Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques
<p>An Illustration of the EEG-Based Automatic Depression Detection System.</p> "> Figure 2
<p>Block diagram of a system for EEG-based diagnosis of depression.</p> "> Figure 3
<p>Architecture of 128-Channel Headset Data Visualization.</p> "> Figure 4
<p>A 128-Channel Power Spectral Distribution.</p> "> Figure 5
<p>A 16-Channel Power Spectral Distribution.</p> "> Figure 6
<p>Noise Removal through Band-pass Filter.</p> "> Figure 7
<p>Visualization of Linear Features.</p> "> Figure 8
<p>Power Spectrum Visualization.</p> "> Figure 8 Cont.
<p>Power Spectrum Visualization.</p> "> Figure 9
<p>Overview of XGBoost Algorithm.</p> "> Figure 10
<p>Random Forest Model.</p> "> Figure 11
<p>Classification Layer for Convolution Neural Network.</p> "> Figure 12
<p>(<b>a</b>) Training Performance Graph; (<b>b</b>) Loss Performance Graph.</p> "> Figure 13
<p>(<b>a</b>) Confusion Matrix for RF Model; (<b>b</b>) ROC Curve for RF Model.</p> "> Figure 14
<p>(<b>a</b>) Confusion Matrix for XGBoost Model; (<b>b</b>) ROC Curve for XGBoost Model.</p> "> Figure 15
<p>Confusion Matrix for CNN Classification Model.</p> "> Figure 16
<p>(<b>a</b>) Training and Validation Accuracy Performance Graph; (<b>b</b>) Training and Validation Loss Performance Graph; (<b>c</b>) ROC Curve for the CNN Classification Model.</p> "> Figure 17
<p>(<b>a</b>) Confusion Matrix of RF Classifier Model; (<b>b</b>) ROC curve for the RF Model.</p> "> Figure 18
<p>(<b>a</b>) Confusion Matrix of XGBoost Model; (<b>b</b>) ROC Curve for the XGBoost Model.</p> "> Figure 19
<p>Confusion Matrix of CNN Model.</p> "> Figure 20
<p>(<b>a</b>) Training and Validation Accuracy Performance Graph; (<b>b</b>) Training and Validation Loss Performance Graph; (<b>c</b>) ROC Curve.</p> "> Figure 21
<p>(<b>a</b>) Confusion Matrix of RF Classifier Model; (<b>b</b>) ROC Curve for the RF Model.</p> "> Figure 22
<p>(<b>a</b>) Confusion Matrix of XGBoost Model; (<b>b</b>) ROC Curve for XGBoost Model.</p> "> Figure 23
<p>Confusion Matrix of CNN Model.</p> "> Figure 24
<p>(<b>a</b>) Training and Validation Accuracy Performance Graph; (<b>b</b>) Training and Validation Loss Performance Graph; (<b>c</b>) ROC Curve.</p> "> Figure 24 Cont.
<p>(<b>a</b>) Training and Validation Accuracy Performance Graph; (<b>b</b>) Training and Validation Loss Performance Graph; (<b>c</b>) ROC Curve.</p> "> Figure 25
<p>(<b>a</b>) Confusion Matrix of RF Model; (<b>b</b>) ROC Curve for the RF Model.</p> "> Figure 26
<p>(<b>a</b>) Confusion Matrix of XGBoost Model; (<b>b</b>) ROC Curve for XGBoost Model.</p> "> Figure 27
<p>Confusion Matrix of CNN Model.</p> "> Figure 28
<p>(<b>a</b>) Training and Validation Accuracy Performance Graph; (<b>b</b>) Training and Validation Loss Performance Graph; (<b>c</b>) ROC Curve.</p> "> Figure 29
<p>(<b>a</b>) Confusion Matrix of RF Model; (<b>b</b>) ROC Curve for RF Model.</p> "> Figure 30
<p>(<b>a</b>) Confusion Matrix of XGBoost Model; (<b>b</b>) ROC Curve for XGBoost Model.</p> "> Figure 31
<p>Confusion Matrix of CNN Model.</p> "> Figure 32
<p>(<b>a</b>) Training and Validation Accuracy Performance Graph; (<b>b</b>) Training and Validation Loss Performance Graph; (<b>c</b>) ROC Curve.</p> "> Figure 33
<p>(<b>a</b>) Confusion Matrix of RF Model; (<b>b</b>) ROC Curve for RF Model.</p> "> Figure 34
<p>(<b>a</b>) Confusion Matrix of XGBoost Model; (<b>b</b>) ROC Curve for XGBoost Model.</p> "> Figure 35
<p>Confusion Matrix of CNN Model.</p> "> Figure 36
<p>(<b>a</b>) Training and Validation Accuracy Performance Graph; (<b>b</b>) Training and Validation Loss Performance Graph; (<b>c</b>) ROC Curve.</p> "> Figure 36 Cont.
<p>(<b>a</b>) Training and Validation Accuracy Performance Graph; (<b>b</b>) Training and Validation Loss Performance Graph; (<b>c</b>) ROC Curve.</p> ">
Abstract
:1. Introduction
- Event-related potentials in response to external stimulation were recorded over 128 channels; 24 patients had major depressive disorder, while 29 persons in the healthy control group did not.
- In resting-state 128-channel recordings, 24 persons with major depressive disorder and 29 without the condition were found.
- Twenty-nine healthy control subjects and 28 people with major depressive disorder were found in 3-channel resting-state recordings, as detailed in the section below.
2. Literature Review
3. Dataset
- When External Stimulation is Used:
- Age range: 16 to 52 years; 128-channel event-related potential recordings; 24 major depressive disorder participants; and 29 healthy control subjects.
- Contains demographic information and psychiatric evaluations.
- Under Rest:
- Age range: 16 to 52 years; 128-channel recordings of participants in their resting states; 24 major depressive disorder patients and 29 healthy controls; demographic information; and psychological evaluations.
- Three channels when at rest:
- Age range: 16 to 56 years; 3-channel resting-state recordings; 26 major depressive disorder participants; and 29 healthy control subjects.
- Contains demographic information and psychiatric evaluation.
3.1. Data Visualization
3.2. Pre-Processing
3.2.1. Artifact Correction and Re-Referencing
3.2.2. Noise Removal
3.2.3. Feature Engineering
3.2.4. Non-Linear Features
3.2.5. Feature Allocation and Visualization
3.2.6. Visualization of Linear Features
3.2.7. Visualization of Power Spectral Features
4. Methodology
4.1. Model Development
- Obsessive-compulsive disorders;
- Addictive disorder;
- Trauma and stress-related disorder;
- Mood disorder;
- Schizophrenia;
- Anxiety disorder.
4.2. Data Preprocessing and Pre-Operation
4.2.1. Label Datastore
4.2.2. Feature Datastore
4.2.3. Classification Model
- XGBOOST;
- Random Forest;
- 1D CNN model.
4.3. XGBoost
- Features of XGBoost
- Parallelization: The model is trained over several CPU cores.
- Regularization: XGBoost offers a range of regularization penalties in order to prevent overfitting. Penalty regularizations result in successful training, which enables accurate generalization of the model.
- Non-linearity: XGBoost can recognize and learn from non-linear data patterns.
- Cross-validation: Pre-installed and readily available.
- Scalability: Thanks to distributed servers and clusters like Hadoop and Spark, XGBoost can handle large amounts of data.
4.4. Random Forest Model
Model Parameters
- Step 1: The Random Forest technique uses n randomly chosen records from a data collection of k records.
- Step 2: A distinct Decision Tree is constructed for each sample.
- Step 3: Each Decision Tree will generate an output.
- Step 4: The final outcome for classification and regression is assessed using a majority vote or an average.
4.5. 1D CNN Model
- Model Architecture
Layer | Properties | |
---|---|---|
Input layer-Conv 1D | Input shape = (11,144) | Output shape = (1) |
Conv 1D | Kernal size = 11 | Activation = relu layer |
Drop out layer | Drop out value = 0.2 | |
Maximum pooling layer 1D | Pool size = 4 | |
Flatten layer | Layer size = default | |
Dense layer | Layer size = 100 | Activation = layer |
Output classification dense layer | Layer size = 1 | Activation function = sigmoid |
- Model Hyperparameters
Hyperparameters | Properties |
---|---|
Epochs | 25 |
Batch size | 32 |
Learning rate | 0.001 |
Loss | Binary cross entropy loss |
4.6. Model Training Results
- Standard Deviation Score
Std_Score |
---|
0.086534 |
0.078554 |
0.109268 |
0.121718 |
0.152891 |
0.136123 |
0.189414 |
0.088103 |
0.103762 |
0.074632 |
0.202616 |
0.189725 |
4.7. Model Evaluation
- Obsessive-compulsive disorders;
- Addictive disorder;
- Trauma and stress-related disorder;
- Mood disorder;
- Schizophrenia;
- Anxiety disorder.
- Evaluation of Training Model
- ○
- Accuracy score;
- ○
- Micro F1 score;
- ○
- Macro F1 score;
- ○
- ROC curve;
- ○
- Micro Recall score;
- ○
- Macro recall score;
- ○
- Macro precision score;
- ○
- Micro precision score.
5. Results
loss: | 0.3229 accuracy: | 0.8790 |
loss: | 0.2638 accuracy: | 0.9004 |
loss: | 0.2198 accuracy: | 0.9217 |
loss: | 0.2054 accuracy: | 0.9004 |
loss: | 0.1907 accuracy: | 0.9253 |
loss: | 0.1301 accuracy: | 0.9573 |
loss: | 0.1079 accuracy: | 0.9644 |
loss: | 0.1067 accuracy: | 0.9644 |
loss: | 0.0661 accuracy: | 0.9858 |
loss: | 0.0589 accuracy: | 0.9858 |
loss: | 0.0501 accuracy: | 0.9929 |
loss: | 0.0659 accuracy: | 0.9822 |
loss: | 0.0427 accuracy: | 0.9929 |
5.1. First Class Addictive Disorder
5.1.1. Random Forest Classification Model
5.1.2. XGBoost classification Model
5.1.3. CNN Classification Model
5.1.4. Class Obsessive-Compulsive Disorder
5.2. Model Classification
5.2.1. Random Forest Classifier Model
5.2.2. XGBoost Classifier Model
5.2.3. CNN Model
5.3. Class Trauma Stress-Related Disorder
5.3.1. Random Forest Classifier
5.3.2. XGBoost Model
5.3.3. CNN Model
5.4. Class Mood Disorder
5.4.1. Random Forest Classifier
5.4.2. XGBoost Model
5.4.3. CNN Model
5.5. Class Schizophrenia
5.5.1. Random Forest Model
5.5.2. XGBoost Model
5.5.3. CNN Model
5.6. Anxiety Disorder
5.6.1. Random Forest Classifier Model
5.6.2. XGBoost Model
5.6.3. CNN Model
6. Discussion
Comparative Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Safayari, A.; Bolhasani, H. Depression diagnosis by deep learning using EEG signals: A systematic review. Med. Nov. Technol. Devices 2021, 12, 100102. [Google Scholar] [CrossRef]
- Sarkar, A.; Singh, A.; Chakraborty, R. A deep learning-based comparative study to track mental depression from EEG data. Neurosci. Inform. 2022, 2, 100039. [Google Scholar] [CrossRef]
- Ay, B.; Yildirim, O.; Talo, M.; Baloglu, U.B.; Aydin, G.; Puthankattil, S.D.; Acharya, U.R. Automated depression detection using deep representation and sequence learning with EEG signals. J. Med. Syst. 2019, 43, 1–12. [Google Scholar] [CrossRef]
- Thoduparambil, P.P.; Dominic, A.; Varghese, S.M. EEG-based deep learning model for the automatic detection of clinical depression. Phys. Eng. Sci. Med. 2020, 43, 1349–1360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, J.; Hou, K.; Hu, B.; Shen, J.; Pan, J. EEG-based depression detection using convolutional neural network with demographic attention mechanism. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 128–133. [Google Scholar]
- Li, X.; La, R.; Wang, Y.; Niu, J.; Zeng, S.; Sun, S.; Zhu, J. EEG-based mild depression recognition using convolutional neural network. Med. Biol. Eng. Comput. 2019, 57, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, Y.; Fan, X.; Huang, X.; Yu, H.; Zhao, G.; Ma, W. A novel EEG-based major depressive disorder detection framework with two-stage feature selection. BMC Med. Inform. Decis. Mak. 2022, 22, 209. [Google Scholar] [CrossRef]
- Hawes, M.T.; Szenczy, A.K.; Klein, D.N.; Hajcak, G.; Nelson, B.D. Increases in depression and anxiety symptoms in adolescents and young adults during the COVID-19 pandemic. Psychol. Med. 2022, 52, 3222–3230. [Google Scholar] [CrossRef]
- Natasha, P.; Nikitha, T.; Bhatter, S.; Subhashish, K.; Harshitha, R. Detection of mental stress using EEG signals. Int. J. Eng. Tech. 2018, 4, 323–331. [Google Scholar]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H.; Subha, D. Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed. 2018, 161, 103–113. [Google Scholar] [CrossRef]
- Yasin, S.; Hussain, S.A.; Aslan, S.; Raza, I.; Muzammel, M.; Othmani, A. EEG based Major Depressive disorder and Bipolar disorder detection using Neural Networks: A review. Comput. Methods Programs Biomed. 2021, 202, 106007. [Google Scholar] [CrossRef]
- Pławiak, U.R. Acharya, Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. Neural Comput. Appl. 2020, 32, 11137–11161. [Google Scholar] [CrossRef]
- Kim, A.Y.; Jang, E.H.; Lee, S.-H.; Choi, K.-Y.; Park, J.G.; Shin, H.-C. Automatic Depression Detection Using Smartphone-Based Text-Dependent Speech Signals: Deep Convolutional Neural Network Approach. J. Med. Internet Res. 2023, 25, e34474. [Google Scholar] [PubMed]
- Scally, B.; Burke, M.R.; Bunce, D.; Delvenne, J.-F. Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy aging. Neurobiol. Aging 2018, 71, 149–155. [Google Scholar] [CrossRef] [PubMed]
- De Paula, P.O.; Da Silva Costa, T.B.; De Faissol Attux, R.R.; Fantinato, D.G. Classification of image encoded SSVEP-based EEG signals using Convolutional Neural Networks. Expert Syst. Appl. 2023, 214, 119096. [Google Scholar] [CrossRef]
- Mehta, P.; Namuduri, S.; Barbe, L.; Lam, S.; Faghihmonzavi, Z.; Finkbeiner, S.; Kamat, V.; Bhansali, S. AI Enabled Ensemble Deep Learning Method for Automated Sensing and Quantification of DNA Damage in Comet Assay. ECS Sens. Plus 2023, 2, 011401. [Google Scholar] [CrossRef]
- Swetaa, A.; Gayathri, R.; Priya, V.V. Awareness of mental health among teenagers. Drug Invent. Today 2019, 11, 1979–1982. [Google Scholar]
- Dhiman, R. Electroencephalogram channel selection based on pearson correlation coefficient for motor imagery-brain-computer interface. Meas. Sens. 2023, 25, 100616. [Google Scholar]
- Iannetti, G.D.; Mouraux, A. Combining Electroencephalography and Functional Magnetic Resonance Imaging in Pain Research. In EEG-fMRI: Physiological Basis, Technique, and Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 525–546. [Google Scholar]
- Tao, P.; Svetnik, V.; Bliwise, D.L.; Zammit, G.; Lines, C.; Herring, W.J. Comparison of polysomnography in people with Alzheimer’s disease and insomnia versus non-demented elderly people with insomnia. Sleep Med. 2023, 101, 515–521. [Google Scholar] [CrossRef]
- Tiwari, S.; Arora, D.; Nagar, V. Comparative Approach to Detect Nocturnal Frontal Lobe Epilepsy Sleep Disorder through Frequency spectrum and its Energy Levels. Procedia Comput. Sci. 2023, 218, 479–487. [Google Scholar] [CrossRef]
- Wang, B.; Kang, Y.; Huo, D.; Chen, D.; Song, W.; Zhang, F. Depression signal correlation identification from different EEG channels based on CNN feature extraction. Psychiatry Res. Neuroimaging 2023, 328, 111582. [Google Scholar] [CrossRef]
- Najand, B.; Christensen, A.; Martin, M.; Spelman, M. Sleep-deprived electroencephalography, a forgotten investigation in psychiatry; a case series. Int. J. Psychiatry Med. 2023, 58, 69–80. [Google Scholar] [CrossRef]
- Väyrynen, T.; Helakari, H.; Korhonen, V.; Tuunanen, J.; Huotari, N.; Piispala, J.; Kallio, M.; Raitamaa, L.; Kananen, J.; Järvelä, M.; et al. Sleep specific changes in infra-slow and respiratory frequency drivers of cortical EEG rhythms. bioRxiv 2023, 2001–2023. [Google Scholar]
- Jiang, L.; Luo, C.; Liao, Z.; Li, X.; Chen, Q.; Jin, Y.; Lu, K.; Zhang, D. SmartRolling: A human--machine interface for wheelchair control using EEG and smart sensing techniques. Inf. Process. Manag. 2023, 60, 103262. [Google Scholar] [CrossRef]
- Sánchez-Carro, Y.; De la Torre-Luque, A.; Leal-Leturia, I.; Salvat-Pujol, N.; Massaneda, C.; De Arriba-Arnau, A.; Urretavizcaya, M.; Pérez-Solà, V.; Toll, A.; Martínez-Ruiz, A.; et al. Importance of immunometabolic markers for the classification of patients with major depressive disorder using machine learning. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 121, 110674. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, Y.; Mao, Z.; Liu, J.; Gao, Q. EEG-based Emotion Identification Using One-Dimensional Deep Residual Shrinkage Network with Microstate Features. IEEE Sens. J. 2023, 23, 5165–5174. [Google Scholar] [CrossRef]
- Varli, M.; Yilmaz, H. Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning. J. Comput. Sci. 2023, 67, 101943. [Google Scholar] [CrossRef]
- Khosla, A.; Khandnor, P.; Chand, T. A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern. Biomed. Eng. 2020, 40, 649–690. [Google Scholar] [CrossRef]
- Sharma, G.; Parashar, A.; Joshi, A.M. DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression. Biomed. Signal Process. Control 2021, 66, 102393. [Google Scholar] [CrossRef]
- Seal, A.; Bajpai, R.; Agnihotri, J.; Yazidi, A.; Herrera-Viedma, E.; Krejcar, O. DeprNet: A deep convolution neural network framework for detecting depression using EEG. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Saeedi, A.; Saeedi, M.; Maghsoudi, A.; Shalbaf, A. Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short-term memory approach. Cogn. Neurodyn. 2021, 15, 239–252. [Google Scholar] [CrossRef]
- Khan, D.M.; Yahya, N.; Kamel, N.; Faye, I. Automated diagnosis of major depressive disorder using brain effective connectivity and 3D convolutional neural network. IEEE Access 2021, 9, 8835–8846. [Google Scholar] [CrossRef]
- Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot. 2020, 37, 362–386. [Google Scholar] [CrossRef]
- Wang, F.; Casalino, L.P.; Khullar, D. Deep learning in medicine—Promise, progress, and challenges. JAMA Intern. Med. 2019, 179, 293–294. [Google Scholar] [CrossRef]
- Qayyum, A.; Razzak, I.; Mumtaz, W. Hybrid deep shallow network for assessment of depression using electroencephalogram signals. In Neural Information Processing, Proceedings of the 27th International Conference, ICONIP 2020, Part III 27, Bangkok, Thailand, 23–27 November 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 245–257. [Google Scholar]
- Bai, R.; Guo, Y.; Tan, X.; Feng, L.; Xie, H. An EEG-based depression detection method using machine learning model. Int. J. Pharma. Med. Biol. Sci. 2021, 10, 17–22. [Google Scholar] [CrossRef]
- Liu, W.; Jia, K.; Wang, Z.; Ma, Z. A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal. Brain Sci. 2022, 12, 630. [Google Scholar] [CrossRef]
- Wang, B.; Kang, Y.; Huo, D.; Feng, G.; Zhang, J.; Li, J. EEG diagnosis of depression based on multi-channel data fusion and clipping augmentation and convolutional neural network. Front. Physiol. 2022, 13, 2165. [Google Scholar] [CrossRef] [PubMed]
- Uyulan, C.; De la Salle, S.; Erguzel, T.T.; Lynn, E.; Blier, P.; Knott, V.; Adamson, M.M.; Zelka, M.; Tarhan, N. Depression diagnosis modeling with advanced computational methods: Frequency-domain eMVAR and deep learning. Clin. EEG Neurosci. 2022, 53, 24–36. [Google Scholar] [CrossRef]
Ref. | Methodology | Experimental Parameters/Dataset | Libraries/Platform Implementation | Outcome/Results | Main Focus |
---|---|---|---|---|---|
[1] | Depression, depressive disorders, EEG, CNN, and LSTM | Deep learning techniques have been employed to identify or predict depression. What methods are primarily employed for feature extraction from EEG signals? | FFT, CNN, 1DCNN, 2DCNN, and 3DCNN | Using convolutional layers end-to-end, local features were extracted. | DL is used to diagnose depression using EEG readings. |
[2] | CNN, RNN, RNN with LSTM, DL, ML, MLP | When 40% of the testing set’s data are present, RNN with LSTM model is used. | SVM and Neural Network-Based DL | Two supervised ML models, SVM and LR, outperformed each other with accuracy rates of about 97.85 percent in testing and 100% in training, respectively. | A Comparative Study Using DL to Monitor Mental Depression Using EEG Data |
[4] | EEG; Clinical depression | Convolution layers are convolved with the input signal to produce feature maps. | LSTM Model, CNN | Using the random splitting method, the model was tested, and the results showed 99.23% and 99.05% accuracy for the right and left hemispheres’ EEG signals, respectively. | Automatic clinical depression detection |
[6] | EEG, CNN, Transfer Learning | Visual abstract theta, alpha, and beta band EEG power is calculated. | CAD; ConvNet | The proposed system delivered an 85.82% accuracy rate. | CNN’s use for recognizing mild depression |
[7] | EEG data, SVM, LR, and LNR are associated with MDD. | Ratio of features taken out of EEG signals in different frequency bands. | Elimination of recursive features, Pearson correlation coefficient | The development of this MDD detection framework may be integrated into a healthcare system to assist medical professionals in identifying MDD patients. | Framework for detecting depressive disorders with two stages of feature selection |
[8] | Symptoms of child anxiety related to the Children’s Depression Inventory | Sample of 451 young adults and adolescents. | Multivariable linear regression | There was an increase in depression and somatic/panic symptoms in females, in addition to social anxiety and social phobia. | Symptoms of anxiety |
[37] | Decision Tree, Variance, SVM, and Feature Selection | 13 features in total were retrieved, and a subset of the 6500 total features was calculated. | RF Model, FDR-based feature selection, and tree-based feature selection | Calculations of the linear, non-linear, and power spectral features were made for each channel of the EEG data for each sub-band. | Using ML, an EEG-Based Depression Detection Method |
[11] | ANN, DL, DNN, FFNN Network, EEG, MDD | Trans diagnostic cohorts. | EEG Data + Computational Tool + MATLAB | It has a classification accuracy rate of 97.66%. | Utilizing neural networks to detect bipolar disorder |
Experiment Type | Recording Type | Number of Participants | Outpatients (M/F) | Healthy Controls (M/F) | Age Range |
---|---|---|---|---|---|
When External Stimulation is Used | 128-channel event-related potential recordings | 53 | 13/11 | 20/9 | 16–56 years |
Three channels when at rest | 3-channel resting-state recordings | 55 | 15/11 | 19/10 | 16–56 years |
Under Rest | 128-channel recordings | 53 | 16/8 | 20/9 | 16–56 years |
if_alpha_one_pat | if_beta_one_pat | if_delta_one_pat | if_theta_one_pat | if_mean_one_pat | if_max_one_pat | if_min_one_pat | if_median_one_pat | |
---|---|---|---|---|---|---|---|---|
E9 | 1875.276458 | 549.464641 | 2901.380098 | 1367.535960 | 18,576.888899 | 2.132937 × 107 | 21.852823 | 600.045377 |
E22 | 1962.344324 | 564.344696 | 2103.001899 | 1128.255877 | 5045.360363 | 4.711530 × 106 | 11.292816 | 582.253467 |
E24 | 1829.038390 | 500.105839 | 1683.582830 | 920.839226 | 19,974.846182 | 2.365145 × 107 | 27.258894 | 528.262270 |
E33 | 1762.225038 | 655.299494 | 3190.643405 | 1483.650170 | 21,054.315858 | 2.431015 × 107 | 33.866445 | 662.574884 |
E36 | 1290.414086 | 442.475702 | 1464.350040 | 821.077427 | 10,529.862183 | 1.211437 × 107 | 11.256188 | 428.169135 |
nl_svden_one_pat | nl_spec_enone_pat | nl_permenone_pat | |
---|---|---|---|
E9 | 0.460683 | 0.385432 | 0.781321 |
E22 | 0.460976 | 0.423530 | 0.769295 |
E24 | 0.456698 | 0.379321 | 0.778964 |
E33 | 0.452907 | 0.395446 | 0.779078 |
E36 | 0.460703 | 0.450232 | 0.770696 |
if_alpha_resting_E36 | if_beta_resting_E36 | if_delta_resting_E36 | if_theta_resting_E36 | if_mean_resting_E36 | if_max_resting_E36 | if_min_resting_E36 | |
---|---|---|---|---|---|---|---|
0 | 4884.613979 | 2278.624552 | 17,200.055374 | 6866.060694 | 89,740.273531 | 9.384269 × 108 | 63.744193 |
1 | 4449.706266 | 2262.541526 | 19,716.190512 | 7544.042248 | 76,589.372973 | 7.777201 × 108 | 96.528437 |
2 | 2535.166056 | 2705.244726 | 5962.754681 | 2638.860812 | 21,714.444838 | 2.003181 × 108 | 5.312277 |
3 | 4719.376369 | 2299.826126 | 16,074.572713 | 6303.707905 | 48,324.405457 | 4.815979 × 108 | 21.432547 |
4 | 7827.445436 | 3818.779974 | 33,842.519264 | 12,699.762977 | 71,679.363955 | 6.715888 × 108 | 788.428172 |
No. | Sex | Age | Eeg.Date | Education | IQ | Main.Disorder | |
---|---|---|---|---|---|---|---|
0 | 1 | M | 57.0 | 2012.8.30 | NaN | NaN | Addictive disorder |
1 | 2 | M | 37.0 | 2012.9.6 | 6.0 | 120.0 | Addictive disorder |
2 | 3 | M | 32.0 | 2012.9.10 | 16.0 | 113.0 | Addictive disorder |
3 | 4 | M | 35.0 | 2012.10.8 | 18.0 | 126.0 | Addictive disorder |
4 | 5 | M | 36.0 | 2012.10.18 | 16.0 | 112.0 | Addictive disorder |
…… | 1 | *** | *** | … | … | … | |
940 | 941 | M | 22.0 | 2014.8.28 | 13.0 | 116.0 | Healthy control |
941 | 942 | M | 26.0 | 2014.9.19 | 13.0 | 118.0 | Healthy control |
942 | 943 | M | 26.0 | 2014.9.27 | 16.0 | 113.0 | Healthy control |
943 | 944 | M | 24.0 | 2014.9.20 | 13.0 | 107.0 | Healthy control |
944 | 945 | M | 21.0 | 2015.10.23 | 13.0 | 105.0 | Healthy control |
No. | Sex | Age | Eeg Date | Education | IQ | Main Disorder | |
---|---|---|---|---|---|---|---|
0 | 1 | M | 57.0 | 2012.8.30 | NaN | NaN | Addictive disorder |
1 | 2 | M | 37.0 | 2012.9.6 | 6.0 | 120.0 | Addictive disorder |
2 | 3 | M | 32.0 | 2012.9.10 | 16.0 | 113.0 | Addictive disorder |
3 | 4 | M | 35.0 | 2012.10.8 | 18.0 | 126.0 | Addictive disorder |
4 | 5 | M | 36.0 | 2012.10.18 | 16.0 | 112.0 | Addictive disorder |
… | … | … | |||||
940 | 941 | M | 22.0 | 2014.8.28 | 13.0 | 116.0 | Healthy control |
941 | 942 | M | 26.0 | 2014.9.19 | 13.0 | 118.0 | Healthy control |
942 | 943 | M | 26.0 | 2014.9.27 | 16.0 | 113.0 | Healthy control |
943 | 944 | M | 24.0 | 2014.9.20 | 13.0 | 107.0 | Healthy control |
944 | 945 | M | 21.0 | 2015.10.23 | 13.0 | 105.0 | Healthy control |
{‘Additive disorder’: 0 | 1.00 |
1 | 1.00 |
2 | 1.00 |
3 | 1.00 |
4 | 1.00 |
…… | |
940 | 0.00 |
941 | 0.00 |
942 | 0.00 |
943 | 0.00 |
944 | 0.00 |
Name: main.disorder, length: 281, dtype: float64, | |
trauma; and ‘stress related disorder’: 31 | 1.00 |
32 | 1.00 |
33 | 1.00 |
34 | 1.00 |
35 | 1.00 |
……… | |
940 | 0.00 |
941 | 0.00 |
942 | 0.00 |
943 | 0.00 |
944 | 0.00 |
Name: main.disorder, length: 223, dtype: float64, | |
‘mood disorder’:89 | 1.00 |
{‘Addictive disorder’: | Sex | Age | Education | IQ | delta.FP1 | delta.F7 | ||
---|---|---|---|---|---|---|---|---|
0 | 0.00 | 4.04 | 13.00 | 102.00 | 3.58 | 3.08 | 3.07 | |
1 | 6.60 | 3.62 | 6.00 | 120.00 | 2.60 | 2.40 | 2.4B6165 | |
2 | 6.60 | 3.47 | 16.00 | 113.00 | 3.40 | 3.32 | 2.84 | |
3 | 6.60 | 3.56 | 18.00 | 126.00 | 3.07 | 3.08 | 2.85 | |
4 | 6.60 | 3.SB3S19 | 16.00 | 112.00 | 3.63 | 3.51 | 3.08 | |
940 | 0.00 | 3.09 | 13.00 | 116.00 | 3.73 | 3.66 | 3.78 | |
941 | 0.00 | 3.258B97 | 13.00 | 118.00 | 2. 943747 | 2.965345 | 3.317324 | |
942 | 0.00 | 3.258B97 | 16.00 | 113.00 | 3.36 | 3.48 | 2.461167 | |
943 | 0.00 | 3.18 | 13.00 | 107.00 | 2.992181 | 3.23 | 2.676375 | |
944 | 0.00 | 3.04 | 13.00 | 105.00 | 4.17738B | 4.24 | 3.565626 | |
6 | delta. F3 3.289336 | delta. Fz 3.281344 | delta. F4 3.247761 | COH.gamma.Pz.P4 4.025159 | COH.gamma.Pz.T6\ 2.817782 | |||
1 | 2.73 | 2.649B26 | 2.52 | 3.82 | 2.86 | |||
2 | 3.16 | 3.30 | 2.67 | 4.60 | 4.26 | |||
3 | 2.63 | 2.65 | 2.57 | 4.09 | 4.16 | |||
4 | 3.08 | 3.13 | 3.07 | 4.12 | 4.08 | |||
940 | 3.61 | 3.21 | 3.16 | 4.417763 | 3.55 | |||
941 | 3.01 | 2.97 | 3.01 | 4.188416 | 4.20 | |||
4.11 | 82.00 | |||||||
943 | 2.80 | 2.87 | 2:733 | 4.59 | 3.88 |
Parameters | Values |
---|---|
Number of estimators | [100, 300, 500] |
Sub-sample | [0.3, 0.5, 1] |
Maximum depth of the tree | [1, 3, 6, none] |
Parameters | Values |
---|---|
Number of estimators | [100, 300, 500] |
Maximum depth of the tree | [1, 3, 6, none] |
Disorder | Algorithm | Params | Mean_Score |
---|---|---|---|
Addictive disorder | RF | {‘max_depth’: None, ‘n _estimators’: 500} | 0.788509 |
Addictive disorder | XGB | {‘max_depth“: 1, ‘n_estimators’: 100, ‘subsamp… | 0.851462 |
Trauma and stress related disorder | RF | {‘max_depth’: None, ‘n_estimators’: 500} | 0.826282 |
Trauma and stress related disorder | XGB | {‘max_depth“: 1, ‘n_estimators’: 100, ‘subsamp … | 0.891538 |
Mood disorder | RF | {‘max_depth’: None, ‘n_estimators’: 500} | 0.792669 |
Mood disorder | XGB | [‘max_depth“: 1, ‘n_estimators’: 500, ‘subsamp … | 0.818229 |
Obsessive-compulsive disorder | RF | {‘max_depth’: 6, ‘n_estimators’: 100} | 0.633889 |
Obsessive-compulsive disorder | XGB | {‘max_depth“: 3, ‘n_estimators’: 100, ‘subsamp … | 0.689944 |
Schizophrenia | RF | {‘max_depth’: 3, ‘n_estimators’: 500} | 0.808232 |
Schizophrenia | XGB | [‘max_depth’: 1, ‘n_estimators’: 100, ‘subsamp … | 0.922694 |
Anxiety disorder | RF | {“max_depth’: None, ‘n_estimators’: 500} | 0.759566 |
Anxiety disorder | XGB | (‘max_depth’: 1, ‘n_estimators’: 100, ‘subsamp … | 0.828283 |
Model | Accuracy | Micro F1 Score | Macro F1 Score | Micro Recall | Macro Recall | Micro Precision | Macro Precision |
---|---|---|---|---|---|---|---|
RF | 0.82 | 0.760 | 0.84 | 0.88 | 0.89 | 0.91 | 0.91 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
XGboost | 0.85 | 0.81 | 0.86 | 0.91 | 0.93 | 0.92 | 0.93 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
CNN | 0.94 | 0.95 | 0.90 | 0.92 | 0.94 | 0.91 | 0.95 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
RF | 0.79 | 0.82 | 0.81 | 0.86 | 0.81 | 0.83 | 0.88 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
XGboost | 0.84 | 0.86 | 0.87 | 0.89 | 0.85 | 0.86 | 0.82 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
CNN | 0.96 | 0.93 | 0.94 | 0.91 | 0.93 | 0.94 | 0.96 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
RF | 0.73 | 0.78 | 0.81 | 0.82 | 0.84 | 0.83 | 0.89 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
XGBoost | 0.82 | 0.79 | 0.84 | 0.85 | 0.81 | 0.83 | 0.88 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
CNN | 0.91 | 0.90 | 0.96 | 0.94 | 0.93 | 0.98 | 0.95 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
RF | 0.76 | 0.78 | 0.71 | 0.75 | 0.81 | 0.83 | 0.84 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
XGboost | 0.81 | 0.88 | 0.93 | 0.84 | 0.81 | 0.86 | 0.87 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
CNN | 0.93 | 0.94 | 0.95 | 0.91 | 0.92 | 0.90 | 0.95 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
RF | 0.72 | 0.76 | 0.79 | 0.78 | 0.73 | 0.81 | 0.79 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
boost | 0.80 | 0.83 | 0.81 | 0.88 | 0.87 | 0.83 | 0.79 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
CNN | 0.93 | 0.95 | 0.97 | 0.91 | 0.93 | 0.95 | 0.98 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
RF | 0.73 | 0.72 | 0.69 | 0.57 | 0.66 | 0.68 | 0.7 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
xgboost | 0.77 | 0.75 | 0.78 | 0.81 | 0.83 | 0.84 | 0.86 |
Model | Accuracy Score | Micro F1 Score | Macro F1 Score | Micro Recall Score | Macro Recall Score | Micro Precision Score | Macro Precision Score |
---|---|---|---|---|---|---|---|
CNN | 0.94 | 0.97 | 0.98 | 0.91 | 0.95 | 0.98 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ksibi, A.; Zakariah, M.; Menzli, L.J.; Saidani, O.; Almuqren, L.; Hanafieh, R.A.M. Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques. Diagnostics 2023, 13, 1779. https://doi.org/10.3390/diagnostics13101779
Ksibi A, Zakariah M, Menzli LJ, Saidani O, Almuqren L, Hanafieh RAM. Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques. Diagnostics. 2023; 13(10):1779. https://doi.org/10.3390/diagnostics13101779
Chicago/Turabian StyleKsibi, Amel, Mohammed Zakariah, Leila Jamel Menzli, Oumaima Saidani, Latifah Almuqren, and Rosy Awny Mohamed Hanafieh. 2023. "Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques" Diagnostics 13, no. 10: 1779. https://doi.org/10.3390/diagnostics13101779
APA StyleKsibi, A., Zakariah, M., Menzli, L. J., Saidani, O., Almuqren, L., & Hanafieh, R. A. M. (2023). Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques. Diagnostics, 13(10), 1779. https://doi.org/10.3390/diagnostics13101779