, N. Image Classification using SVM and CNN. In Proceedings of the 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), Gunupur, India, 13–14 March 2020; pp. 1–5. [Google Scholar]
- Danjuma, K.J. Performance Evaluation of Machine Learning Algorithms in Post-operative Life Expectancy in the Lung Cancer Patients. arXiv 2015, arXiv:1504.04646. [Google Scholar]
- Karhan, Z.; Tunç, T. Lung Cancer Detection and Classification with Classification Algorithms. IOSR J. Comput. Eng. (IOSR-JCE) 2016, 18, 71–77. [Google Scholar]
- Radhika, P.R.; Nair, R.A.; Veena, G.A. Comparative Study of Lung Cancer Detection using Machine Learning Algorithms. In Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22 February 2019; pp. 1–4. [Google Scholar]
- Tiwari, L.; Raja, R.; Awasthi, V.; Miri, R.; Sinha, G.R.; Alkinani, M.H.; Polat, K. Detection of lung nodule and cancer using novel Mask-3 FCM and TWEDLNN algorithms. Measurement 2021, 172, 108882. [Google Scholar] [CrossRef]
- Surendar, P.; Ponni Bala, M. Diagnosis of lung cancer using hybrid deep neural network with adaptive sine cosine crow search algorithm. J. Comput. Sci. 2021, 53, 101374. [Google Scholar]
- Hamdalla, F. The IQ-OTH/NCCD Lung Cancer Dataset. Kaggle. 2020. Available online: https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-dataset (accessed on 3 January 2023).
- Sharaff, A.; Gupta, H. Extra-Tree Classifier with Metaheuristics Approach for Email Classification. In Advances in Computer Communication and Computational Sciences; Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; pp. 189–197. [Google Scholar]
- Baby, D.; Devaraj, S.J.; Hemanth, J. Leukocyte classification based on feature selection using extra trees classifier: A transfer learning approach. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 2742–2757. [Google Scholar] [CrossRef]
- Asuntha, A.; Srinivasan, A. Deep learning for lung Cancer detection and classification. Multimed. Tools Appl. 2020, 79, 7731–7762. [Google Scholar] [CrossRef]
- Song, Q.; Zhao, L.; Luo, X.; Dou, X. Using deep learning for classification of lung nodules on computed tomography images. J. Healthc. Eng. 2017, 2017, 8314740. [Google Scholar] [CrossRef] [Green Version]
- Dutta, P.; Upadhyay, P.; De, M.; Khalkar, R.G. Medical Image Analysis using Deep Convolutional Neural Networks: CNN Architectures and Transfer Learning. In Proceedings of the 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–28 February 2020. [Google Scholar]
- Sajja, T.; Devarapalli, R.; Kalluri, H. Lung Cancer Detection Based on CT Scan Images by Using Deep Transfer Learning. Trait. Signal 2019, 36, 339–344. [Google Scholar] [CrossRef]
- Rahul, P.; Paul, R.; Hawkins, S.H.; Balagurunathan, Y.; Schabath, M.; Gillies, R.J.; Hall, L.O.; Goldgof, D.B. Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival Among Patients with Lung Adenocarcinoma. Tomography 2016, 2, 388–395. [Google Scholar]
- Gao, J.; Jiang, Q.; Zhou, B.; Chen, D. Lung nodule detection using convolutional neural networks with transfer learning on CT images. Comb. Chem. High Throughput Screen. 2021, 24, 814–824. [Google Scholar] [CrossRef]
- Chon, A.; Balachandar, N.; Lu, P. Deep Convolutional Neural Networks for Lung Cancer Detection; Standford University: Stanford, CA, USA, 2017; pp. 1–9. [Google Scholar]
- Razeq, K.; Abdel-Razeq, H.; Attiga, F.; Mansour, A. Cancer care in Jordan. Hematol. Stem Cell Ther. 2015, 8, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, N.; Abdullah, A.A.; Shaharum, S.M. Lung Cancer Cell Classification method Using Artificial Neural Network. Inf. Eng. Lett. 2012, 2, 48. [Google Scholar]
- Chang, Y.; Yan, L.; Chen, M.; Fang, H.; Zhong, S. Two-Stage Convolutional Neural Network for Medical Noise Removal via Image Decomposition. IEEE Trans. Instrum. Meas. 2019, 69, 2707–2721. [Google Scholar] [CrossRef]
- Satti, P.; Sharma, N.; Garg, B. Min-Max Average Pooling Based Filter for Impulse Noise Removal. IEEE Signal Process. Lett. 2020, 27, 1475–1479. [Google Scholar] [CrossRef]
- Kaviya, S.; Sathyakumar, K.; Munoz, M.; Singh, J.; Hussain, N.; Babu, B.A.; Babu, B. Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review. Cureus 2020, 12, e10017. [Google Scholar]
- Khehrah, N.; Farid, M.S.; Bilal, S.; Khan, M.H. Lung Nodule Detection in CT Images Using Statistical and Shape-Based Features. J. Imaging 2020, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhang, J.; Xia, Y.; Fulham, M.; Zhang, Y. Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Inf. Fusion 2018, 42, 102–110. [Google Scholar] [CrossRef]
- Nasser, I.M.; Abu-Naser, S.S. Lung Cancer Detection Using Artificial Neural Network. Int. J. Eng. Inf. Syst. (IJEAIS) 2019, 3, 17–23. [Google Scholar]
- Miah, M.B.A.; Yousuf, M.A. Detection of lung cancer from CT image using image processing and neural network. In Proceedings of the 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Savar, Bangladesh, 21–23 May 2015. [Google Scholar]
- Zhang, S.; Sun, F.; Wang, N.; Zhang, C.; Yu, Q.; Zhang, M.; Babyn, P.; Zhong, H. Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning. J. Digit. Imaging 2019, 32, 995–1007. [Google Scholar] [CrossRef]
- Wang, S.; Dong, L.; Wang, X.; Wang, X. Classification of pathological types of lung cancer from CT images by deep residual neural networks with transfer learning strategy. Open Med. 2020, 15, 190–197. [Google Scholar] [CrossRef]
- Al-Yasriy, H.F.; AL-Husieny, M.S.; Mohsen, F.Y.; Khalil, E.A.; Hassan, Z.S. Diagnosis of Lung Cancer Based on CT Scans Using CNN. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 928, p. 022035. [Google Scholar]
- Humayun, M.; Sujatha, R.; Almuayqil, S.N.; Jhanjhi, N.Z.A. Transfer Learning Approach with a Convolutional Neural Network for the Classification of Lung Carcinoma. Healthcare 2022, 10, 10061058. [Google Scholar] [CrossRef]
- AL-Huseiny, M.S.; Sajit, A.S. Transfer learning with GoogLeNet for detection of lung cancer. Indones. J. Electr. Eng. Comput. Sci. 2021, 22, 1078–1086. [Google Scholar] [CrossRef]
- Nishio, M.; Sugiyama, O.; Yakami, M.; Ueno, S.; Kubo, T.; Kuroda, T.; Togashi, K. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS ONE 2018, 13, e0200721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kareem, H.F.; AL-Husieny, M.S.; Mohsen, F.Y.; Khalil, E.A.; Hassan, Z.S. Evaluation of SVM performance in the detection of lung cancer in marked CT scan dataset. Indones. J. Electr. Eng. Comput. Sci. 2021, 21, 1731–1738. [Google Scholar] [CrossRef]
Trees in Forest | Selected Features (Gini) | Selected Features (Entropy) |
---|---|---|
10 | 1285 | 1013 |
20 | 2287 | 2009 |
30 | 3074 | 2950 |
40 | 3722 | 3690 |
50 | 4323 | 4104 |
60 | 4876 | 4562 |
70 | 5225 | 5143 |
80 | 6318 | 5940 |
90 | 6896 | 6231 |
100 | 7200 | 6921 |
Pre-Trained Model | Features Extracted | Features Selected |
---|---|---|
VGG16 | 25,008 | 4323 |
Xception | 100,352 | 6140 |
MobileNetV2 | 62,720 | 5191 |
InceptionV3 | 51,200 | 5949 |
Optimzer | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) |
---|---|---|---|---|
Adam | 99.09 | 98.66 | 98.66 | 98.66 |
Adagrad | 94.00 | 91.66 | 88.33 | 89.66 |
Adadelta | 65.00 | 52.33 | 51.00 | 51.66 |
RMSprop | 66.00 | 71.33 | 68.33 | 69.33 |
Classification Model | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) |
---|---|---|---|---|
VGG16+MLP (Proposed) | 99.09 | 98.66 | 98.66 | 98.66 |
Xception+MLP | 96.00 | 96.67 | 90.33 | 93.00 |
MobileNetV2+MLP | 97.00 | 96.67 | 94.00 | 95.00 |
InceptionV3+MLP | 94.00 | 90.33 | 89.66 | 89.66 |
Classification Model | With Feature Selection | Without Feature Selection | ||
---|---|---|---|---|
Trainable Parameters | Run Time (s) | Trainable Parameters | Run Time (s) | |
VGG16+MLP (Proposed) | 445,183 | 300 | 2,516,183 | 660 |
Xception+MLP | 835,583 | 600 | 10,042,583 | 780 |
MobileNetV2+MLP | 762,183 | 180 | 6,279,383 | 300 |
InceptionV3+MLP | 867,483 | 360 | 5,127,383 | 660 |
Classification Model | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) |
---|---|---|---|---|
VGG16+MLP (Proposed) | 99.09 | 98.33 | 98.33 | 98.33 |
VGG16+SVM | 98.63 | 96.66 | 97.33 | 97.00 |
VGG16+RF | 95.90 | 89.00 | 96.33 | 91.66 |
VGG16+KNN | 93.18 | 82.33 | 88.66 | 84.66 |
VGG16+DT | 93.63 | 91.00 | 92.33 | 91.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
V. R., N.; Chandra S. S., V. ExtRanFS: An Automated Lung Cancer Malignancy Detection System Using Extremely Randomized Feature Selector. Diagnostics 2023, 13, 2206. https://doi.org/10.3390/diagnostics13132206
V. R. N, Chandra S. S. V. ExtRanFS: An Automated Lung Cancer Malignancy Detection System Using Extremely Randomized Feature Selector. Diagnostics. 2023; 13(13):2206. https://doi.org/10.3390/diagnostics13132206
Chicago/Turabian StyleV. R., Nitha, and Vinod Chandra S. S. 2023. "ExtRanFS: An Automated Lung Cancer Malignancy Detection System Using Extremely Randomized Feature Selector" Diagnostics 13, no. 13: 2206. https://doi.org/10.3390/diagnostics13132206
APA StyleV. R., N., & Chandra S. S., V. (2023). ExtRanFS: An Automated Lung Cancer Malignancy Detection System Using Extremely Randomized Feature Selector. Diagnostics, 13(13), 2206. https://doi.org/10.3390/diagnostics13132206